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A EXISTING PLANNING ALGORITHMS

3N-MCTS HgSearch DFPN-E RetroGNN Metro FusionRetro Retro-fallback

Algorithm Online Offline Offline Offline Online Offline Online

EG-MCTS Retro
⇤

RetroGraph GNN-Retro SimulatedExp GRASP PDVN

Algorithm Online Offline Offline Offline Online Online Online

Table 4: Existing online and offline retrosynthetic planning methods.

Active reinforcement learning An active reinforcement learning(ARL) agent learns when to pay query
costs and observe rewards(Daniel et al. (2014)) or other signals. A wide range of work has focused on ame-
liorating the problem of defining a complete reward function on trajectories in complicated real-world tasks,
i.e. automated driving and robot grasping(Christiano et al. (2023), Saunders et al. (2018), Subramanian et al.
(2016), Daniel et al. (2014)). To minimize reliance on human experts, Krueger et al. (2020), Bellinger et al.
(2020), and Schulze & Evans (2018) study the active measure reinforcement learning(AMRL) framework
under multi-armed bandit and tabular settings. Furthermore, Warnell et al. (2018) and Knox & Stone (2009)
propose the TAMER framework which takes into account the time delays and noise when the human, a
”teacher”, provides rewards online to the agent, a ”student”.

B SINGLE STEP PROBABILITY

As the single-step model is trained to predict feasible reactant precursors, it is biased towards frequent
reactions instead of those with high qualities. We verify the issue that frequently collected reactions in a
single-step dataset are not necessarily high-yield, which we substantiate based on an analysis from Schwaller
et al. (2021) that explores yields reported in the open-source USPTO dataset.

The USPTO dataset with reaction yields in sub-gram scale(Schwaller et al. (2021)) contains a large number
of reactions and a broad range of superclasses, and a reaction distribution closely resembling that of the
USPTO single-step dataset, such as USPTO-MIT. The actual reaction yield distribution of the above dataset,
originally presented in Schwaller et al. (2021), is depicted in Fig 5c. Notably, a significant proportion of
reactions within the dataset exhibits relatively low yields, affirming that the USPTO single-step dataset is
not inherently biased to high-yield reactions. Fig 5a (originally presented in Schwaller et al. (2021)) shows
various superclasses of reactions, where each color corresponds to a superclass and the coverage area of
each color roughly represents the frequency of that superclass of reactions in the dataset. Combining Fig 5a
and Fig 5b, we conclude that high-frequency superclasses do not show a significant correlation with high
yields. For example, the superclasses annotated in purple and cyan demonstrate low yields, with only the
green reaction superclass corresponding to high yields in Fig 5b.

In summary, frequently collected reactions in a single-step dataset are not inevitable to be high-yield ones
and the single-step probabilities are not biased to high-quality but high-frequency reactions.

C BINING STRATEGY

A bining strategy B is performed to discretize the continuous reaction quality values in and obtain the
associated bucket embedding. The preceding reaction cost is concatenated in the format its representation as
O(ar, aq) in Eq 2. Concretely, when a

q = 1, we derive O(ar, aq) from (1) discretizing continuous reaction
quality values into N

M discrete buckets, (2) learning N
M trainable embeddings in d

M dimensions for all
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Figure 3. USPTO yields histograms separated in gram and sub-gram scale.

Figure 4. Reaction atlases. Top: Gram scale. Bottom: Sub-gram scale. Left: Reaction superclass distribution, reactions belonging to
the same superclass have the same colour. Right: Corresponding reaction yields.

often have extremely diverse reaction yields. Those diverse yields make it challenging for the model to learn
anything but yield averages for similar reactions and hence, explain the low performance on the patent
reactions. This analysis opens up relevant questions on the quality of the reported information (relative to
the mass scale) and its extraction accuracy from text, which could severely hamper the development of
reaction yield predictive models. The need of cleaned and consistent reaction yields data set is even more
important than for other reaction prediction tasks.
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Figure 5: The figure is directly borrowed from Schwaller et al. (2021). USPTO yield analysis: (a) shows
the superclasses which roughly reflect the reaction frequency in the dataset. (b) depicts the yield scales of
reactions labeled by the superclasses in (a). and (c) displays the distribution of the reaction yields in the
dataset.

buckets within our critic, and (3) determining the bucket index that the queried quality value u belongs to
and thereby the associated bucket embedding. When a

q = 0, O(ar, aq) = M as a dM -dimensional trainable
embedding. In our implementation, we consider dM = 512 and N

M = 18 buckets which are defined in
Fig 6 in the revision. These buckets are obtained via (1) collecting about 28M reactions during planning
by GRASP and Retro⇤, (2) computing their reaction qualities by our surrogate model, and (3) defining the
bucket boundaries to ensure that each bin covers a similar number of reactions.

Figure 6: Bin bucket boundaries. Each bin covers a similar amount of collected reactions individually.

15



Published as a conference paper at ICLR 2024

D SURROGATE TRAINING DETAILS

We utilize a 8-layer Transformer as the architecture of our surrogate model. The hyper-parameters are
listed in Tab 5. The training of our surrogate model involves two steps: (1) pre-training on the USPTO-
MIT dataset, and (2) finetuning on an in-house expert dataset of routes featuring high-yield reactions. It is
important to note that we introduce step (2) precisely to ensure that high predictive probabilities from our
surrogate model align with high yields.

Hyperparameters Values

Encoder layers 4
Decoder layers 4

Encoder embedding dimension 2048
Encoder FFN embedding dimension 2048

Encoder attention heads 8
Decoder embedding dimension 2048

Decoder FFN embedding dimension 2048
Decoder attention heads 8

Optimizer Adam
Learning rate 1e-4
Weight decay 0.0001

N epochs 12
Clip norm 0.25

Dropout rate 0.1

Table 5: The output of the cross-validation used for the hyperparameters optimization

E CORRELATION BETWEEN THE SURROGATE MODEL AND REACTION YIELDS

Figure 7: PCC against reaction yields. (a) shows the PCC of the pre-trained model and (b) shows the PCC
of the finetuned model.
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To evaluate our surrogate model, we resort to a route-with-yield test set. Following the method described in
Chen et al. (2020), we extract synthesis routes with yields from the USPTO-milligram-scale reaction yield
dataset Schwaller et al. (2021). For evaluation purposes, we randomly select 200 routes, encompassing
approximately 1000 reactions. We thereby calculate the Pearson correlation coefficient(PCC) between the
reaction quality predicted by our surrogate model and the literature yield. In Fig 7 of the revised manuscript,
(a) illustrates the 0.059 PCC of the pre-trained model while (b) shows the 0.611 PCC of the finetuned model,
providing strong evidence that the surrogate model accurately predicts yields.

F SUCCESS RATE AND ROUTE QUALITY INCONSISTENCY

There are two separate objectives to optimize in our framework: the success rate and the route quality.
However, optimizing these two objectives together can lead to certain trade-offs, as demonstrated by the
following case study.

As shown in Fig. 8, the root molecule M0 has three candidate reactions, and the R0 is identified as a high
quality reaction. However, the child molecule M1 of R0 is a unexpandable dead node with no further
reaction candidates. If the planner makes the selection with observable next state molecular structures of
M1, M2 and M3 and unobservable reaction quality values of R0, R1 and R2, it might selects R2 for its most
synthesizable next state molecule M3. However, with observable reaction quality values, the planner could
be misled into selecting R0 due to its highest route quality expectation,which demonstrate an inconsistency
between the two optimization obejectives.

M0

0.999
R0

M1

0.108
R1

…

M2

…

0.001
R2

…

M3

…

Figure 8: A case for illustrating two objective inconsistency. The root molecule M0 has three candidate
reactions, and the R0 is identified as a high quality reaction. However, the child molecule M1 of R0 is a
unexpandable dead node with no further reaction candidates.

G REAL-LIFE RETROSYNTHETIC PLANNING SCENARIOS

The quality metric required by our framework in a real-life scenario should be expensive but not prohibitively
so. While a single-step model is not competent enough, a lab validation might be excessively expensive and
time-consuming. This consideration constitutes the primary motivation behind our active planning frame-
work, aiming to query a minimum number of reaction quality annotations while still planing high-quality
routes.
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While our current implementation involves querying the surrogate model, our inspiration is drawn directly
from real-life retrosynthesis planning scenarios, such as in online softwares like SYNTHIA, where chemists
are pivotal end users. In this context, integrating chemists as valuable resources into the AI planning process
will be invaluable for planning routes that are not only feasible but also of practical high-quality. We envision
the successful deployment of our framework in this scenario for several reasons.

Online annotation by chemists introduces minimal time delays and manageable labor costs, making it an
ideal candidate for a route quality metric that is expensive but not prohibitively so. Our framework is in-
tentionally designed to be compatible with various types of annotations, including a coarse-grained quality
rating from 0 to 10. We believe such a rating is sufficient for the planner to make satisfactory decisions. Ad-
ditionally, this rating can also be seamlessly integrated into our current framework by replacing the bucket
index to which a quality value belongs (see details in Section 3.2 in the revision) with this discrete rating.
Chemists contribute valuable insights beyond mere reaction yields, such as knowledge about preferred re-
actions in real-world synthesis contexts, which can include factors like toxicity, material costs and work-up
difficulty (post-process, like purification or separation).

H FUTURE WORK

Although we focused on the high-quality routes, the retrosynthetic planning has other essential considera-
tions like the green chemistry. In future work, we intend to investigate Active Retrosynthetic Planning with
multi-objective optimization in order to find eco-friendly routes of high chemical feasibility.

I CASE STUDY

We conduct a double-blind test to check the route quality generated by Retro, ARP with Retro*, GRASP,
and ARP with GRASP. We collect top-1 successful routes from the experimental results of the benchmark
dataset and the chemists tag the route with a rating from 0 to 10. 10 refers to a high-quality route while 0
refers to a low-quality one. We lie the average rating in Tab. 6. Compared with the original methods, ARP
with Retro* outperforms Retro* by 1.7 and ARP with GRASP outperforms GRASP by 2.2.

Retro* ARP with Retro* GRASP ARP with GRASP

Route rating(1-10) 7.8 8.5 6.9 9.1

Table 6: Double blind test on the top-1 route quality.

T0

T1T2

Figure 9: A target molecule.

Furthermore, we study a case to illustrate the active query capability. In Fig. 9, a target molecule has three
basic molecular structures that need to be broken down by respective templates, T0, T1, T2. Simplified,
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Figure 10: A search tree by ARP based on GRASP.

the planner needs to decide the order of executing three templates. However, if T0 is executed after T1, it
will produce a low-quality reaction because T1 reveals a high-activity amino group blocked green. From a
chemical perspective, T1 can be regarded as a deprotection reaction to suppress side reactions on the amino
group for T0. Thus T0 must precede T1. We visualize a search tree in Fig. 10 planned by ARP based on
GRASP to solve the target molecule with the query cost equals 0, 0.01, and 0.05. For simplicity, we ignore
some molecule nodes and reaction nodes. We tag the reaction qualities on the blue reaction nodes, the non-
building block molecules on the yellow nodes, and the building block molecules on the green nodes. The
empty blue nodes present reaction nodes of which the qualities are not annotated. Furthermore, we tag the
Q value near the respective molecule nodes to explore the reaction quality annotation’s impact. In the three
search trees, the molecule node selection among M0, M1, and M2 is a key decision that determines the next
following expansion of the whole search tree. M0 will results in a high-quality route while M1 and M2

will lead to low-quality routes. M1 has a low preceding reaction quality and M2 has a low future-quality
expectation. M1 is the best next molecule node to expand. We compare the situations with different query
costs.

Ful observation: With a query cost of 0, the actor in ARP queries every reaction qualities in the search
tree. The search tree is depicted in Fig. 11. Q values reflect the molecule’s high-quality route expectation
properly. The planner selects M1 as the next molecule state node properly.

Partial observation: With a query cost of 0.01, the actor in ARP selects partial reaction qualities in the
search tree to observe. The search tree is depicted in Fig. 12. It is observed that two reaction qualities are
annotated. The molecule with the maximum Q value maintains M1. Nevertheless, the unannotated reaction
quality of R2 misdirects the Q value estimate of M3 to some extent. Though the ranking prior between

19



Published as a conference paper at ICLR 2024

M0
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R0
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R1

0.999
R2
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M1 M2 M3Q(M1)=0.99 Q(M2)=0.71 Q(M3)=0.85

… … …

Figure 11: The search tree with query cost of 0.0

M2 and M3 changed compared with 11, the planner still selects M1 to expand next. This phenomenon
demonstrates the query ability of ARP to select the most impactful reactions to annotate qualities.

M0

0.982
R0

0.0135
R1 R2

………

M1 M2 M3Q(M1)=0.99 Q(M2)=0.77 Q(M3)=0.72

… … …

Figure 12: The search tree with query cost of 0.01

None observation: With a query cost of 0.05, the actor in ARP selects no reaction qualities in the search
tree to observe. The search tree is depicted in Fig. 13. It is observed that the unannotated reaction qualities
misdirect the Q value estimates of three molecules. In contrast to Fig. 11 and Fig. 12, the next selected
molecule changed into M2. This issue, on the one hand, illustrates how reaction qualities benefit retrosyn-
thetic planning, on the other hand, proves the active capability of utilizing the reaction quality annotations
to find high-quality routes.

M0

R0 R1 R2

………

M1 M2 M3Q(M1)=0.85 Q(M2)=0.89 Q(M3)=0.76

… … …

Figure 13: The search tree with query cost of 0.05

20


