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Abstract
e SPARQL ecosystem has become increasingly fragmented as engines introduce valuable
but incompatible language extensions. is growing diversity undermines query portability,
tooling reliability, and the pace of innovation. To address this, we designed a modular parser
architecture that supports dynamic extension and modular grammar definitions. is paper
presents a builder-based, TypeScript-native parser framework inspired by Chevrotain and the
modular principles of Comunica. Our prototype demonstrates that key SPARQL extensions
can be integrated, altered, or removed with minimal effort and strong type safety. ese re‐
sults suggest that modular, declarative parsing is not only feasible but essential for keeping
pace with evolving SPARQL standards.  Looking forward,  we identify the need for round-
trippable ASTs, Babel-inspired generators,  and transformer pipelines to enable a complete,
future-proof SPARQL toolchain.
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1. Introduction

e SPARQL query language [1], a cornerstone of the Semantic Web stack, has evolved through both
standardisation and real-world innovation. While SPARQL 1.1 defines a clear and extensible foundation,
the ecosystem has gradually diverged as implementers introduced powerful but engine-specific exten‐
sions. For example, Virtuoso offers full-text search capabilities [2], Apache Jena supports CONSTRUCT
QUAD queries  [3],  and Oxigraph provides  extended  date-time-functionality  including  the  ADJUST
function [4]. ese features are oen highly valuable, but also incompatible, creating a heterogeneous
landscape where queries that run on one engine may fail on another.

is diversity presents a serious challenge for SPARQL portability, tooling and federated querying.
With the finalisation of the SPARQL 1.2 specification [5], the gap between supported language features
is likely to widen further, since migration to SPARQL 1.2 is not trivial, requiring substantial updates to
the datasets representation and underlying RDF store [6]. e RDF1.1 to RDF1.2 update is substantial
mainly because of the introduction of a new triple term, specifically the object of a triple can now be a
triple itself, allowing for the recursive definition of triples since the triple contained in the object can
again have a triple in the object spot.
Moreover, the working group has announced that aer SPARQL 1.2 finalisation, they plan to move
toward a more agile “maintenance and new features” mode, which hints at even faster iteration cycles
in the future. As a result, there is a growing need for tooling that embraces extensibility and modularity
by design.
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In this work, we show the need for a modular parser and what such a parser could look like. Unlike
traditional  parser  generators  such  as  ANTLR   [7]  or  Bison   [8],  which  rely  on  Domain  Specific
Languages (DSLs) and generate static parsing code — our parser should be defined entirely within a
host programming language. is would eliminate the compile step, enable programmatic extension,
and leverage strong typing to provide a safer, more developer-friendly API. e parser should not be a
handwrien parser either, instead it should use declarative rules such as present in the Typescript-
based Chevrotain parser toolkit [9].

A modular parser, that allows you to add, override, or swap grammar fragments at runtime, would
empower both researchers and practitioners to create a new generation of language-aware SPARQL
tools. is opens the door to use cases such as heterogeneous query tooling (e.g., adapting editors like
YASGUI  [10]  to  custom SPARQL dialects),  while  keeping maintainability  in  check.  Additionally,  it
would allow SPARQL version translation, and rapid experimentation with new language features. In an
ecosystem where SPARQL flavors are growing rather than converging, we believe modularity is not just
a nicety—it’s a necessity.

e next section touches lightly on the related work, while Section 3 describes the system architec‐
ture. Section 4 sketches the demonstration that we will provide to the workshop. In Section 5 we con‐
clude the future work and desired impact of this research.

2.  Related Work

In this section, we examine prominent soware packages in the SPARQL ecosystem that implement
parsing capabilities. Our findings are summarized in Fig. 1.

Notably, all discussed major open-source SPARQL parsers rely on either parser generators or parser-
building toolkits to define their grammars. In compiled languages such as Rust or Java, the parser gen‐
eration step can be integrated directly into the main build step—e.g., Oxigraph uses rust-peg for this
purpose. Interestingly, in our survey only Stardog’s Millan does not use a parser builder. Instead, it uses
Chevrotain without constructing an Abstract Syntax Tree (AST); it appears to focus solely on validation
rather than full syntactic analysis.

is highlights a broader paern: while parser generators dominate SPARQL tooling, few systems are
designed with modularity or extensibility as a first-class concern. In particular, full modularity—includ‐
ing the ability to remove grammar rules—is not supported in current public implementations, making
adaptation or evolution of these parsers difficult.

Soware Package Parsing Soware Parser Generator
Comunica SPARQL.JS Jison
Yasgui SWI Prolog
Apache Jena JavaCC
Oxigraph rust-peg
Stardog - Millan Chevrotain
Virtuoso Bison
Blazegraph JavaCC
GraphDB RDF4J JavaCC

Fig. 1: Each row lists a widely used soware package, its associated parsing library, and the
parser generator employed. When the parsing soware is omitted, the parser is implemented
directly within the project. For each usage claim, we provide a link to back up the claim.
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3.  Soware Architecture

Parsers are typically implemented in one of three ways:
1. Hand-built parsers: ese are manually implemented parsers tailored to a specific grammar. While

they can be highly performant due to low-level optimizations and language-specific design, they are
oen difficult to maintain, extend, or modularize.

2. Parser generators: Tools such as ANTLR [7] and Bison [8] use a Domain Specific Language (DSL),
typically based on Extended Backus–Naur Form (EBNF), to define a grammar. ese grammars are
then compiled into standalone parser code. While powerful, such approaches introduce a compile
step and tend to be rigid, making modular extensions cumbersome.

3. Parser building toolkits: Libraries such as Chevrotain [9] offer a hybrid approach, enabling declar‐
ative grammar specification within a host programming language. ese toolkits eliminate the com‐
pile step and allow for flexible, programmatic grammar definitions with fine-grained control over be‐
havior and integration.

To support modularity while keeping the mental model approachable, a modular parser should be
build using a parser building toolkit. Parsing itself is typically divided into multiple phases [11],  of
which the following are relevant to this work:
1. Lexical Analysis (scanning): A lexer transforms a character stream into a token stream.

2. Syntax Analysis  (parsing):  A parser  transforms the  token stream into  an abstract  syntax  tree
(AST).

3. Semantic Analysis: Performed during or aer parsing, this phase validates constraints not enforced
by grammar alone. For instance, SPARQL forbids binding to a variable which is already in scope.

Inspired by the Comunica modular query engine [12] codebase, the codebase of a modular parser
should not be a big monolith but instead use many smaller packages that can be tied together to serve a
larger  purpose.  To  facilitate  the  maintainability  of  many  small  packages  a  monorepo  (hps://
monorepo.tools/)  structure could be considered.  Within the Comunica codebase,  the usage of small
packages allows it to define many different builds (eg. a minimal built for the web, and a general built
with and without file system access). Similar benefits can be expected in the adoption of such a struc‐
ture within the modular parser:
1. Engines: ese are prebuilt, ready-to-use components such as SPARQL 1.1 and 1.2 parsers or genera‐

tors.

2. Non-engine packages:  ese expose modular building blocks used to construct engines, such as
grammar fragments or core construction utilities.

However, unlike Comunica which uses Components.js, a dependency injection framework using RDF
based config files, the modular query engine can be configured within the host language itself since
components share a similar interface. We propose that a parser be build using a builder paern and that
parser packages export the builder used, so other may extend upon it. Using a builder paern for the
parser allows you to take a builder that is used to build one parser and manipulate the grammar rules to
construct a new parser.

Concretely,  we propose a  builder  which allows rules  to  be registered by name into a  rule  map,
thereby creating a loose coupling between registered rules. Each rule is defined as a ParserRule object,
containing both a rule name and a rule implementation. Rule implementations can be expressed declar‐
atively using Chevrotain’s grammar definition functions like:
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1. SUBRULE: invokes another rule, registered under some name in the current parser,

2. MANY: matches zero or more occurrences of a paern,

3. OR: matches one of several alternatives.

We propose, each rule implementation returns a function that, when invoked, receives the parsing
context and any parameters,  and outputs part of the final syntax tree. Listing  1 shows an example
parser rule definition. e ParserBuilder can then be used for compositional construction and extension
through methods like addRule, deleteRule, merge, and typePatch. e typePatch utility would enable
type updates to existing rules — particularly useful when extending or modifying a dependent rule
without altering the original rule’s implementation. Aer the construction of your parser, you can build
it, as shown in Listing 2, returning a parser which allows you to start parsing a string from any of the
parser rules added to the builder - a property transferred from the underlying parser builder toolkit.

As for the lexer, a similar approach to the parser should be taken. Tokens should be coupled loosely
through a name-definition map. e consumption of a token then results in the consumption of the to‐
ken with that name in the used lexer. Besides that our only requirement is that the tokens can be ex‐
pressed through the definition of a regex.

4.  Demonstration

In the workshop demonstration, we will showcase how our proof of concept modular parser-builder
enables straightforward modification and extension of the existing parsers.  Starting from a prebuilt
SPARQL 1.1 parser, we will incrementally evolve the grammar in four small steps using the described
builder-based architecture. Each change will be demonstrated live, with code edits performed in an IDE
and parser behavior verified in a browser-based UI. Specifically, we will:
1. extend SPARQL to support the ADJUST function [4],

2. add support for CONSTRUCT QUAD queries [3],

import type { SparqlRule } from '@traqula/core';

const iriOrNil: SparqlRule<'iriOrNil', URL | null> = <const>{

  name: 'iriOrNil',

  impl: ({SUBRULE, CONSUME, OR}) => () => OR<URL | null>([

    {ALT: () => SUBRULE(iri, undefined)},

    {ALT: () => {

        CONSUME(nilToken);

        return null;

      } },

  ]),

};

Listing 1: e definition of a parser rule parsing either a URI of the nil token, returning the
parser URI or null respectively.

import { ParserBuilder } from '@traqula/core';

const parser = ParserBuilder

  .create([ iriOrNil, rule1 ])

  .addRule(rule2)

  .patchRule(rule1Alternative)

  .build({

    tokenVocabulary: myLexerBuilder.tokenVocabulary,

  });

// The argument and return types of the function are known,

// ast will thus be inferred to have the type `URL | null`.

const ast = parser.iriOrNil(myString, myContext, myParameters)

Listing 2: e construction of a parser including the iriOrNil rule constructed in Listing 1. It
also shows how to parse using the iriOrNil rule as the starting rule.
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3. introduce full-text search capabilities [2], and

4. remove support for the OPTIONAL clause due to its impact on query complexity [13].

ese modifications will demonstrate how the modular parser architecture—built around builders en‐
ables safe and modular grammar changes with minimal effort. e focus will be on how individual
grammar components can be extended or replaced without touching unrelated parts of the parser. We
will also highlight how the use of strong typing improves the developer experience by surfacing inte‐
gration errors at compile time.

For each of the extensions we alter the grammar rules in accordance to the SPARQL 1.1 specifica‐
tion [1] (rule number shown between paratheses):
1. ADJUST function: We add an ‘ADJUST’ token to the lexer and add a grammar rule for it, then patch

the BuiltInCall (121) rule.

2. CONSTRUCT QUAD queries: Following Jena’s approach, we patch the Constructery (10) and
ConstructTriples (74) rules and introduce a Constructads rule.

3. Full-text search: We patch the objectPath (86) and object (80) rules to allow an ‘OPTION’ keyword
followed by a scoring clause like ‘( score Expression )’.

4. Dropping OPTIONAL:  is  involves  deleting  the  OptionalGraphPaern  (57)  rule,  patching  the
GraphPaernNotTriples (56), and removing the ‘OPTIONAL’ token from the lexer.

While the demo is not interactive for aendees, all code and tooling will be made available for exper‐
imentation aer the session. e demo will serve to illustrate how a modular parser builder enables a
new generation of language-aware SPARQL tools with modular, declarative grammar support and a
strong developer experience.

5.  Conclusion

In this paper, we presented the need for a modular parser, and offered an initial prototype to cover
this need. Our prototype uses a builder-based architecture for constructing extensible SPARQL parsers.
By embracing runtime modularity, declarative rule definitions, and strong typing, our approach enables
a new class of SPARQL tools that can evolve alongside a rapidly diversifying query ecosystem. rough
our demonstration, we showed that parser modification can be performed with minimal overhead and
high confidence in correctness.

Looking ahead, several important challenges remain.
1. In order to bootstrap the adoption of the modular parser, a robust, default parser with a well-defined

Abstract  Syntax Tree (AST) format should be created.  is  AST should support  round-tripping—
ensuring that a query parsed into the AST and then regenerated from it yields a string-identical
query. is requirement on the AST will facilitate the creation of language tools such as linters.

2. To support such round-tripping, we will need to design a corresponding generator. is generator
could follow architectural paerns established by the Babel JavaScript compiler [14] combined with
the builder paern described in this work.

3. We envision the need for a flexible AST transformer system that makes it easy to map the AST into
alternative representations. Such a transformer will facilitate static analysis, query-optimization, and
translation to other query languages.

Together, these next steps would complete a robust pipeline: from parsing, through transformation,
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to code generation—all powered by modular, declarative components. We hope this work provides a
foundation for building SPARQL tools that are not only adaptable to change, but actively enable it.

Acknowledgements. Jitse De Smet is a predoctoral fellow of the Research Foundation – Flanders
(FWO) (1SB8525N).  Ruben Taelman is a postdoctoral  fellow of the Research Foundation – Flanders
(FWO) (1202124N).

References

Harris,  S.,  Seaborne,  A.,  Prud’hommeaux,  E.:  SPARQL 1.1  ery  Language.  W3C,  hps://
www.w3.org/TR/2013/REC-sparql11-query-20130321/ (2013).
Virtuoso: Using Full Text Search in SPARQL. hps://docs.openlinksw.com/virtuoso/sparqlex‐
tensions/#rdfsparqlrulefulltext (2024).
Apache Jena: ARQ - Construct ad. hps://jena.apache.org/documentation/query/construct-
quad.html#Grammar (2024).
Oxigraph: SEP 0002: calendar and duration operations. hps://github.com/oxigraph/oxigraph/
wiki/SPARQL#sep-0002-calendar-and-duration-operations (2024).
Hartig, O., Seaborne, A., Taelman, R., Williams, G., Tanon, T.P.: SPARQL 1.2 ery Language.
hps://www.w3.org/TR/sparql12-query/ (2025).
Hartig, O., Champin, P.-A., Kellogg, G., Seaborne, A.: SPARQL 1.2 ery Language. hps://
www.w3.org/TR/rdf12-concepts/ (2025).
Parr, T.J., ong, R.W.: ANTLR: A Predicated - LL(k) Parser Generator. Sow. Pract. Exp. 25,
789–810 (1995). doi:10.1002/SPE.4380250705
GNU: GNU Bison. hps://www.gnu.org/soware/bison/ (2025).
Chevrotain, Soel, S.: Chevrotain - Parser Building Toolkit for JavaScript. hps://github.com/
Chevrotain/chevrotain/ (2025).
Rietveld, L., Hoekstra, R.: e YASGUI family of SPARQL clients. Semantic Web. 8, 373–383
(2017). doi:10.3233/SW-150197
Aho,  A.V.,  Sethi,  R.,  Ullman,  J.D.:  Compilers:  Principles,  Techniques,  and  Tools.  Addison-
Wesley, hps://www.worldcat.org/oclc/12285707 (1986).
Taelman, R., Herwegen, J.V., Sande, M.V., Verborgh, R.: Comunica: A Modular SPARQL ery
Engine  for  the  Web.  In:  Vrandecic,  D.,  Bontcheva,  K.,  Suárez-Figueroa,  M.C.,  Presui,  V.,
Celino, I., Sabou, M., Kaffee, L.-A., and Simperl, E. (eds.) e Semantic Web - ISWC 2018 - 17th
International Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings,
Part II. pp. 239–255. Springer (2018). doi:10.1007/978-3-030-00668-6_15
Pérez,  J.,  Arenas,  M.,  Gutierrez,  C.:  Semantics  and  complexity  of  SPARQL.  ACM  Trans.
Database Syst. 34, 16:1–16:45 (2009). doi:10.1145/1567274.1567278
sebmck, nicolo-ribaudo, hzoo: Babel. hps://github.com/babel/babel (2025).

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://docs.openlinksw.com/virtuoso/sparqlextensions/#rdfsparqlrulefulltext
https://docs.openlinksw.com/virtuoso/sparqlextensions/#rdfsparqlrulefulltext
https://docs.openlinksw.com/virtuoso/sparqlextensions/#rdfsparqlrulefulltext
https://docs.openlinksw.com/virtuoso/sparqlextensions/#rdfsparqlrulefulltext
https://jena.apache.org/documentation/query/construct-quad.html#Grammar
https://jena.apache.org/documentation/query/construct-quad.html#Grammar
https://jena.apache.org/documentation/query/construct-quad.html#Grammar
https://jena.apache.org/documentation/query/construct-quad.html#Grammar
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations
https://www.w3.org/TR/sparql12-query/
https://www.w3.org/TR/sparql12-query/
https://www.w3.org/TR/rdf12-concepts/
https://www.w3.org/TR/rdf12-concepts/
https://www.w3.org/TR/rdf12-concepts/
https://www.w3.org/TR/rdf12-concepts/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://github.com/Chevrotain/chevrotain/
https://github.com/Chevrotain/chevrotain/
https://github.com/Chevrotain/chevrotain/
https://github.com/Chevrotain/chevrotain/
https://www.worldcat.org/oclc/12285707
https://www.worldcat.org/oclc/12285707
https://github.com/babel/babel
https://github.com/babel/babel

