A Qualitative Analysis

A.1 Case study

In Figure[T] we visualize the top-1 retrieved i images for given text queries in 11 languages on XTD
dataset [1]. Compared with the multilingual vision-language pre- tra1n1ng model UC? [17]], MLA can
better capture entities, attributes, and actions to retrieve the correct image. Specifically, given simple
queries that contain few entities such as Query #1 or Query #2, the images retrieved by MLA show
high consistency across languages, since the representations of non-English queries are aligned to
English in the NLT stage. For the more complex queries such as Query #3 or Query #4, MLA also
shows better fidelity to all entities in most cases.

Query #1:a man wearmg a red shirt is playlng a tennis game
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Query #2: A cat with its paws on a computer mouse at a desk
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Figure 1: Top-1 retrieved images for given text queries in 11 languages on XTD dataset. Only English
queries are shown in this figure. The correct images are bordered green.



A.2 Representation visualization

To visualize the multimodal and multilingual representation space, we translate the English class
labels of CIFARI10 [10] into 5 languages including German (de), French (fr), Czech (cs), Chinese
(zh), and Japanese (ja). The images and labels in 6 languages are encoded into representations
through MLAcyip. Figure 2]shows the t-SNE [16] visualization of these representations. We can
see that the representations from different languages and modalities are clustered according to the
semantics. It suggests that MLAcpp indeed can project images and multilingual sentences into a
shared multimodal and multilingual space.
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Figure 2: Representation visualization with t-SNE. The categories are color coded. "o’ denotes a
image representation, and ’ X’ denotes a class label representation in a certain language.

B Additional Ablation studies

We conduct additional ablation studies to verify the effectiveness of MLA. All experiments in this
section are conducted on zero-shot image-text retrieval.

B.1 Structure of language acquirer

In our proposed MLA, we implement the language acquirer as a bottleneck MLP. In Table[T] we
compare the different structure of the language acquirer, the bottleneck MLP and a linear projection
layer with the same amount of parameters. MLP works slightly better than the linear projection.
Thus, we choose MLP to conduct our major experiments.

Table 1: Ablation study on structure of language acquirer.

Multi30K MSCOCO 1K
de fr cs ja zh
MLAcLIp Linear 782 776 693 | 746 780
MLAcLp MLP 787 717 70.8 | 749 785

Method Component




B.2 MLA on CLIP with different structures

We additionally apply MLA to CLIP [11]] in different sizes with two kinds of structures: ResNet [6]]
and ViT [4]. The results in Table [J]indicate that MLA can perform better on all languages when
stronger monolingual VLPs are provided.

Table 2: Applying MLA on CLIP with different structures and sizes.

Multi30K MSCOCO 1K
en de fr cs en ja zh

ResNet50 842 76.6 758 675|783 727 759
ResNet101 839 769 773 704|789 731 769
ResNet50x4 | 86.0 80.7 80.3 73.1 | 804 755 78.2
ResNet50x16 | 87.8 80.6 79.9 73.8 | 81.7 744 71.6
ResNet50x64 | 89.9 84.2 84.1 78.1 | 822 793 80.6

Structure

ViT-B-32 844 787 717 708|794 749 785
ViT-B-16 86.4 80.8 809 729|809 767 79.2
ViT-L-14 879 831 835 77.0 | 8.5 785 791

B.3 Objectives in the two-stage training

In the default setting, we use the MSE objective during the NLT stage and the NCE objective [5]
during the LE stage. The MSE objective requires paired representations to be completely consistent,
while the NCE objective only requires positive pairs to be closer than negative ones. We conduct
experiments to use different objectives in the two stages. As shown in Table[3| we observe that the
MSE objective is more suitable for the NLT (row 1 vs. row 2, row 7 vs. row 8) stage, and the NCE
objective performs better for the LE stage (row 3 vs. row 4, row 5 vs. row 6). We consider the
reason is that in the NLT stage, we leverage translation pairs to build alignment between languages.
Since the two sentences of a translation pair are highly semantically related, their representations
can be very similar. Thus, optimizing a strong objective like MSE during the NLT stage is feasible.
However, during the LE stage, the optimization is conducted with image-text pairs. Although the
image and text are semantically related, one sentence can hardly describe all the information in the
image. Therefore, a weak objective like NCE is suitable for the LE stage.

Table 3: Ablation study on objectives in the two training stages. mse: MSE objective, nce: NCE
objective

Row | Stage one Stage two Multi30K MSCOCO 1K

| NLT LE NLT LE de fr cs ja zh
1 mse 76.3 742 672 721 75.7
2 nce 63.0 585 496 576 64.8
3 mse 472 470 374 463 54.9
4 nce 68.2 677 586 659 71.7
5 mse mse 55.0 513 438 509 57.9
6 mse nce 787 777 70.8 74.9 78.5
7 mse mse nce 784 773 699 742 78.1
8 mse nce nce 781 772 695 739 78.2

B.4 Multilingual Acquisition vs. Cross-modal Acquisition

MLA adopts the "Multimodal—Multilingual" strategy that empowers VLP models with multilingual
capability. However, there is another option of "Multilingual -+Multimodal" that empowers multi-
lingual pre-training models with multimodal capability. To make a comparison between these two
strategies, we implement the Cross-Modal Acquisition (CMA) that inserts cross-modal acquirers in
each layer of the multilingual pre-training model M-BERT [3]. We keep the pre-trained M-BERT



fixed and train the cross-modal acquirers with the same two-stage strategy as MLA. From Table
Ml we find that CMA performs worse than MLA in all languages. It suggests that generalizing
multilingual models to multimodal is harder than generalizing multimodal models to multilingual
through lightweight acquirers.

Table 4: Multilingual Acquisition vs. Cross-modal Acquisition

Method Multi30K MSCOCO 1K
en de fr cs en ja zh

CMAcLp | 802 739 728 670 763 69.8 75.1

MLAcLip | 844 787 777 708 794 749 785

B.5 Details of implementing MURAL

We implement MURAL [9] on the 6 languages considering our computing budgets. The dual-
encoders of MURAL are implemented with CLIP-ViT-32 and M-BERT-base [3] respectively, since
we find that initializing the dual-encoders with both pre-trained models can boost the performance.
We train MURAL on CC300K (same as MLA) using 1 V100 GPU with a batch size of 128, and on
CC3M [[14]] (the largest dataset we can access) using 8 V100 GPUs with a batch size of 1024. The
learning rate is set to le-4. Both models converge in about 1 day and 4 days respectively. The results
are shown in Table[5] It indicates that even initializing the dual-encoders, MURAL performs worse
than MLA. Note that under the fair comparison, MLA also shows its low-cost merit, since the data
and computing resources of MURAL pre-trained on CC3M are much larger.

Table 5: Comparing with MURAL pre-trained with different data and initialization.

Initializing Multi30K MSCOCO 1K
M-BERT CLIP en de fr cs en ja zh

230 208 196 175 299 263 31.7
59.5 558 526 472 635 568 75.1
67.8 62.7 608 575 68.1 625 670
793 737 724 692 76.1 71.1 749
844 787 717 708 794 749 785

Method Data

MURAL  CC300K
MURAL  CC300K
MURAL  CC300K
MURAL  CC3M

MLAcpip CC300K

NN XX
NSNS X

B.6 Experiment on WIT

We conduct an evaluation on WIT [15] dataset to further examine MLA on real low-resource
languages. WIT [[15] contains Wikipedia-based image-text pairs in 108 languages. We follow the test
set proposed in the IGLUE benchmark [2] that contains 500-1000 image-text pairs in 10 languages.
We train both MLA and MURAL(pre-trained on CC300K and CC3M) in the 10 languages with
CC69L and perform the evaluation on WIT directly. As shown in Table [6] MLA still outperforms
MURAL in most languages on this benchmark, which validates the effectiveness of MLA.

Table 6: Evaluation on the WIT dataset.

Method Data ar bg da el et id ja ko tr vi \ mean

MURAL  CC300K 262 229 268 283 126 250 161 186 258 305 | 233
MURAL CC3M 279 251 284 301 13.6 271 166 203 288 322 | 250
MLAcpip CC300K 30.7 253 308 299 143 267 17.0 19.8 28.1 343 | 25.7

C Open-domain Image Classification

In order to test the open-domain capability of models, we conduct zero-shot open-domain image
classification experiments on CIFAR100 [[10]], ImageNet-V2 [12], ImageNet-R [7] and ImageNet-



A [8] datasets. As shown in Table[7} MKD [13] performs badly on open-domain image classification.
We consider the reason is that MKD abandons the original text encoder which contains open-domain
multimodal knowledge from large-scale pre-training. In contrast, MLA keeps the original text encoder
fixed and thus could maintain the open-domain capability of the pre-training model.

Table 7: Top-1 Accuracy of zero-shot open-domain image classification.

Method CIFAR100 ImageNet-V2 ImageNet-R ImageNet-A

MKDcr1p 32.8 54.7 37.7 23.5
MLAcLIP 64.2 63.4 69.0 314
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