
A Additional details regarding D3PMs

A.1 Doubly-stochastic matrices

As discussed in Section 3.1, there are two constraints on Qt that allow it to be used within a D3PM:
the rows of Qt must sum to one to conserve probability mass, and the rows of Qt = Q1Q2 . . .Qt

must converge to a known stationary distribution as t becomes large. Technically, it is also possible
to use a learned prior p✓(xT ), but assuming this is still modeled under a conditional independence
assumption, q(xT |x0) must still be close to a stationary distribution for the LT loss term to be small.

One way to ensure that this occurs is to chose Qt as increasing powers of a doubly stochastic base
matrix Q (rows and columns sum to 1) with strictly positive entries. This is enough to ensure that Q is
is irreducible and aperiodic and that product Qt converges as t ! 1 to a uniform distribution over all
states. To show this, consider ⇡i = 1/K for i = 1, ...,K, and

PK
i=1 Qi,: = 1 and

PK
j=1 Q:,j = 1,

then [Q⇡]i =
PK

j=1 Qi,j⇡j = 1/K
PK

j=1 Qi,j = 1/K = ⇡i, thus the uniform distribution is an
eigenvector of the transition matrix with eigenvalue 1. Convergence to this distribution follows from
the Perron-Frobenius theorem for positive square matrices.

More generally, a similar argument shows that even for Qt that are not powers of the same base
matrix, as long as each Qt is doubly stochastic, irreducible, and aperiodic, the uniform distribution
is the only possible stationary distribution, and as long as the second largest eigenvalue of Qt is
bounded below, the cumulative product Qt will converge to the uniform distribution. In practice,
we choose Qt to add more noise as t increases, which ensures that QT is very close to reaching a
uniform stationary distribution.

A.2 More details on possible choices of Markov transition matrices

A.2.1 Uniform diffusion

The transition matrix described by Sohl-Dickstein et al. [17] for the binary case, and extended by
Hoogeboom et al. [9], to the categorical case, can be represented using the following K⇥K transition
matrix

[Qt]ij =

⇢
1� K�1

K �t if i = j
1
K �t if i 6= j

, (6)

This transition matrix can also be written as (1� �t)I + �t
T /K, where is a column vector of

all ones.

A.2.2 Diffusion with an absorbing state

For our diffusion models with an absorbing state m, we use the following matrix:

[Qt]ij =

8
<

:

1 if i = j = m
1� �t if i = j 6= m
�t if j = m, i 6= m

(7)

The transition matrix can also be written as (1� �t)I + �t eTm, where em is a vector with a one on
the absorbing state m and zeros elsewhere. Since m is an absorbing state, the corruption process
converges not to a uniform distribution but to the point-mass distribution on m.

For text generation, we let m be the [MASK] token at index K � 1; this leads to a BERT-like training
objective, which masks tokens according to some schedule and learns to denoise them iteratively (see
Section 4). For image generation, we set m to the gray RGB pixel (128, 128, 128) at index K//2.
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A.2.3 Discretized Gaussian transition matrices

For our D3PM models applied to ordinal data, inspired by continuous-space diffusion models, we use
the following K ⇥K matrix:

[Qt]ij =

8
>>><

>>>:

exp

✓
� 4|i�j|2

(K�1)2�t

◆

PK�1
n=�(K�1)

exp
⇣
� 4n2

(K�1)2�t

⌘ if i 6= j

1�
PK�1

l=0,l 6=i[Qt]il if i = j

(8)

Normalization is ensured by assigning the diagonal values to one minus the sum of each row (not
including the diagonal entry). Note that due to the normalization of the off-diagonal values over
the range {�K + 1, ...,K � 1} the sum of each row excluding the diagonal entry is always smaller
than 1. The result yields an irreducible doubly stochastic matrix and a forward process with a
uniform stationary distribution. Similar to the continuous Gaussian diffusion model, the parameters
�t influence the variance of the forward process distributions.

A.2.4 Structured diffusion in text: using word-embedding distance to introduce locality

For text, we construct a k-nearest neighbor adjacency matrix

[G]ij = 1 if wi is a k-nearest neighbor of wj else 0

constructed from a pre-trained embedding space over the vocabulary. Then we consider a symmetrized
adjacency matrix of the form A = (G+GT )/(2k) where k is the number of nearest neighbors of
each node, and finally construct a doubly stochastic rate matrix with

[R]ij =

(
�
P

l 6=i Ail if i = j

Aij otherwise
(9)

Our final transition matrix is constructed as a matrix exponential of this rate matrix:

Qt = exp(↵tR) =
1X

n=0

↵n
t

n!
Rn

Since R is symmetric and sums to zero along each row, Qt is doubly stochastic, which ensures we
have a uniform stationary distribution (as long as G is connected). Increasing ↵t over time allows us
to add more noise for larger values of t.

Assuming word embeddings are some metric for syntactic or semantic similarity, this results in a
corruption process that gradually moves away from the ground-truth sentence, swapping words with
nearest-neighbors in embedding space. For character level modeling, this is a graph over characters,
which more often transitions for instance from vowels to other vowels than from vowels to consonants.
For words, this could transition between semantically similar words.

For example, in Figure 4, we construct the forward process to diffuse from "dog" to "cat" or "cow",
which are nearby in embedding space, but not to more distant words. We can either bootstrap
this process by updating the transition matrix Q dynamically during training, or use pretrained
embeddings; we use pretrained embeddings for all of our experiments. Specifically, we train an
autoregressive language model on the dataset in question (either text8 or LM1B) with randomly
initialized word embeddings (768 dimensional in most cases), and then use L2 or cosine similarity to
compute the k-nearest neighbors of each token. We transition preferentially to these tokens, although
the matrix exponential in theory allows transitions to any other token. We choose k large enough so
the resulting graph is connected.

A.2.5 Band-diagonal transitions

A class of transition matrices that introduce local, ordinal inductive biases for structured data are band-
diagonal transition matrices which only allow the corruption process to transition locally between
states and biases the reverse process towards local iterative refinement. For example, in images, this
can be used to allow transitions only between adjacent pixel values.
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Figure 4: Two examples of noise schedules transforming text data. The top is a BERT-like absorbing
+ uniform diffusion which replaces tokens with [MASK] tokens (and occasionally with any other
token, in black). The bottom is nearest-neighbor diffusion in embedding space. At left represents a
possible column in the transition matrix.

Figure 5: The character-level symmetrized 5-NN graph.

[Qt]ij =

(
1
K �t if 0 < |i� j|  v
1�

P
l 6=i Qil if i = j

(10)

where v is the number of nonzero off-diagonal elements of Q above (and below) the main diagonal.
Note that this is a doubly stochastic matrix, so the stationary distribution is uniform. We do not use
these in our experiments.

A.2.6 Combinations of absorbing diffusion and other diffusion

A few ablations in Appendix B.2.1 consider transition matrices that combine absorbing-state or
nearest-neighbor and uniform D3PM models. For instance, an absorbing-uniform transition matrix
can be constructed Q = ↵ eTm + � T /K + (1 � ↵ � �)I , where em is a one-hot vector on the
[MASK] token.

A.3 Generative Masked Language Models are Diffusion Models

Generative Masked Language Models [5, 21] are generative models that generate text from a sequence
of [MASK] tokens. These are usually trained by sampling a sequence x0, masking tokens according
to some schedule, and learning to predict the masked tokens given context. The actual masking
procedure can either be done independently, i.e. by masking each token with probability p = k/T ,
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Figure 6: Subgraph of a word-level NN graph.

like Devlin et al. [3], or by sampling exactly k tokens. The usual objective is7:

min�Eq(x0)

2

4Ek2[1...|x0|]

2

41

k
Exkwith k masked tokens

2

4
X

i with [xk]i=m

log p✓([x0]i|xk)

3

5

3

5

3

5 (11)

where we first sample a datapoint x0, sample a number of tokens to mask k (either uniformly or
according to some schedule), then mask that many tokens at random and compute a cross entropy
loss over those masked tokens. We claim that this training objective is a (reweighted) absorbing-state
D3PM objective with a particular noise schedule and the x0-parameterization from 3.3 (and indeed,
that any absorbing-state D3PM model with [MASK] as the absorbing state will be a reweighted
version of this loss with different weights assigned to different numbers of masked tokens k).

Consider a D3PM with a schedule that masks tokens with probability �t. The reverse process predicts
ep✓(fx0|xt), then uses the forward process to compute p✓(xt�1|xt) /

P
q(xt�1,xt|fx0)ep✓(ex0|xt).

In the particular case of absorbing-state diffusion, for each masked token [xt]i = m in xt, we thus
have

p✓([xt�1]i|xt) /
⇢
[�t

Q
s<t(1� �s)]ep✓([ex0]i = [x0]i|xt) for [xt�1]i = [x0]i 6= m

1�
Q

st(1� �s) for [xt�1]i = m

We note that for each unmasked token [xt]i = [x0]i, the KL-divergence is zero since unmasked
tokens cannot make any other type of transition other than becoming masked. Also, the term in the
KL divergence due to the probability of mask transitions is a constant, since mask transitions are
independent of the model parameters ✓. Our Lt term is then

DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)] = �
"
�t

Y

s<t

(1� �s)

#
X

i with [xt]i=m

log ep✓([x0]i|xt) + C

where C is independent of ✓ and the sum is taken over the masked tokens in xt. For example,
if we use �(t) = 1/(T � t + 1) from Sohl-Dickstein et al. [17], �t

Qt�1
i=0(1 � �i) = 1/T and

1 �
Qt

i=0(1 � �i) = (t � 1)/T , so q([xt�1]i = [x0]i|[xt]i = m,x0) = 1/t for non-mask tokens
and we can simplify our Lt objective to

DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)] = �

2

41

t

X

i with [xt]i=m

log ep✓([x0]i|xt)

3

5+ C

where xt masks tokens independently and uniformly with probability t/T . The LT term in our
ELBO is 0 for the 1/(T � t+ 1) schedule, so the full objective (up to a constant) reduces to

7Sometimes the loss is un-normalized or normalized by the full sequence length.
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Eq(x0)

"
�

TX

t=2

1

t
Eq(xt|x0)

⇥ X

i with [xt]i=m

log p✓([x0]i|xt)]
⇤

�Eq(x1|x0)[
X

i with [x1]i=m

log p✓([x0]i|x1)]

#

= �Eq(x0)

2

4
TX

t=1

1

t
Eq(xt|x0)

⇥ X

i with [xt]i=m

log p✓([x0]i|xt)]
⇤
3

5 (12)

Note that while this looks very similar to Equation 11 (with each term reweighted by 1/t, the expected
number of masked tokens) it is not exactly identical since masking is computed independently per-
token position (instead of choosing exactly k tokens to mask). This is an entirely practical way to do
masking (and indeed some methods implement it this way).

Furthermore, since the masking probability varies linearly as 1�
Q
(1��t) = t/T , this is very close

to uniformly sampling the number of masked tokens k, but k is actually drawn from a mixture of
binomial distributions, i.e.

= �Eq(x0)

2

4Ek2[1...|X|]

2

4Exkwith k masked tokens

2

4↵(k)
X

i with [xk]i=m

log p✓([x0]i|xk)]

3

5

3

5

3

5 (13)

↵(k) = q(xt has k masked tokens|x0 has n tokens) =
1

T

TX

t=1

✓
n

k

◆✓
t

T

◆n�1 ✓
1� t

T

◆n�k

(14)

which is very close to uniform weight over terms, but slightly downweights terms near 0 and T . By
upweighting terms near the boundary, you could in theory make this exactly uniform and thus exactly
recover Equation 11. For instance, for 50 categories, absorbing-state diffusion produces the weighting
shown in Figure 7.

Figure 7: Plot of the probabilities of having k tokens masked out of a length-50 sequence under a
D3PM absorbing schedule with T = 50 steps, which is very similar to the uniform weighting used
by Ghazvininejad et al. [5].

A.4 Scaling to a large number of categories

When the number of categories K is large, it can quickly become impractical to store all of the
transition matrices Qt in memory, as the memory usage grows like O(K2T ). And even if there is an
algorithm to compute individual step matrices Qt on demand, it may or may not be possible to do
the same for the cumulative products Qt. We propose two approaches to scaling D3PMs to large
numbers of categories that ensure cumulative products are efficient: using low-rank corruption and
using matrix exponentials.
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A.4.1 Low-rank corruption

In the low-rank case, we consider structuring our transition matrices as

Qt = �tAt + (1� �t)I, (15)

where each At is a diagonalizable low-rank matrix with the same nonzero eigenvectors. In particular,
recall that both absorbing-state diffusion and uniform diffusion have this form: for uniform diffusion,
Auniform

t = T /K, and for absorbing-state diffusion Aabs
t = eTm where em is a one-hot vector

on the absorbing state. Since products of At’s are also low rank, the cumulative products Qt can
be efficiently precomputed and stored using a much smaller amount of memory O(r2T ) where
r = rank(At).

As an illustrative example, we describe in more detail how to efficiently represent uniform and
absorbing-state transition matrices using the low-rank structure.

To compute products of uniform transition matrices (i.e.
Q

i(1 � �i)I + �i
T /K), we can take

advantage of the useful fact that products of matrices of the form ↵I + � T also have this same
form: I2 = I and

�
� T

�2
= �2K T . We can thus treat this as a formal polynomial in one

variable X = ( T /K). Then products can be computed as
Q

i [(1� �i) + �iX] over the quotient
ring R[X]/(X2 �X), since X2 = X . Functionally, this means you can instantiate a polynomial
(1� �i) + �iX and repeatedly perform ordinary polynomial multiplication over R[X] for the t < T
timesteps. After each multiplication, the higher-order terms are reduced by X2 = X , leaving a
polynomial of degree 1 where the X term has coefficient given by the sum of all higher-order terms.
This can be computed with the convenient np.polynomial module.

Similarly, the transition matrices for D3PM absorbing can be computed in closed form. Fundamen-
tally, in each step, we transition to a [MASK] token with probability �t and stay the same with
probability 1� �t. Since the [MASK] state is absorbing, after t steps, the only operative quantity
is the probability of not yet having transitioned to the [MASK] state, given by e↵t =

Qt
i=0(1� �i).

Hence for D3PM absorbing, Q = ↵̃tI + (1� e↵t) eTm where em is a one-hot vector on the [MASK]
token.

A.4.2 Matrix exponentials

In the matrix exponential case, we specify our transition matrices as

Qt = exp(↵tR) =
1X

n=0

↵n
t

n!
Rn, Qt = exp

⇣⇣P
st ↵s

⌘
R
⌘
, (16)

where R is a transition rate matrix and exp denotes the matrix exponential operation; the similar
form for Qt and Qt is a consequence of the “exponential of sums” property for commuting matrices.
For efficiency, we further assume that each of the ↵t is an integer multiple nt↵? of some common
factor ↵?, and precompute matrices exp(2k↵?R) for 0  k  log2(↵T /↵?), where ↵T =

P
t<T ↵t,

taking space O(K2 log(↵T /↵?)). Then, to compute matrix-vector products with Qt or Qt, we can
iteratively take products with a subset of these precomputed matrices based on the digits of a binary
expansion of the desired multiple nt in time O(K2 log(↵T /↵?)).8

As long as R has non-positive off-diagonal entries and sums to zero along each row, the matrix
exponential produces a valid transition matrix Qt; convergence to a specific stationary distribution
can also be ensured by controlling the eigenvectors. In particular, if every column also sums to zero,
the resulting Qt will be doubly stochastic and will thus have a uniform stationary distribution.

We note that this parameterization can be viewed as a discretization of a continuous-time discrete-
space Markov processes; we describe this connection in more detail in the following section.

A.5 Continuous-time Markov process transition rates

Following Feller [4], we define a continuous-time discrete-space Markov process as a collection
of random variables {xt}t>0 parameterized by t 2 R+ and characterized by a Markov property

8This is closely related to the well-known “exponentiation-by-squaring” technique.
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(xt ? xs | x⌧ if t < ⌧ < s), a transition probability matrix ⇧(t) 2 RN⇥N where N is the cardinality
of xt, and a set of transition rates �i(t).

A conceptual way to understand these processes is to imagine a continuous Poisson process occurring
in each state i at rate �i(t) determining when a transition between states occurs. When a transition
occurs (at time t), a Markov transition occurs between states i and j with probability ⇧ij(t). Many
common stochastic processes fall into this family, including Poisson processes. Like in the case of
stochastic differential equations (Song et al. [18]), we can derive a set of Kolomogorov equations (or
Fokker-Planck equations in the continuous-state space case) that determine the marginal probability
@qij(⌧, t) of ending up in state j at time t having started in state i at time s. The general form of the
Kolmogorov forward equations is

@qij(⌧, t)

@t
= ��k(t)qi(⌧, t) +

X

j

�j(t)⇧kj(t)qik(t)

Now we can state and prove a theorem connecting continuous time Markov processes and matrix
exponentials.
Theorem 1. Let {xt}t�0 be a discrete-space, continuous-time Markov process with (possibly time-
dependent) transition probability matrix ⇧(t) and transition rates �i(t). Then for a particle with an
initial distribution q(xs) at time s, the probability of ending in state j at time t is

q(xt|xs) = exp

✓Z t

s
diag(�(⌧))(⇧(⌧)� I) d⌧

◆
q(xs)

where exp is the matrix exponential and we view q(xt) and �(t) as vectors in RN .

Proof (sketch). From the Kolmogorov equations for continuous-time Markov processes, we have the
ODE

@q(xt|xs)

@t
= diag(�(t))(⇧(t)� I)q(xt|xs)

where ⇧(t) is the transition probability matrix. Solving this as a first-order ODE using integrating
factors yields the desired equation.

We note that, if ⇧(t) = ⇧ is independent of t and �(s) = �(s)r for some scalar function � : R ! R
and vector r 2 RN , this simplifies to exactly our matrix exponential parameterization with

R = diag(r)(⇧� I).

where we set

↵t =

Z t

t�1
�(t) dt.

In other words, the ↵t parameters in Equation 16 correspond to a discretization of the cumulative
transition rate of a continuous-time process.

A.6 Continuous-limit of schedule from Sohl-Dickstein et al. [17]

Consider for example the schedule described by Sohl-Dickstein et al. [17] for Bernoulli variables
�t = 1/(T � t + 1), i.e. the Bernoulli variable would stay the same with probability 1 � �t =
(T�t)/(T�t+1) and transition with probability �t. In this section, we show that a D3PM absorbing
or D3PM uniform process with this schedule is exactly a discretization of a continuous-time jump
process of the form described in Theorem 1.

We start by observing that both absorbing-state and uniform D3PM transition matrices can be
expressed equivalently as matrix exponentials. In the uniform case, we have

Qt = exp(↵tRunif) = exp

✓
↵t

✓
1

K
T � I

◆◆
= exp(�↵t)I + (1� exp(�↵t))

1

K
T ,
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and in the absorbing case we have

Qt = exp(↵tRabs) = exp
�
↵t

�
eTm � I

��
= exp(�↵t)I + (1� exp(�↵t)) eTm.

In either case, by setting this equal to the explicit forms in Appendix A.2, we obtain the relationship

�t = 1� exp(�↵t)

where �t is defined as in Appendix A.2, and ↵t is the matrix exponential coefficient as used in the
previous section. Using the correspondence discussed in the previous section, we also know

↵t =

Z t

t�1
�(s) ds

for the continuous-time transition rate function �(s). Defining �t = 1/(T � t+ 1), we have

1� �t = 1� 1

(T � t+ 1)
=

T � t

T � t+ 1
= exp

✓
�
Z t

t�1
�(⌧)d⌧

◆

Denoting the anti-derivative
R
�(t) = F (t), we have log(T�t)�log(T�t+1) = �F (t)+F (t�1),

so we can deduce F (t) = � log(T � t) (up to a constant offset). Taking a derivative then yields
�(t) = 1/(T � t), which has the same form as the original schedule but is now interpreted as a
continuously-varying rate function instead of a probability (and is also shifted by 1 unit in time).
Intuitively, we can interpret this as a schedule which assigns uniform probability of a transition
occurring over the remaining time, but instead of dividing it between T � t+ 1 discrete steps, we
divide it across a continuous interval of size T � t. We note that using larger values of T is equivalent
to performing a finer discretization on a scaled version of this continuous-time process.

A.7 Mutual-information-based noise schedule

An important part of designing the forward process for a diffusion process is to specify the noise
schedule: how much noise is added at each step t such that after T steps the process has (approxi-
mately) reached the stationary distribution of the transition matrix. Previous work on continuous-state
diffusion models [8, 11, 18] has focused on controlling the variance of the continuous noise added at
each step, but in a discrete state space it is less obvious how to measure or control the level of noise
added.

For uniform or absorbing-state transition matrices, once a single transition occurs, all information
about the original data point is lost. In this case, the schedule introduced by Sohl-Dickstein et al. [17]
is a natural choice, since it is designed to make this first transition for t/T of the elements by time t.
However, when the transition matrix imposes additional structure on the transitions, such as for our
token-embedding based transition matrix, it is not sufficient to perturb t/T of the elements by time t,
since the value at time t may be highly correlated with the value at time t� 1 even after a transition
occurs; we thus explore using mutual information to quantify how much noise has been added. Here
we describe the mutual-information-based schedules in more detail. We focus on transition matrices
that are parameterized as matrix exponentials, i.e. they have the form

Qt = exp(↵tR) =
1X

n=0

↵n
t

n!
Rn, Qt = exp

⇣⇣P
st ↵s

⌘
R
⌘
= exp (↵̄tR) .

Inspired by the schedule introduced by Sohl-Dickstein et al. [17], we consider setting our ↵t such
that t

T of the information about p(x0) has been lost by time t. Our goal is to find exponents such that

t

T
= 1� I(xt;x0)

H(x0)
=

H(x0,xt)�H(xt)

H(x0)
=

P
x0,xt

p(x0)q(xt|x0) log
q(xt|x0)P

x0
0
p(x0

0)q(xt|x0
0)P

x0
p(x0) log p(x0)

(17)

where H denotes the entropy of a random variable, and p(x0) denotes the distribution of a randomly
chosen token in the data.

In practice, we estimate p(x0) by computing empirical frequencies over the training set, and compute
the value of the right-hand side of 17 for transition matrices exp(↵̄R) with 256 geometrically-spaced
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exponents ↵̄ distributed in a large range (linear on a log scale between 1e-4 and 1e5). We then
interpolate using a monotonic cubic spline to find the particular exponents ↵̄t that ensure the above
property holds approximately, and round them so that they are all multiples of a common factor ↵? to
ensure efficiency (as described in Appendix A.4). Finally, we set Qt = exp((↵̄t � ↵̄t�1)R).

It turns out that, for the specific case of absorbing-state diffusion with a [MASK] token, the mutual
information schedule reduces to exactly the (T � t + 1)�1 schedule proposed by Sohl-Dickstein
et al. [17]. To see this, let mt be the probability that a given value from time 0 has been replaced with
[MASK] at time t. We note then that

H(xt) =
X

x0

(1�mt)p(x0) log ((1�mt)p(x0)) +mt logmt

= (1�mt)
X

x0

p(x0) log p(x0) + (1�mt) log(1�mt) +mt logmt

where we have used the fact that a mask token has zero probability under the data distribution. We
also have the joint entropy

H(x0,xt) =
X

x0

p(x0) log p(x0) +mt logmt + (1�mt) log(1�mt).

We can then calculate

1� I(xt;x0)

H(x0)
=

H(x0,xt)�H(xt)

H(x0)

=

P
x0

p(x0) log p(x0) +mt logmt + (1�mt) log(1�mt)P
x0

p(x0) log p(x0)

�
(1�m)

P
x0

p(x0) log p(x0) + (1�mt) log(1�mt) +mt logmtP
x0

p(x0) log p(x0)

=
mt

P
x0

p(x0) log p(x0)P
x0

p(x0) log p(x0)
= mt.

It follows that the mutual information schedule for masks is one that ensures mt = q(xt =
[MASK]|x0) =

t
T . But this is exactly the (T�t+1)�1 schedule. To see this, let �t be the probability

that a non-mask token becomes a mask token at time t, and note that mt = 1�
Qt

s=1(1� �s). Thus,

�t = 1� 1�mt

1�mt�1
= 1�

1� t
T

1� t�1
T

= 1� T � t

T � t+ 1
=

(T � t+ 1)� (T � t)

T � t+ 1
=

1

T � t+ 1

as desired.

Interestingly, although the (T � t+ 1)�1 schedule was designed for the case of a uniform transition
matrix (an used for this purpose by Sohl-Dickstein et al. [17] and Hoogeboom et al. [9]), the
(T � t+1)�1 schedule is NOT in general identical to the mutual information schedule in that setting.
We leave further investigation of these schedules to future work.

A.8 Parameterizing the reverse process with a discretized truncated logistic distribution

For ordinal data such as images, we can instill an ordinal inductive bias in the logits of ep✓(ex0|xt)
by modeling them using a discretization of a distribution on real-valued numbers. In this paper we
choose the underlying continuous distribution to be a truncated logistic distribution. The code below
shows how we compute the logits for ep✓(ex0|xt), given a location/mean and a log scale that were
predicted by a neural network nn✓.

1 import jax.numpy as jnp
2

3

4 def get_logits_from_logistic_pars(loc, log_scale, num_classes):
5 """Computes logits for an underlying logistic distribution."""
6

7 # The loc and log_scale are assumed to be modeled for data re-scaled
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8 # such that the values {0, ...,K-1} map to the interval [-1, 1].
9 # Shape of loc and log_scale: (batch_size, height, width, channels)

10 loc = jnp.expand_dims(loc, axis=-1)
11 log_scale = jnp.expand_dims(log_scale, axis=-1)
12

13 # Shift log_scale such that if it’s zero the output distribution
14 # has a reasonable variance.
15 inv_scale = jnp.exp(- (log_scale - 2.))
16

17 bin_width = 2. / (num_classes - 1.)
18 bin_centers = jnp.linspace(start=-1., stop=1., num=num_classes,
19 endpoint=True)
20 bin_centers = jnp.expand_dims(bin_centers,
21 axis=tuple(range(0, loc.ndim-1)))
22

23 bin_centers = bin_centers - loc
24 # Note that the edge bins corresponding to the values 0 and K-1
25 # don’t get assigned all of the mass in the tails to +/- infinity.
26 # So the logits correspond to unnormalized log probabilites of a
27 # discretized truncated logistic distribution.
28 log_cdf_min = jax.nn.log_sigmoid(
29 inv_scale * (bin_centers - 0.5 * bin_width))
30 log_cdf_plus = jax.nn.log_sigmoid(
31 inv_scale * (bin_centers + 0.5 * bin_width))
32

33 logits = log_minus_exp(log_cdf_plus, log_cdf_min)
34

35 return logits
36

37

38 def log_minus_exp(a, b, epsilon=1.e-6):
39 """Computes the log(exp(a) - exp(b)) (b<a) in a numerically stable way."""
40

41 return a + jnp.log1p(-jnp.exp(b - a) + epsilon)

A.9 Auxiliary loss

Here we show that, for some choices of forward process q, there are parameterizations ep✓(x0|xt) that
are optimal under any reweighting of the ELBO but not optimal under the auxiliary loss. This occurs
because the ELBO only supervises ep✓(x0|xt) through the sum

P
x0

q(xt�1, xt|x0)ep✓(x0|xt).

Consider the following example: suppose we have a 2-step discrete diffusion process over a sequence
of length one with a vocabulary of size 4 (A, B, C, D), and let q(x0) be a point mass distribution on A.
During the first timestep, assume A transitions to B with 50% probability. During the second timestep,
assume A transitions to C with 50% probability and B transitions to D with 50% probability. Without
the auxiliary loss, at timestep 2 the model ep✓(x0|x2) is free to predict a point-mass on either A or B (or
a mixture of the two), either of which will have the same marginal p(x1|x2) = [0.5, 0.5, 0, 0] which
exactly matches the true posterior and has DKL = 0. This is also optimal under any reweighting of
the ELBO terms. However, with the auxiliary loss, only a point-mass on A (the true value of x0) is
optimal, because we are directly supervising the quantity ep✓(x0|x2), not just p✓(x1|x2).

We note that while the auxiliary loss is not in general equivalent to a reweighting, they may be
equivalent in certain special cases. As one specific example, consider absorbing-state diffusion. In
this case, from Appendix A.3 we know that each term in the KL loss is of the form

DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)] = �

2

41

t

X

i with [xt]i=m

log ep✓([x0]i|xt)

3

5+ C,

whereas the corresponding auxiliary loss is simply

�� log ep✓(x0|xt) = ��
X

i

log ep✓([x0]i|xt).
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We can interpret this as giving a larger weight to reconstructions for larger values of t, replacing the 1
t

weight with �. The only difference is that the auxiliary loss also supervises tokens where [xt]i 6= m
and thus [xt]i 6= [x0]i, i.e. it encourages unmasked tokens to remain the same.

B Experiments

B.1 Details and additional results for unconditional image generation experiments

We follow the same training and evaluation setup as used by Ho et al. [8]. For completeness we
repeat these settings here. The model architecture is based on the backbone of a PixelCNN++ [16]
architecture: a U-Net [13] based on a Wide ResNet [23] with weight normalization layers [14]
replaced by group normalization layers [22]. The model has four feature map resolutions and two
convolutional residual blocks for each resolution level. At the 16⇥ 16 resolution level a self-attention
block is placed between the convolutional blocks [2]. The time step t is included in the neural net
through a Transformer sinusoidal position embedding [20] in each residual block. Furthermore, we
use the same hyperparameters and augmentation settings as in [8] without tuning them: the dropout
rate is set to 0.1; we use a learning rate of 2 ⇥ 10�4 with the Adam optimizer [10] with standard
settings, a batch size of 128; for evaluation we use an exponential moving average (EMA) for the
model parameters with a decay factor of 0.9999; and finally, we use random horizontal flips as
augmentation during training.

We built our implementation of D3PMs for images based on a re-implementation of the DDPM model
[8] in JAX [1] and Flax [6], with the same settings as those mentioned above. This re-implementation
has been verified to produce similar results as those reported in [8]. For the D3PM models for which
the logits of ep✓(ex0|xt) = Cat(ex0|p✓) are modeled directly as the output of a neural network, we
model them as logits = nn✓(normalize(xint

t )) + xone�hot
t , where xint

t and xone�hot
t denote integer

and one-hot representations of xt respectively. The function normalize(xint
t ) maps the integer values

{0, ...,K � 1} to the interval [�1, 1]. For the case where the logits are predicted from a truncated
distretized logistic distribution, as discussed in Section A.8, the neural network outputs a log scale
log s and the mean µ of the underlying logistic distribution: [log s,µ0] = nn✓(normalize(xint

t )),
µ = tanh(normalize(xint

t )+µ0). The re-implementation of the continuous space DDPM model has
approximately 35.7M parameters, which is the same number of parameters as that of the CIFAR-10
model that we loaded from the officially released checkpoint by the authors of [8].9 Our D3PM
models that output logits directly have around 36.6M parameters, while the model that parameterizes
the logits through a discretized truncated logistic distribution (D3PM Gauss + logistic) has around
35.7M parameters.

We trained all our models for 1.5M steps on TPUv2 accelerators with a 4⇥ 4 topology. Our Inception
[15] and FID [7] scores were computed on 50000 samples with the Inception-v3 model [19]. We
have included averages and standard deviations over models trained with 5 different seeds.

Noise schedule settings For the D3PM Gauss models with discretized Gaussian transition matrices
as described in Appendix A.2.3, we use the same linear schedule for the �t’s as in [8]: �t is linearly
increased from 1 ⇥ 10�4 to 0.02. We did not explore any other noise schedules for D3PM Gauss
models. For the D3PM uniform model (see Section A.2.1) we experimented with a linear schedule
for �t (linearly increasing from 0.02 to 1) and the cosine schedule as suggested by Hoogeboom et al.
[9]. Table 4 shows that the D3PM uniform model with a cosine schedule produces much better results
than the same model with a linear �t schedule. For the D3PM absorbing model (see Section A.2.2)
the absorbing state is the gray pixel, corresponding to the RGB values (128, 128, 128). For these
models we used a schedule that corresponds to increasing the probability of being in the absorbing
state linearly over time: �t = (T � t + 1)�1. This schedule was also proposed in Sohl-Dickstein
et al. [17] for diffusion with binary random variables, which has a uniform stationary distribution as
opposed to the stationary distribution with all the mass on the absorbing state.

Samples Additional samples from the D3PM uniform model trained on Lvb, the D3PM absorb
model trained on L�=0.001, and the D3PM Gauss + logistic model trained on L�=0.001 can be bound
in Figure 8.

9Code and checkpoints for the DDPM models from [8] are available at https://github.com/
hojonathanho/diffusion.
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Figure 8: Samples from the D3PM uniform model trained with Lvb (top), the D3PM absorb model
trained with L�=0.001 (middle), and the D3PM Gauss + logistic model trained with L�=0.001 (bottom).
These samples were not cherry picked.

B.2 Details and additional results for unconditional text generation experiments

Our experiments using text8 and LM1B were performed with a standard transformer encoder follow-
ing the T5 [12] architecture with 12 layers and 70 million parameters (12 heads, mlp dim 3072, qkv
dim 768). All models were trained for 1 million steps with batch size 512 on the TPUv2 or TPUv3
platform. Our code is implemented in JAX [1] and Flax [6]. For our experiments, we used learning
rate 5 ⇥ 10�4 with a 10000 step learning rate warmup and inverse sqrt decay. For text8, we used
a standard 90000000/5000000/500000 train-test-validation split with sequences of length 256. For
LM1B, we used the standard test-train split from TFDS with 30,301,028 examples in the training set
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Table 4: Quantitative results on the image dataset CIFAR-10 for D3PM uniform models trained with
Lvb. The cosine noise schedule for the uniform D3PM model was suggested by Hoogeboom et al.
[9]. The linear schedule corresponds to linearly increasing �t from 0.02 to 1. Results displayed for
models trained with 3 (linear) and 5 (cosine) seeds.

Model �t schedule IS (") FID (#) NLL (#)

D3PM uniform linear 4.44± 0.05 79.86± 1.64  4.99± 0.03
D3PM uniform cosine 5.99± 0.14 51.27± 2.15  5.08± 0.02

and 306,688 in the test set. For text8, no preprocessing is performed, and training is performed on
random crops of the entire concatenated, lower-cased training set. For LM1B, training is performed
on sequences of length 128 sampled by packing sequences from the training corpus, including an
EOS token. Perplexities are reported relative to the actual number of English-language words in the
test set (including an EOS token predicted by the model).

Our autoregressive transformer baseline was a standard transformer decoder with the same basic
architecture (but including causal masking, as is standard for autoregressive models) with the same
number of parameters.

Table 5 contains additional comparisons of hybrid losses. We found that the hybrid loss L�=0.01

slightly improved results on D3PM absorbing models, but had a somewhat negative effect on the
uniform models, leading to less stable training. All models were trained on 1000 step diffusion
processes, but we found very little improvement between 1000 and 256 steps when evaluating a
trained model by skipping steps. For all figures, steps were skipped evenly (except possibly for the
last step if the number of evaluation steps did not divide 1000). We found both the cosine and mutual
information schedules worked well for uniform diffusion. We used the cosine variant introduced by
Hoogeboom et al. [9], i.e.

f(t) = cos

✓
t/T + s

1 + s
+

⇡

2

◆
�(t) = 1� f(t+ 1)

f(t)
(18)

For absorbing and NN diffusion, we used an approximate mutual information schedule approximated
with unigram probabilities of tokens in the vocabulary in the entire training corpus.

Figure 9 shows scaling of bits/dim on text8 for 3 D3PM models with the number of inference steps.
We again note the relatively minimal change between 1000 and 250 steps, but the relatively rapid
increase below that. Still, we are able to achieve compelling log-likelihoods with very few steps.
Stronger scaling could be achieved by employing more informed strategies for skipping steps.

B.2.1 Additional tables and figures for text8

Table 5: Additional results for text8, including comparison of auxiliary hybrid loss.

Model Model steps NLL (bits/char) (#)

D3PM uniform (ours) (L�=0.01) 1000  1.91
D3PM uniform (ours) (Lvb) 1000  1.61
D3PM absorbing (L�=0.01) (ours) 1000  1.44
D3PM absorbing (Lvb) (ours) 1000  1.47
D3PM absorbing + NN (L�=0.01) (ours) 1000  1.53

D3PM uniform [9] (ours) 50  1.7
D3PM NN (Lvb) (ours) 50  1.62
D3PM absorbing (L�=0.01) (ours) 50  1.53
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Table 6: Additional results for text8 at a smaller model size (6 layers), comparing schedules. All at
1000 steps.

Model Schedule NLL (bits/char) (#)

D3PM uniform (1/(T � t+ 1) schedule)  2.37
D3PM uniform cosine  1.73
D3PM uniform mutual info  1.74

Table 7: text8 log likelihoods at different model sizes (256 steps)
Metric: Log likelihood (bits / dim) (#)

model size: 6 layers 24 layers

D3PM absorbing 1.68 1.43
Autoregressive LM 1.39 1.37

Table 8: inference time at larger batch sizes for text8 models
Metric: Inference time (s) (#)

batch size: 1 8 16

D3PM absorbing (20 steps) 0.08 0.52 0.90
Autoregressive LM (256 steps) 0.36 0.69 1.068
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Figure 9: Scaling of text8 bits/dim with inference steps. “mask” denotes D3PM absorbing.

Figure 10: Inference time for a D3PM absorbing model (‘mask’) on text8 in seconds as a function of
iterations, compared to an autoregressive model.

B.2.2 Additional tables and figures for LM1B

Table 9: Sample times for LM1B. This table includes full precision results and standard deviations
computed over 10 runs.

Metric: Sample time (s) (#)

inference steps: 1000 128 64

D3PM uniform 1.8161 ± 0.0002 0.2120 ± 0.0005 0.0831 ± 0.0002
D3PM NN 21.29 ± 0.03 6.6861 ± 0.0009 5.8786 ± 0.0008

D3PM absorbing 1.9049 ± 0.0005 0.1983 ± 0.0003 0.1017 ± 0.0002
Transformer - 0.26 ± 0.03 -

B.3 Additional uncurated generation examples from various models
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x0: Because of Bear Stearns , many analysts are raising the odds that a 2008 recession could be worse than
expected . Next month , the Brazilian bourse opens a London office . Flight 821 , operated by an Aeroflot
subsidiary , carried 82 passengers and six crew members , Aeroflot said . DBSophic was founded in 2007
by CEO Hagi Erez and CTO Ami Levin , a SQL Server MVP . " Rangers are a big team and Ka

x20: Because of Bear[M]earns ,[M]many analysts are raising the odds that a 2008 recession could be worse than
expected .[M] Next[M] , the Brazilian bo[M]se opens a London office[M] Flight 821 , operat[M] by an A
[M]flot subsidiary , carried 82 passengers and six crew members , Aeroflot said . DBSoph[M] was founded
in 2007[M] CEO Hagi Erez and CTO[M]mi Levin[M], a SQL[M]er[M] MVP[M][M]" Rangers are a big
team[M] Ka

x̂0 ⇠ p✓(x0|x20): Because of Bear Stearns , many analysts are raising the odds that a 2008 recession could be worse than
expected . Next January , the Brazilian bourse opens a London office . Flight 821 , operated by an Aeroflot
subsidiary , carried 82 passengers and six crew members , Aeroflot said . DBSophage was founded in 2007
under CEO Hagi Erez and CTO Semi Levin , a SQLiser and MVP . " Rangers are a big team at Ka

x0: unas are a small club , " he said . 19 , spent time on the stationary bike this week , but didn ’t participate in
11-on-11 drills . Caterpillar is eager to expand in Asia , where it trails local competitors such as Komatsu
Ltd ( 6301.T : Quote , Profile , Research ) , and as a slowdown in the U.S. economy dampens the outlook
for construction equipment demand in its home market . Merchants along

x40: unas[M][M] small[M] , " he[M] . 19 [M][M] time on the stationary[M] this week , but didn ’[M] participate
in 11[M][M]-11 drill[M][M] Cat[M][M]illa[M] is eager to[M] in[M][M][M][M] it trails local competitors
such as Ko[M][M]u Ltd [M][M]30[M][M][M][M]: Quote[M], Profil[M][M][M][M][M][M][M],[M][M]

a slow[M] in the U.S. economy d[M]en[M] the[M] for construction[M]ment demand in its home[M][M]

Merchants[M]

x̂0 ⇠ p✓(x0|x40): unas in a small garden , " he said . 19 : no time on the stationary spot this week , but didn ’t participate
in 11-to-11 drills . Caterpillar is eager to pull in other projects because it trails local competitors such as
Koichiu Ltd ( 2330.SS : Quote , Profile , Research ) , because a slowdown in the U.S. economy dampens
the outlook for construction equipment demand in its home market . Merchants who

x0: Karrada Street , the main artery of an affluent retail district , said the area has become a virtual shooting
gallery for armed guards traveling in sport-utility vehicles . He said he also has asked prosecutors to open a
separate investigation . In this case , amid a massive push for increased home ownership , the Fed decided
not to intervene . After the vote , Masanori Miyahara , chief counselor of Japan ’s Fisheries Agency , said
pressure would be on his country and others who depend on the Atlantic

x60: [M]arrada[M] [M] the main[M]er[M] of[M] [M][M][M] retail district [M] said the area[M] become a
virtual[M] [M][M][M]ed guards travel[M] in sport[M]ut[M] vehicles[M][M][M] said he also[M][M][M]

prosecutor[M][M] open a separate investigation .[M][M] this case[M], amid[M][M] push for[M] home
owner[M][M][M] the[M] decided[M][M] intervene[M] After the[M][M], Ma[M][M]ri[M]iya[M][M] ,
chief[M][M] of[M] ’[M][M]ies[M][M] [M] said pressure[M] be on[M][M] and others[M][M] on[M][M]

x̂0 ⇠ p✓(x0|x60): Karradadi , the main eatery of the bakery retail district , said the area has become a virtual community ,
with armed guards traveling in sport-utility vehicles . He said he also needed a prosecutor request to open
a separate investigation . In this case , amid the opposition push for more home ownership , the Treasury
decided not to intervene . After the meeting , Masakiri Miyamoto , chief executive officer of Japan ’s
Fisheries Research Institute , said pressure will be on the IMF and others to agree on paying

x0: bluefin to abide by ICCAT quotas . In other cases , a pet can provide an outlet for more unpleasant traits ,
like a need to control others , a refusal to compromise or an inability to grant other people autonomy . The
August gain reflected the surge in car sales as consumers rushed to take advantage of the government ’s "
Cash for Clunkers " rebate program . But after an exchange with the White House , Republicans decided to
allow press coverage rather than be portrayed as try

x100: [M][M] to[M]bid[M][M][M][M][M][M][M] .[M][M][M][M][M][M][M][M] can[M][M][M]let for[M]

[M][M][M]as[M][M][M][M][M][M][M][M] a[M][M] control[M][M][M] a[M][M][M][M][M][M][M]

[M][M][M][M] people[M][M][M][M] .[M][M][M][M][M]ed[M][M][M][M][M] as[M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M]lunk[M][M][M] rebate[M] .[M] But[M][M][M][M]

[M][M][M][M][M][M][M] decided[M][M] press[M] ra[M][M][M][M][M] as try
x̂0 ⇠ p✓(x0|x100): not wish to abide by a personal talks meeting point . On any cake , and you can search a pallet for a "

Grease . " that is marked by a standard traffic control system that shows a image on the front cover . We still
believe that people vote for their candidate . Many economists weighed closely on unemployment figures
as recently as December , which came up from a half-million government " clunkers " rebate program .
But , funny it may seem , rational person decided to advance press freedom rather than encourage senior
activists as try

Figure 11: Using an absorbing-state D3PM model (trained on LM1B with 128 denoising steps) to
complete test-set examples at different noise levels. We corrupt the example using q(xt|x0), then
iteratively sample from p✓(xt�1|xt) to reconstruct. Mask token shown as “[M]”.
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127 [M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M] [M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

120 [M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M] said[M][M][M][M][M][M][M][M] of[M][M][M]

[M][M][M][M][M][M][M] [M][M][M][M][M][M][M][M][M][M][M] D[M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

100 [M] [M][M][M][M][M] to[M][M][M][M][M][M][M][M][M][M][M] nuclear energy[M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M] hide[M][M][M][M][M][M][M]" said[M][M][M][M][M][M][M][M] of[M][M][M]

[M][M][M][M][M][M]s [M][M][M][M][M] on[M][M]es[M][M] D[M][M]s[M][M][M][M][M]X[M][M][M][M][M][M][M][M]

[M][M][M]l[M][M][M][M][M][M][M][M][M][M][M][M]ed[M] [M][M][M][M][M][M]

80 [M] [M][M] year[M][M] to[M][M][M][M][M][M] a new[M][M][M] nuclear energy .[M][M][M][M][M][M][M][M][M][M][M]

[M][M] ins[M][M][M][M][M][M][M] hide[M][M][M][M][M][M] " said[M][M][M]g[M][M][M][M] of[M][M][M][M] D[M][M]

[M][M]s ,[M] reported[M][M] on what inspires[M][M] D[M] ’s . [M]NIX [M][M][M]E[M][M][M][M][M][M]l[M][M]s[M]

backup[M][M][M][M] Coach[M]edley [M][M][M][M][M][M]

60 [M] [M][M] year[M][M] to[M][M][M][M][M][M] a new[M] to[M] nuclear energy .[M][M]"[M][M][M][M][M][M],[M][M][M]

ins[M]in[M][M][M][M] and hide in[M][M] function[M], " said[M][M] Ng[M] [M][M] of[M][M][M][M] D[M]I Field[M]s ,[M]

reported[M] research on what inspires[M] with DNA ’s . [M]NIX [M][M][M]E[M][M] Jon[M][M][M]l[M][M]s[M] backup goal[M]

.[M] Coach[M]edley [M][M][M][M] respond[M]

40 [M] [M] this year[M][M] to bank[M][M][M][M][M] a new program to develop nuclear energy .[M]"[M] [M] for example[M],[M]

[M][M] ins[M]in[M][M][M][M] and hide in[M][M] function[M], " said Michelle Ng[M] [M][M] of[M] agency[M] the DWI Field
techniques ,[M] reported[M] research on what inspires[M] with DNA ’s . [M]NIX [M][M][M]E[M]R Jon[M] Pe[M]lmu[M]s[M]

backup goalie .[M] Coach[M]edley [M] didn[M]t respond[M]

20 [M] [M] this year[M][M] to bankroll private developer[M] with a new program to develop nuclear energy . "[M] , for example[M],
[M][M][M] insulin how to[M] it and hide in detect[M] function[M], " said Michelle Ng[M] [M][M] of[M] agency[M] the DWI Field
techniques ,[M] reported her research on what inspires[M] with DNA ’s . MONIX [M][M][M]E[M]R Jon[M] Pe[M]lmunds[M]

backup goalie . Coach[M]edley " didn[M]t respond to
0 The expected this year will be to bankroll private developers with a new program to develop nuclear energy . " Women , for example ,

could" use insulin how to use it and hide in detectable function , " said Michelle Ngum , president of the agency for the DWI Field
techniques , who reported her research on what inspires women with DNA ’s . MONIX INTO FEUR Jonny Pearlmunds is backup
goalie . Coach Sedley " didn ’t respond to

127 [M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

120 [M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M],[M] have[M]s[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]e[M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M] spend[M][M][M][M][M][M][M][M][M][M]

[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M] a[M][M][M][M][M][M][M][M][M][M]

100 [M][M]([M][M][M] [M][M][M][M][M]s[M]frequently[M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M][M]

though[M][M][M],[M] have[M]s[M][M][M][M][M][M][M][M][M] the[M][M][M] Fran[M][M][M]e[M][M][M][M][M][M][M]le
[M][M][M][M][M][M][M][M][M][M] season[M][M][M][M][M] [M] to[M][M] spend[M][M][M][M][M][M][M][M][M][M][M]

[M][M][M][M] be[M][M][M][M][M][M][M][M][M][M] a b[M][M][M][M][M][M][M][M][M]

80 [M][M]([M][M] top " )[M][M]s[M]frequently invad[M][M] United[M][M][M] some were[M][M][M][M][M][M][M][M], though
[M][M][M], would have ass[M]ed their[M][M][M][M][M][M] the[M][M] of Fran[M][M][M]e[M][M][M][M] C[M][M]le[M][M]

[M][M][M][M][M][M][M][M] season[M][M][M][M][M] something to[M] people spend[M][M],[M][M][M][M][M][M] ’[M][M]

[M][M][M] be[M][M][M][M][M] hall[M][M][M][M] a buff[M][M][M][M][M] ’[M][M]

60 [M][M]([M][M] top " )[M][M]s frequently invade[M] United[M] . But some were[M][M][M][M][M][M][M][M], though[M]y[M],
would have ass[M]ed their[M][M][M] The[M][M] the order[M] of Franz[M][M]eck[M][M] a C[M][M]le[M][M][M][M][M][M]

[M][M] this season of success[M][M][M] something to make people spend[M][M], but[M][M][M][M][M] ’[M] most[M][M][M] be
[M][M][M][M] ban hall[M][M][M][M] a buff[M][M][M][M][M] ’[M][M]

40 [M][M]( [M] top " )[M][M]s frequently invade[M] United[M] . But some were question[M][M][M][M] joint[M] , though[M]y[M],
would have ass[M]ed their[M] .[M] The[M][M] the orders of Franz Sch[M]eck[M][M] a C[M][M]le[M]ist[M][M][M]less[M][M]

this season of success gives[M] something to make people spend[M] , but on[M]s[M][M] ’s most popular[M][M] be[M]e : ban hall
[M][M][M] with a buffalo[M] that[M] ’t[M]

20 Roman[M]( [M] top " )[M] Nazis frequently invade[M] United Nations . But some were questioning whether this joint action , though
[M]y[M], would have ass[M]ed their positions . The[M][M] the orders of Franz Schnuecky[M] a C[M][M]le[M]ist[M] Reg[M]less
[M] this season of success gives[M] something to make people spend money , but on Sundays[M] camera ’s most popular spot[M] be
[M]e : ban hall[M][M]er with a buffalo[M] that[M] ’t[M]

0 Roman ( " top " ) and Nazis frequently invade the United Nations . But some were questioning whether this joint action , though
necessary , would have assailed their positions . The man on the orders of Franz Schnuecky is a Centacle lobbyist . Regardless , this
season of success gives it something to make people spend money , but on Sundays the camera ’s most popular spot may be
responsible : ban hallouber with a buffalo companion that doesn ’t even

Figure 12: Generations over multiple denoising steps from absorbing-state D3PM model trained on
LM1B with T = 128. Mask token shown as “[M]”.
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toward Israel , whose Arab view is currently being considered by Eastern British citizens and must be trusted by Palestinians . Second
cost , Club £ 32 . If I were here to make an appointment and then think about breast cancer . He was totally a terrifi of caution . Next
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Figure 13: Generations over multiple denoising steps from uniform D3PM model trained on LM1B
with T = 1000.
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Figure 14: Generations over multiple denoising steps from uniform D3PM model trained on text8
with T = 1000. ‘ ’ is the space character.
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Figure 15: Generations over multiple denoising steps from absorbing-state D3PM model trained on
text8 with T = 1000. ‘ ’ is the space character and ‘?’ the absorbing (mask) state.
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Figure 16: Generations over multiple denoising steps from character-level nearest-neighbor D3PM
model trained on text8 with T = 1000. ‘ ’ is the space character.
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