
Published as a conference paper at ICLR 2024

TRACTABLE PROBABILISTIC GRAPH REPRESENTATION
LEARNING WITH GRAPH-INDUCED SUM-PRODUCT
NETWORKS

Federico Errica
NEC Laboratories Europe
Heidelberg, Germany

Mathias Niepert
University of Stuttgart
Stuttgart, Germany

ABSTRACT

We introduce Graph-Induced Sum-Product Networks (GSPNs), a new probabilistic
framework for graph representation learning that can tractably answer probabilistic
queries. Inspired by the computational trees induced by vertices in the context of
message-passing neural networks, we build hierarchies of sum-product networks
(SPNs) where the parameters of a parent SPN are learnable transformations of the a-
posterior mixing probabilities of its children’s sum units. Due to weight sharing and
the tree-shaped computation graphs of GSPNs, we obtain the efficiency and efficacy
of deep graph networks with the additional advantages of a probabilistic model. We
show the model’s competitiveness on scarce supervision scenarios, under missing
data, and for graph classification in comparison to popular neural models. We
complement the experiments with qualitative analyses on hyper-parameters and
the model’s ability to answer probabilistic queries.

1 INTRODUCTION

As the machine learning field advances towards highly effective models for language, vision, and
applications in the sciences and engineering, many practical challenges stand in the way of widespread
adoption. Overconfident predictions are hard to trust and most current models are not able to provide
uncertainty estimates of their predictions (Pearl, 2009; Hüllermeier & Waegeman, 2021; Mena et al.,
2021). Capturing such functionality requires the ability to efficiently answer probabilistic queries,
e.g., computing the likelihood or marginals and, therefore, learning tractable distributions (Choi
et al., 2020). Such capabilities would not only increase the trustworthiness of learning systems
but also allow us to naturally cope with missing information in the input through marginalization,
avoiding the use of ad-hoc imputation methods; this is another desideratum in applications where
data (labels and attributes) is often incomplete (Dempster et al., 1977; Zio et al., 2007). In numerous
application domains, obtaining labeled data is expensive, and while large unlabeled data sets might
be available, this does not imply the availability of ground-truth labels. This is the case, for instance,
in the medical domains (Tajbakhsh et al., 2020) where the labeling process must comply with privacy
regulations and in the chemical domain where one gathers target labels via costly simulations or
in-vitro experiments (Hao et al., 2020).

In this work, we are interested in data represented as a graph. Graphs are a useful representational
paradigm in a large number of scientific disciplines such as chemistry and biology. The field of Graph
Representation Learning (GRL) is concerned with the design of learning approaches that directly
model the structural dependencies inherent in graphs (Bronstein et al., 2017; Hamilton et al., 2017b;
Zhang et al., 2018b; Wu et al., 2020; Bacciu et al., 2020b). The majority of GRL methods implicitly
induce a computational directed acyclic graph (DAG) for each vertex in the input graph, alternating
learnable message passing and aggregation steps (Gilmer et al., 2017; Bacciu et al., 2020b). Most of
these approaches exclusively rely on neural network components in these computation graphs, but
cannot answer probabilistic queries nor exploit the vast amount of unlabeled data.

Motivated by these considerations, we propose a class of hierarchical probabilistic models for graphs
called GSPNs, which can tractably answer a class of probabilistic queries of interest and whose
computation graphs are also DAGs. While GSPNs are computationally as efficient as Deep Graph

1

Published as a conference paper at ICLR 2024

Networks (DGNs), they consist of a hierarchy of interconnected Sum-Product Networks (SPNs)
Poon & Domingos (2011). GSPNs can properly marginalize out missing data in graphs and answer
probabilistic queries that indicate a change in likelihood under variations of vertex attribute values.
The learned probabilistic graph representations are also competitive with state-of-the-art deep graph
networks in the scarce supervision and graph classification settings. Overall, we provide evidence
that it is possible to build a tractable family of SPNs to tackle learning problems defined on complex,
non-Euclidean domains as compositions of simpler ones.

2 RELATED WORK

Unsupervised learning for graphs is under-explored relative to the large body of work on supervised
graph representation learning (Scarselli et al., 2009; Micheli, 2009; Niepert et al., 2016; Kipf &
Welling, 2017; Velickovic et al., 2018; Xu et al., 2019; Ying et al., 2021). Contrary to self-supervised
pre-training (Hu et al., 2020b) which investigates ad-hoc learning objectives, unsupervised learning
encompasses a broader class of models that extract patterns from unlabeled data. Most unsupervised
approaches for graphs currently rely on i) auto-encoders, such as the Graph Auto-Encoder (GAE)
(Kipf & Welling, 2016) and ii) contrastive learning, with Deep Graph Infomax (DGI) (Velickovic
et al., 2019) adapting ideas from computer vision and information theory to graph-structured data.
While the former learns to reconstruct edges, the latter compares the input graph against its corrupted
version and learns to produce different representations.

Existing probabilistic approaches to unsupervised deep learning on graphs often deal with clustering
and Probability Density Estimation (PDE) problems; a classic example is the Gaussian Mixture Model
(GMM) (Bishop, 2006) capturing multi-modal distributions of Euclidean data. The field of Statistical
Relational Learning (SRL) considers domains where we require both uncertainty and complex
relations; ideas from SRL have recently led to new variational frameworks for (un-)supervised vertex
classification (Qu et al., 2019). Other works (Zheng et al., 2018) decompose the original graph
into sub-graphs that are isomorphic to pre-defined templates to solve node-classification tasks. The
Contextual Graph Markov Model (CGMM) (Bacciu et al., 2020a) and its variants (Atzeni et al.,
2021; Castellana et al., 2022) are unsupervised DGNs trained incrementally, i.e., layer after layer,
which have been successfully applied to graph classification tasks. Their incremental training grants
closed-form learning equations at each layer, but it comes at the price of no global cooperation
towards the optimization of the learning objective, i.e., the likelihood of the data; this makes it
impractical for answering missing data queries.

So far, the literature on missing data in graphs, i.e., using the graph structure to handle missing
attribute values, has not received as much attention as other problems. Recent work focuses on
mitigating “missingness” in vertex classification tasks (Rossi et al., 2022) or representing missing
information as a learned vector of parameters (Malone et al., 2021), but the quality of the learned data
distribution has not been discussed so far (to the best of our knowledge). There are some attempts at
imputing vertex attributes through a GMM (Taguchi et al., 2021), but such a process does not take
into account the available graph structure. Similarly, other proposals (Chen et al., 2022) deal with
the imputation of vertices having either all or none of their attributes missing, a rather unrealistic
assumption for most cases. In this work, we propose an approach that captures the data distribution
under missing vertex attribute values and requires no imputation.

3 BACKGROUND

We define a graph g as a triple (V, E ,X), where V = {1, . . . , N} denotes the set of N vertices, E
is the set of directed edges (u, v) connecting vertex u to v, and X = {xu ∈ Rd, d ∈ N,∀u ∈ V}
represents the the set of vertex attributes. When an edge is undirected, it is trasformed into two
opposite directed edges (Bacciu et al., 2020b). In this work, we do not consider edge attributes. The
neighborhood of a vertex v is the set Nv = {u ∈ V | (u, v) ∈ E}. Also, access to the i-th component
of a vector x shall be denoted by x(i) and that of a function f ’s output as f(·)i.

Graph Representation Learning Learning on graph-structured data typically means that one seeks
a mapping from an input graph to vertex embeddings (Frasconi et al., 1998), and such a mapping
should be able to deal with graphs of varying topology. In general, a vertex v’s representation is

2

Published as a conference paper at ICLR 2024

1
3 4

2

Q1

Q2

Q3 Q4

X1

X4
X3

X2

1 2 3 4L = 0

1 2 3 4L = 1

2 1 3 2 4 2 3

1 2L = 2

2

2 2 4

4

1 3 4

1 3 4

2 3

. . .
x2

x3 x4

x1

✓
X1

1=x4

SPN

h0
2 h0

3

fθ1

(
h0
2,h

0
3

)π1
1

ω1,π1

X0
2=x2

SPN

ω0,π0
X0

3=x3

SPN

ω0,π0

Figure 1: Inference on the graphical model on the left is typically unfeasible due to the mutual
dependencies induced by cycles. Therefore, we approximate the learning problem using probabilistic
computational trees of height L modeled by a hierarchy of tractable SPNs (right). Note that trees of
height L− 1 are used in the construction process of trees of height L. Also, for each tree rooted at v
we visualize the mapping mv(·) using colors and indices corresponding to the original graph (left).

a vector hv ∈ RC , C ∈ N encoding information about the vertex and its neighboring context, so
that predictions about v can be then made by feeding hv into a classical ML predictor. In graph
classification or regression, instead, these vertex representations have to be globally aggregated using
permutation invariant operators such as the sum or mean, resulting in a single representation hg ∈ RC

of the entire graph that is used by the subsequent predictor. At the time of this writing, message-
passing neural networks (MPNN) (Gilmer et al., 2017) are the most popular class of methods to
compute vertex representations. These methods adopt a local and iterative processing of information,
in which each vertex repeatedly receives messages from its incoming connections, aggregates these
messages, and sends new messages along the outgoing edges. Researchers have developed several
variants of this scheme, starting from the two pioneering methods: the recurrent Graph Neural
Network (GNN) of Scarselli et al. (2009) and the feedforward Neural Network for Graphs (NN4G)
of Micheli (2009).

Tractable Probabilistic Models Probabilistic Circuits (PCs) are probabilistic models that can
tractably, i.e., with polynomial complexity in the size of the circuit, answer a large class of probabilistic
queries (Choi et al., 2020) and can be trained via backpropagation. A PC is usually composed of
distribution units, representing distributions over one or more random variables, product units
computing the fully factorized joint distribution of its children, and the sum units encoding mixtures
of the children’s distributions. Sum-Product Networks (SPNs) (Poon & Domingos, 2011; Gens
& Domingos, 2012; Trapp et al., 2019; Shao et al., 2020) are a special class of PCs that support
tractable computation of joint, marginal, and conditional distributions, which we will exploit to easily
handle missing data. Informally, a (locally normalized) SPN is a probabilistic model defined via a
rooted computational DAG, whose parameters of every sum unit add up to 1 (Vergari et al., 2019a).
Furthermore, the scope of an SPN is the set of its distribution units, and valid SPNs represent proper
distributions. For instance, a GMM and a Naïve Bayes model (NB) (Webb et al., 2010) can both be
written as SPNs with a single sum unit. While the class of PCs is equivalent to that of deep mixture
models, where each sum unit is associated with some latent variable (Peharz et al., 2016), PCs are not
probabilistic graphical models (PGMs) (Koller & Friedman, 2009): the former specify an operational
semantics describing how to compute probabilities, whereas the representational semantics of the
latter specifies the conditional independence of the variables involved. Crucially, for valid SPNs
and an arbitrary sum unit j with C children, it is always possible to tractably compute its posterior
distribution, parametrized by the vector hj ∈ RC (Peharz et al., 2016). Here, we are voluntarily
abusing the notation because in the following we will consider posterior distributions of sum nodes
as our latent representations. Due to space constraints, we provide a more detailed introduction to
PCs in Section A.1.

4 GSPN: LEARNING TRACTABLE PROBABILISTIC GRAPH REPRESENTATIONS

When one considers a cyclic graphical model such as the one on the left-hand-side of Figure 1,
probabilistic inference is computationally infeasible unless we make specific assumptions to break

3

Published as a conference paper at ICLR 2024

the mutual dependencies between the random variables (r.v.) Q, depicted as white circles. To address
this issue, we approximate the intractable joint probability distribution over the r.v. attributed graph
of any shape as products of tractable conditional distributions, one for each vertex in the graph; this
approximation is known as the pseudo likelihood (Gong & Samaniego, 1981; Liang & Yu, 2003).
The scope of these tractable distributions consists of the L-hop neighborhoods induced by a traversal
of the graph rooted at said vertex. Akin to what done for DGNs, the parameters of the conditional
distributions are shared across vertices.

We propose a class of models whose ability to tractably answer queries stems from a hierarchical
composition of sum-product networks (SPNs). To describe the construction of this hierarchical model
we consider, for each vertex v in the input graph, a tree rooted at v of height L, that is the length of
the longest downward path to a leaf from v, treated as a hyper-parameter. Analogously, an internal
node in the tree is said to have height 0 ≤ ℓ ≤ L. To distinguish between graphs and trees, we use
the terms vertices for the graphs and nodes for the trees. Moreover, because graph cycles induce
repetitions in the computational trees, we have to use a new indexing system: given a tree rooted at v
with Tv nodes T = {n1, . . . , nTv}, we denote by mv(·) : T → V a mapping from its node index n
to a vertex u in the input graph g.
We now formally define the tree of height L rooted at vertex v as follows. First, we have one root
node n with mv(n) = v and n having height L. Second, for a node n in the tree at height 1 ≤ ℓ ≤ L,
we have that a node n′ is a child of n with height ℓ− 1 if and only if vertex v′ = mv(n

′) is in the
1-hop neighborhood of vertex u = mv(n). When vertex u does not have incoming edges, we model
it as a leaf node of the tree. Finally, every node n at height ℓ = 0 is a leaf node and has no children.
Figure 1 (center) depicts examples of trees induced by the nodes of the graph on the left.

We use the structure of each graph-induced tree as a blueprint to create a hierarchy of normalized SPNs,
where all SPNs have the same internal structure. Every node of a tree is associated with a valid SPN
whose scope consists of the random variables A1, . . . , Ad modeling the vertex attributes, meaning
the distribution units of said SPN are tractable distributions for the variable X = (A1, ..., Ad). To
distinguish between the various distributions for the r.v. X modeled by the SPNs at different nodes,
we introduce for every node n and every height ℓ, the r.v. Xℓ

n with realization xm(n). Crucially, these
r.v. are fundamentally different even though they might have the same realization of the r.v. for root
node . This is because each node of the tree encodes the contextual information of a vertex after a
specific number of message passing steps.

The parameters of the tractable distribution units in the SPN of node n at height ℓ are denoted by ωℓ
n,

which are shared across the nodes at the same height. Moreover, the mixture probabilities of the S
sum nodes in the SPN of node n at height ℓ are denoted by πℓ

n,j , 1 ≤ j ≤ S. To obtain a hierarchical
model, that is, to connect the SPNs according to the tree structure, we proceed as follows. For every
SPN of a non-leaf node n, the parameters πℓ

n,j of sum unit j are learnable transformations of the
posterior probabilities of the (latent mixture component variables of) sum units j in the children
SPNs. More formally, let n1, . . . , nT be the children of a node n and let hℓ−1

ni,j
be the vector of

posterior probabilities of sum unit j for the SPN of node ni. Then, πℓ
n,j = fθℓ

j
(hℓ−1

n1,j
, . . . ,hℓ−1

nT ,j)

with learnable parameters θℓ
j shared across level ℓ. The choice of f does not depend on the specific

SPN template, but it has to be permutation invariant because it acts as the neighborhood aggregation
function of message-passing methods. The parameters of the sum units of leaf nodes, π0

j , are
learnable and shared. Figure 1 (right) illustrates the hierarchical composition of SPNs according
to a tree in Figure 1 (center). Moreover, Figure 2 illustrates how the prior distribution of the SPNs
at height 1 is parametrized by a learnable transformation of posterior mixture probabilities of its
children SPNs, similar to what is done by Vergari et al. (2019b) with fixed Dirichlet priors.

A graph g in the training data specifies (partial) evidence xv for every one of its vertices v. The
hierarchical SPN generated for v now defines a tractable probability distribution for the root node
conditioned on the (partial) evidence for its intermediate nodes, which we can compute by evaluating
the hierarchical SPNs tree in a bottom-up fashion. For each vertex v in the graph g, let n2, . . . , nTv

be the nodes of the graph-induced tree rooted at v, without the root node n1 itself. For each graph g
in the dataset, the objective is to maximize the following pseudo log-likelihood:

log
∏
v∈V

PΘ(xmv(n1) | xmv(n2), . . . ,xmv(nTv)
), (1)

4

Published as a conference paper at ICLR 2024

A1 A2 A1 A2 A1 A2

fθ1

(
h0

2,h
0
3

)

X0
2=x2

SPN

ω0,π0
X0

3=x3

SPN

ω0,π0

X1
1=x4

SPN

ω1,π1

P
(
X1

1 = x4

)

h0
2 h0

3 Pπ(Q)

Pω(X|Q)

Pπ(Q = 1)

A1 A2 A1 A2 A1 A2

Pω(A2 = a2|Q = 3)

A1

Q

A2

Figure 2: (Left) We expand the example of Figure 1 to illustrate how the prior distribution of the
top SPN (here the Naïve Bayes on the right) is parametrized by a learnable transformation of the
children’s SPNs posterior mixture probabilities. (Right) A Gaussian Naïve Bayes graphical model
with r.v. X = (A1, A2) and its equivalent SPN with scope {A1, A2}.

where PΘ is the conditional probability defined by the hierarchical SPN for the tree rooted at v with
parameters Θ. When clear from the context, in the following we omit the subscript v from mv(·).

4.1 NAIVE BAYES GSPNS

An instance of the proposed framework uses Naïve Bayes models as base SPNs, shown in Figure 2
in both their graphical and SPN representations for two continuous vertex attributes. For each SPN,
there is a single categorical latent r.v. Q with C possible states. Let us denote this latent r.v. for node
n at height ℓ in the tree as Qℓ

n and its prior distribution as Pπℓ
n
(Qℓ

n). Due to the assumption that
all r.v.s Xℓ

n have tractable distributions, we have, for all ℓ, n and i, that the conditional distribution
Pωℓ

n
(Xℓ

n | Qℓ
n = i) is tractable. Moreover, for each child node n at height ℓ we have that

hℓ
n(i) = P(Qℓ

n = i | Xℓ
n = xm(n)). (2)

For each leaf n of a tree, the posterior probabilities for the SPNs sum unit are given by

h0
n(i) = P(Q0

n = i | X0
n = xm(n)) =

Pω0
n
(xm(n) | Q0

n = i)Pπ0
n
(Q0

n = i)∑C
i′ Pω0

n
(xm(n) | Q0

n = i′)Pπ0
n
(Q0

n = i′)
, (3)

where π0
n is learned and shared across leaf nodes. For ℓ ≥ 1, the latent priors Pπℓ

n
(Qℓ

n) are
parametrized by the output of a learnable transformation of the posterior probabilities of the sum
units of the child SPNs. More formally, for node n′ at height ℓ+ 1, ℓ ≥ 0, and with children ch(n′)

we compute the prior probabilities πℓ+1
n′ as

πℓ+1
n′ = fθℓ+1(hℓ

1, ...,h
ℓ
|chn′ |), hℓ

n(i) =
Pωℓ

n
(xm(n) | Qℓ

n = i)Pπℓ
n
(Qℓ

n = i)∑C
i′ Pωℓ

n
(xm(n) | Qℓ

n = i′)Pπℓ
n
(Qℓ

n = i′)
, (4)

noting that the posterior hℓ
n is tractable as the quantities of interest are obtained with a single backward

pass in the SPN (Peharz et al., 2016). Figure 2 visualizes how fθ1 acts on the prior probabilities in the
example of Figure 1. In the experiments, we define fθℓ+1(hℓ

1, ...,h
ℓ
|chn′ |) =

1
|chn′ |

∑
n∈chn′ θ

ℓ+1hℓ
n

for a learnable transition matrix θℓ+1 ∈ RC×C that specifies how much a child’s (soft) state k
contributes to the weight of state i in the new prior distribution Pπℓ+1

n′
(Qℓ+1

n′ = i). Each row k of θℓ+1

must specify a valid probability over C possible states, enforced through normalization techniques.
The function is motivated by the observation that it corresponds to applying the “Switching Parent”
decomposition to the conditional mixture model defined in (Bacciu et al., 2020a) (deferred to Section
A.2 due to space constraints). Likewise, we show in Section A.3 that Equation 4 produces a valid
parametrization for the new prior distribution.

This iterative process can be efficiently implemented in the exact same way message passing is
implemented in neural networks, because the computation for trees of height ℓ can be reused in trees
of height ℓ + 1. In practice, the height L of the computational tree corresponds to the number of
layers in classical message passing. Furthermore, our choice of fθℓ leads to a fully probabilistic
formulation and interpretation of end-to-end message passing on graphs. Motivated by studies on

5

Published as a conference paper at ICLR 2024

the application of gradient ascent for mixture models and SPNs (Xu & Jordan, 1996; Sharir et al.,
2016; Peharz et al., 2016; Gepperth & Pfülb, 2021), we maximize Equation 1 with backpropagation.
We can execute all probabilistic operations on GPU to speed up the computation, whose overall
complexity is linear in the number of edges as in most DGNs. For the interested reader, Section A.4
describes how GSPN can be applied to more general SPNs with multiple sum units and provides the
pseudocode for the general inference phase; similarly, Section A.5 proposes a probabilistic shortcut
mechanism akin to residual connections (Srivastava et al., 2015; He et al., 2016) in neural networks
that mitigates the classical issues of training very deep networks via backpropagation. Finally, we
refer to the unsupervised version of GSPN as GSPNU .

4.2 MODELING MISSING DATA

With GSPNs we can deal with partial evidence of the graph, or missing attribute values, in a
probabilistic manner. This is a distinctive characteristic of our proposal compared to previous
probabilistic methods for vectors, as GSPNs can tractably answer probabilistic queries on graphs
by also leveraging their structural information. Similarly, typical neural message passing models
deal with missing data by imputing its values before processing the graph (Taguchi et al., 2021),
whereas GSPN takes the partial evidence into account while processing the graph structure. We take
inspiration from the EM algorithm for missing data (Hunt & Jorgensen, 2003): in particular, let us
consider a multivariate r.v. of a root node X (dropping other indices for ease of notation) as a tuple
of observed and missing sets of variables, i.e., X = (Xobs,Xmis). When computing the posterior
probabilities of sum nodes h, we have to modify Equations 3 and 4 to only account for Xobs; in
SPNs, this equals to setting the distribution units of the missing attributes to 1 when computing
marginals, causing the missing variables to be marginalized out. This can be computed efficiently due
to the decomposability property of the SPNs used in this work (Darwiche, 2003). Additionally, if we
wanted to impute missing attributes for a vertex v, we could apply the conditional mean imputation
formula of Zio et al. (2007) to the corresponding root r.v. of the tree XL

1 = (Xobs
1 ,Xmis

1), which,
for the specific case of NB, translates to xmis

v =
∑C

i E
[
Xmis

1 | QL
1 = i

]
∗ hL

1 (i). Hence, to impute
the missing attributes of xv , we sum the (average) predictions of each mixture in the top SPN, where
the mixing weights are given by the posterior distribution. The reason is that the posterior distribution
carries information about our beliefs after observing Xobs

v .

4.3 A GLOBAL READOUT FOR SUPERVISED LEARNING

Using similar arguments as before, we can build a probabilistic and supervised extension of GSPN
for graph regression and classification tasks. It is sufficient to consider a new tree where the root node
r is associated with the target r.v. Y and the children are all possible trees of different heights rooted
at the N vertices of graph g. Then, we build an SPN for r whose sum unit j is parametrized by a
learnable tansformation πr,j = fϑj (·). This function receives the set hV,j of outputs hℓ

u,j associated
with the top SPN related to the graph-induced tree of height ℓ rooted at u, for 0 ≤ ℓ ≤ L. In other
words, this is equivalent to consider all vertex representations computed by a DGN at different layers.
For NB models with one sum unit, given (partial) evidence x1, . . . ,xN for all nodes, we write

P(y | x1, . . . ,xN) =

Cg∑
i=1

Pωr (y | Q = i)Pπr (Q = i), πr
def
= fϑ(hV) = Ω

(∑
u∈V

L∑
ℓ=1

ϑℓhℓ
u

)
,

(5)

where ωr and πr are the parameters of the NB and Q is a latent categorical variable with Cg states.
Computing πr essentially corresponds to a global pooling operation, where ϑℓ ∈ RCg×C is another
transition matrix and Ω can be 1

LN (resp. the softmax function) for mean (resp. sum) global pooling.
We treat the choice of Ω(·) as a hyper-parameter, and the resulting model is called GSPNS .

4.4 LIMITATIONS AND FUTURE DIRECTIONS

Due to the problem of modeling an inherently intractable probability distribution defined over a cyclic
graph, GSPNs rely on a composition of locally valid SPNs to tractably answer probabilistic queries.
At training time the realization of the observable r.v. of vertex v at the root might be conditioned on
the same realization of a different observable r.v. in the tree, which is meant to capture the mutual

6

Published as a conference paper at ICLR 2024

dependency induced by a cycle. To avoid conditioning on the same realization, which could slightly
bias the pseudo-likelihood in some corner cases, future work might consider an alternative, albeit
expensive, training scheme where, for each node and observable attribute, a different computational
tree is created and the internal nodes n with m(n) = v are marginalized out.

From the point of view of expressiveness in distinguishing non-isomorphic graphs, past results tell us
that more powerful aggregations would be possible if we explored a different neighborhood aggrega-
tion scheme (Xu et al., 2019). In this work, we keep the neighborhood aggregation functions fθ as
simple as possible to get a fully probabilistic model with valid and more interpretable probabilities.
Finally, GSPN is currently unable to model edge types, which would enable us to capture a broader
class of graphs.

5 EXPERIMENTS

We consider three different classes of experiments as described in the next sections. Code
and data to reproduce the results is available at the following link: https://github.com/
nec-research/graph-sum-product-networks.

Scarce Supervision Akin to Erhan et al. (2010) for non-structured data, we show that unsuper-
vised learning can be very helpful in the scarce supervision scenario by exploiting large amounts
of unlabeled data. We select seven chemical graph regression problems, namely benzene, ethanol,
naphthalene, salicylic acid, toluene, malonaldehyde and uracil (Chmiela et al., 2017), using cate-
gorical atom types as attributes, and ogbg-molpcba, an imbalanced multi-label classification task
(Hu et al., 2020a). Given the size of the datasets, we perform a hold-out risk assessment procedure
(90% training, 10% test) with internal hold-out model selection (using 10% of the training data for
validation) and a final re-training of the selected configuration. In the case of ogbg-molpcba, we
use the publicly available data splits. Mean Average Error (MAE) is the main evaluation metric for
all chemical tasks except for ogbg-molpcba (Average Precision – AP – averaged across tasks). We
first train a GSPNU on the whole training set to produce unsupervised vertex embeddings (obtained
through a concatenation across layers), and then we fit a DeepSets (DS) (Zaheer et al., 2017) classifier
on just 0.1% of the supervised samples using the learned embeddings (referred as GSPNU+DS). We
do not include GSPNS in the analysis because, as expected, the scarce supervision led to training
instability during preliminary experiments.
We compare against two effective and well-known unsupervised models, the Graph Auto-Encoder
(GAE) and Deep Graph Infomax (DGI). These models have different unsupervised objectives: the
former is trained to reconstruct the adjacency matrix whereas the second is trained with a contrastive
learning criterion. Comparing GSPNU , which maximizes the vertices’ pseudo log-likelihood, against
these baselines will shed light on the practical usefulness of our learning strategy. In addition, we
consider the GIN model (Xu et al., 2019) trained exclusively on the labeled training samples as
it is one of the most popular DGNs in the literature. We summarize the space of hyper-parameter
configurations for all models in Table 4.

Modeling the Data Distribution under Partial Evidence We analyze GSPN’s ability at modeling
the missing data distribution on real-world datasets. For each vertex, we randomly mask a proportion
of the attributes given by a sample from a Gamma distribution with concentration 1.5 and rate 1/2).
We do so to simulate a plausible scenario in which many vertices have few attributes missing and few
vertices have many missing attributes. We train all models on the observed attributes only, and then
we compute the negative log-likelihood of Equation 1 (NLL) for the masked attributes to understand
how good each method is at modeling the missing data distribution. We apply the same evaluation,
data split strategy, and datasets of the previous experiment, focusing on their 6 continuous attributes
(except for ogbg-molpcba that has only categorical values).
The first baseline is a simple GAUSSIAN distribution, which computes its sufficient statistics (mean
and standard deviation) from the training set and then computes the NLL on the dataset. The second
baseline is a structure-agnostic Gaussian Mixture Model (GMM), which does not rely on the structure
when performing imputation but can model arbitrarily complex distributions; we recall that our model
behaves like a GMM when the number of layers is set to 1. The set of hyper-parameters configurations
tried for each baseline is reported in Table 5.

7

https://github.com/nec-research/graph-sum-product-networks
https://github.com/nec-research/graph-sum-product-networks

Published as a conference paper at ICLR 2024

Model GIN GAE+DS DGI+DS GSPNU+DS

Eval. Process Sup. Unsup.→ Sup. Unsup.→ Sup. Unsup.→ Sup.

benzene 41.4 ± 45.6 2.00 ± 0.1 6.22 ± 1.2 2.24 ± 0.5
ethanol 4.00 ± 1.0 7.79 ± 7.8 5.35 ± 3.5 3.36 ± 0.0
malonaldehyde 8.00 ± 5.3 5.49 ± 1.3 4.31 ± 1.8 4.31 ± 1.4
naphthalene 34.9 ± 19.4 4.45 ± 0.3 6.34 ± 2.3 4.44 ± 0.1
salicylic acid 36.7 ± 13.4 233.3 ± 27.1 17.0 ± 7.3 4.90 ± 0.5
toluene 29.6 ± 18.0 4.83± 0.3 9.18 ± 0.3 4.87 ± 1.4
uracil 19.7 ± 14.1 387.7 ± 13.7 409.7 ± 1.5 3.93 ± 0.0
ogbg-molpcba (↑) 4.12 ± 0.2 3.36 ± 0.3 3.00 ±0.5 4.00 ±0.5

Table 1: Mean and std results on scarce supervision tasks
averaged over 10 runs, with 0.1%. The best and second-
best average results are bold and underlined, respectively.

N C C N N N C C C C Cl C C C N
SMILES: N#Cc1nnn(-c2ccc(Cl)cc2)c1N

lo
g

 a
fte

r c
ha

ng
e

0.00

0.25

0.50

0.75

1.00

Figure 3: Relative change in vertices
pseudo log-likelihood when replac-
ing Cl in the SMILES with an O.

Graph Classification Among the graph classification tasks of Errica et al. (2020), we restrict our
evaluation to NCI1 (Wale et al., 2008), REDDIT-BINARY, REDDIT-MULTI-5K, and COLLAB
(Yanardag & Vishwanathan, 2015) datasets, for which leveraging the structure seems to help improv-
ing the performances. The empirical setup and data splits are the same as Errica et al. (2020) and
Castellana et al. (2022), from which we report previous results. The baselines we compare against
are a structure-agnostic baseline (BASELINE), DGCNN (Zhang et al., 2018a), DiffPool (Ying et al.,
2018), ECC (Simonovsky & Komodakis, 2017), GIN (Xu et al., 2019), GraphSAGE (Hamilton et al.,
2017a), CGMM, E-CGMM (Atzeni et al., 2021), and iCGMM (Castellana et al., 2022). CGMM
can be seen as an incrementally trained version of GSPN that cannot use probabilistic shortcut
connections. Table 6 shows the set of hyper-parameters tried for GSPN, and Table 9 shows that the
time to compute a forward and backward pass of GSPN is comparable to GIN.

6 RESULTS

We present quantitative and qualitative results following the structure of Section 5. For all experiments
we used a server with 32 cores, 128 GBs of RAM, and 8 Tesla-V100 GPUs with 32 GBs of memory.

Scarce Supervision In Table 1, we report the performance of GSPNU combined with DeepSets
(DS) in the scarce supervision scenario. We make the following observations. First, a fully supervised
model like GIN is rarely able to perform competitively when trained only on a small amount of
labeled data. This is not true for ogbg-molpcba, but the AP scores are also very low, possibly because
of the high class imbalance in the dataset. Secondly, on the first seven chemical tasks the unsupervised
embeddings learned by GAE and DGI sometimes prevent DS from converging to a stable solution.
This is the case for ethanol, salicylic acid, and uracil, where the corresponding MAE is higher than
those of the GIN model. GSPN is competitive with and often outperforms the alternative approaches,
both in terms of mean and standard deviation, and it ranks first or second place across all tasks.
These results suggest that modeling the distribution of vertex attributes conditioned on the graph is a
good inductive bias for learning meaningful vertex representations in the chemical domain and that
exploiting a large amount of unsupervised graph data can be functional to solving downstream tasks
in a scarce supervision scenario.

Contrarily to the other baselines, GSPN can answer probabilistic queries about the graph as
depicted in Figure 3. Here we replace the Chlorine (Cl) atom in the SMILES of an ogbg-molpcba
sample with an Oxygen (O) and ask the model to compute again the pseudo log-likelihood of each
vertex (Equation 1). In this case, it makes intuitive sense that the relative likelihood increases because
Cl is deactivating, so it is more unlikely to observe it attached to the all-carbon atom group. Being
able to query the probabilistic model subject to changes in the input naturally confers a degree
of interpretability and trustworthiness to the model. For the interested reader, we provide more
visualizations for randomly picked samples in Section A.9.

Modeling the Data Distribution under Partial Evidence We demonstrate that is beneficial to
model structural dependencies with GSPN to handle missing values in Table 2. The first observation
is that modeling multimodality using a GMM already improves the NLL significantly over the
unimodal GAUSSIAN baseline; though this may not seem surprising at first, we stress that this result

8

Published as a conference paper at ICLR 2024

benzene ethanol malonaldehyde naphthalene salicylic acid toluene uracil S M
GAUSSIAN 9.96 ± 0.0 5.72 ± 0.0 5.88 ± 0.0 6.48 ± 0.0 6.91 ± 0.0 6.00 ± 0.0 7.54 ± 0.0 ✗ ✗
GMM 4.31 ± 0.01 3.81 ± 0.01 3.93 ± 0.01 3.31 ± 0.10 3.21 ± 0.13 3.59 ± 0.06 3.11 ± 0.5 ✗ ✓
GSPNU 4.17 ± 0.02 3.77 ± 0.03 3.88 ± 0.01 3.18 ± 0.07 3.06 ± 0.21 3.35 ± 0.05 3.17 ± 0.17 ✓ ✓

Table 2: We report the mean and std NLL under the missing data scenario, averaged over 3 runs.
Symbols S and M stand for “uses structure” and “captures multimodality”, respectively.

NCI1 REDDIT-B REDDIT-5K COLLAB

Baseline 69.8 ± 2.2 82.2 ± 3.0 52.2 ± 1.5 70.2 ± 1.5
DGCNN 76.4 ± 1.7 87.8 ± 2.5 49.2 ± 1.2 71.2 ± 1.9
DIFFPOOL 76.9 ± 1.9 89.1 ± 1.6 53.8 ± 1.4 68.9 ± 2.0
ECC 76.2 ± 1.4 - - -
GIN 80.0 ± 1.4 89.9 ± 1.9 56.1 ± 1.7 75.6 ± 2.3
GRAPHSAGE 76.0 ± 1.8 84.3 ± 1.9 50.0 ± 1.3 73.9 ± 1.7
CGMMU+DS 76.2 ± 2.0 88.1 ± 1.9 52.4 ± 2.2 77.3 ± 2.2
E-CGMMU+DS 78.5 ± 1.7 89.5 ± 1.3 53.7 ± 1.0 77.5 ± 2.3
ICGMMU+DS 77.6 ± 1.5 91.6 ± 2.1 55.6 ± 1.7 78.9 ± 1.7

GSPNU+DS
†76.6 ± 1.9 †90.5 ± 1.1 †55.3 ± 2.0 †78.1 ± 2.5

GSPNS
†77.6 ± 3.0 †89.7 ± 2.3 †54.2 ± 2.1 74.1 ± 2.5

Table 3: Mean and std results on graph classification datasets. The best and second-best performances
are bold and underlined, respectively. A † means that GSPN improves over CGMM.

is a good proxy to measure the usefulness of the selected datasets in terms of different possible values,
and it establishes an upper bound for the NLL.
Across almost all datasets GSPN improves the NLL score, and we attribute this positive result to
its ability to simultaneously capture both the structural dependencies and the multimodality of the
data distribution. The only dataset where the GMM has a better NLL is uracil, and we argue that this
might be due to the independence of the node attributes from the surrounding structural information.
These empirical results seem to agree with the considerations of Sections 4.2 and shed more light on
a research direction worthy of further investigations.

Graph Classification The last quantitative analysis concerns graph classification, whose results
are reported in Table 3. As we can see, not only is GSPN competitive against a consistent set of
neural and probabilistic DGNs, but it also improves almost always w.r.t. CGMM , which can be
seen as the layer-wise counterpart of our model. In addition, the model ranks second on two out
of five tasks, though there is no clear winner among all models and the average performances are
not statistically significant due to high variance. We also observe that here GSPNS does not bring
significant performance gains compared to GSPNU+DS . As mentioned in Section 4.4, we attribute
this to the limited theoretical expressiveness of the global aggregation function. We also carry out
a qualitative analysis on the impact of the number of layers, C and CG for GSPNS (with global
sum pooling) on the different datasets, to shed light on the benefits of different hyper-parameters.
The results show that on NCI1 and COLLAB the performance improvement is consistent as we add
more layers, whereas the opposite is true for the other two datasets where the performances decrease
after five layers. Therefore, the selection of the best number of layers to use remains a non-trivial
and dataset-specific challenge. In the interest of space, we report a visualization of these results in
Appendix A.8.

7 CONCLUSIONS

We have proposed Graph-Induced Sum-Product Networks, a deep and fully probabilistic class
of models that can tractably answer probabilistic queries on graph-structured data. GSPN is a
composition of locally valid SPNs that mirrors the message-passing mechanism of DGNs, and it
works as an unsupervised or supervised model depending on the problem at hand. We empirically
demonstrated its efficacy across a diverse set of tasks, such as scarce supervision, modeling the data
distribution under missing values, and graph prediction. Its probabilistic nature allows it to answer
counterfactual queries on the graph, something that most DGNs cannot do. We hope our contribution
will further bridge the gap between probabilistic and neural models for graph-structured data.

9

Published as a conference paper at ICLR 2024

REFERENCES

Daniele Atzeni, Davide Bacciu, Federico Errica, and Alessio Micheli. Modeling edge features with
deep bayesian graph networks. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), 2021.

Davide Bacciu, Alessio Micheli, and Alessandro Sperduti. Bottom-up generative modeling of
tree-structured data. In Proceedings of the 17th International Conference on Neural Information
Processing (ICONIP), 2010.

Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on graphs via contextual
architectures. Journal of Machine Learning Research, 21(134):1–39, 2020a.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to deep
learning for graphs. Neural Networks, 129:203–221, 9 2020b.

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):25. 18–42,
2017.

Daniele Castellana, Federico Errica, Davide Bacciu, and Alessio Micheli. The infinite contextual
graph Markov model. In Proceedings of the 39th International Conference on Machine Learning
(ICML), 2022.

Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W. Tsang. Learning on
Attribute-Missing Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(2):740–757, 2022.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. Preprint, 2020.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised
pre-training help deep learning? In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. In 8th International Conference on Learning Representations
(ICLR), 2020.

Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive processing
of data structures. IEEE Transactions on Neural Networks, 9(5):768–786, 1998.

Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks. Proceedings
of the 26th Conference on Neural Information Processing Systems (NeurIPS), 2012.

Alexander Gepperth and Benedikt Pfülb. Gradient-based training of gaussian mixture models for
high-dimensional streaming data. Neural Processing Letters, 53(6):4331–4348, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning (ICML), pp. 1263–1272, 2017.

10

Published as a conference paper at ICLR 2024

Gail Gong and Francisco J Samaniego. Pseudo maximum likelihood estimation: theory and applica-
tions. The Annals of Statistics, pp. 861–869, 1981.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), 2017a.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017b.

Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and
Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular property
prediction. In Proceedings of the 26th International Conference on Knowledge Discovery and
Data Mining (SIGKDD, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In 8th International Conference on Learning
Representations (ICLR), 2020b.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.

Lynette Hunt and Murray Jorgensen. Mixture model clustering for mixed data with missing informa-
tion. Computational statistics & data analysis, 41(3-4):429–440, 2003.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In Workshop on Bayesian Deep
Learning, Neural Information Processing System (NIPS), 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations (ICLR), 2017.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Gang Liang and Bin Yu. Maximum pseudo likelihood estimation in network tomography. IEEE
Transactions on Signal Processing, 51(8):2043–2053, 2003.

Brandon Malone, Alberto Garcia-Duran, and Mathias Niepert. Learning representations of missing
data for predicting patient outcomes. In Workshop on Deep Learning on Graphs: Method and
Applications (AAAI), 2021.

José Mena, Oriol Pujol, and Jordi Vitrià. A survey on uncertainty estimation in deep learning
classification systems from a bayesian perspective. ACM Computing Surveys (CSUR), 54(9):1–35,
2021.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In Proceedings of the 33th International Conference on Machine Learning (ICML),
2016.

Judea Pearl. Causality. Cambridge university press, 2009.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable interpreta-
tion in sum-product networks. IEEE transactions on pattern analysis and machine intelligence, 39
(10):2030–2044, 2016.

11

Published as a conference paper at ICLR 2024

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE
International Conference on Computer Vision (ICCV), Workshops, pp. 689–690. IEEE, 2011.

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph Markov Neural Networks. In Proceedings
of the 36th International Conference on Machine Learning (ICML), 2019.

Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M. Bronstein. On the unreasonable effectiveness of feature propagation in learning
on graphs with missing node features. In Proceedings of the 1st Learning on Graphs Conference
(LoG), 2022.

Lawrence K Saul and Michael I Jordan. Mixed memory Markov models: Decomposing complex
stochastic processes as mixtures of simpler ones. Machine Learning, 37(1):75–87, 1999.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and
Kristian Kersting. Conditional sum-product networks: Imposing structure on deep probabilistic
architectures. In Proceedings of the 9th International Conference on Probabilistic Graphical
Models (PGM), 2020.

Or Sharir, Ronen Tamari, Nadav Cohen, and Amnon Shashua. Tensorial mixture models. arXiv
preprint arXiv:1610.04167, 2016.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. In Deep
Learning Workshop, 32nd International Conference on Machine Learning (ICML), 2015.

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph Convolutional Networks for Graphs Con-
taining Missing Features. Future Generation Computer Systems, 117:155–168, April 2021.
ISSN 0167739X. doi: 10.1016/j.future.2020.11.016. URL http://arxiv.org/abs/2007.
04583.

Nima Tajbakhsh, Laura Jeyaseelan, Qian Li, Jeffrey N Chiang, Zhihao Wu, and Xiaowei Ding.
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.
Medical Image Analysis, 63:101693, 2020.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. Proceedings of the 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations
(ICLR), 2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep Graph Infomax. In 7th International Conference on Learning Representations (ICLR),
New Orleans, LA, USA, May 6-9, 2019, 2019.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-product
networks. Machine Learning, 108(4):551–573, 2019a.

Antonio Vergari, Alejandro Molina, Robert Peharz, Zoubin Ghahramani, Kristian Kersting, and
Isabel Valera. Automatic bayesian density analysis. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI), pp. 5207–5215, 2019b.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

12

http://arxiv.org/abs/2007.04583
http://arxiv.org/abs/2007.04583

Published as a conference paper at ICLR 2024

Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. Naïve bayes. Encyclopedia of machine
learning, 15:713–714, 2010.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations (ICLR), 2019.

Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian mixtures.
Neural computation, 8(1):129–151, 1996.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th International
Conference on Knowledge Discovery and Data Mining (SIGKDD, 2015.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Proceedings of
the 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS), 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS), 2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 2018a.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. arXiv preprint
arXiv:1812.04202, 2018b.

Kaiyu Zheng, Andrzej Pronobis, and Rajesh Rao. Learning graph-structured sum-product networks
for probabilistic semantic maps. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2018.

Marco Di Zio, Ugo Guarnera, and Orietta Luzi. Imputation through finite gaussian mixture models.
Computational Statistics and Data Analysis, 51(11):5305–5316, 2007. doi: 10.1016/j.csda.2006.
10.002.

13

Published as a conference paper at ICLR 2024

A APPENDIX

We complement the discussion with theoretical and practical considerations that facilitate understand-
ing and reproducibility.

A.1 HIGH-LEVEL DEFINITIONS OF PROBABILISTIC CIRCUITS

We introduce basic concepts of PCs to ease the understanding of readers that are less familiar with
this topic.

A probabilistic circuit (Choi et al., 2020) over a set of r.v.s X = (A1, . . . , Ad) is uniquely determined
by its circuit structure and computes a (possibly unnormalized) distribution P (X). The circuit
structure has the form of a rooted DAG, which comprises a set of computational units. In particular,
input units are those for which the set of incoming edges is empty (i.e., no children), whereas the
output unit has no outgoing edges.

The scope of a PC is a function that associates each unit of the circuit with a subset of X . For each
non-input unit, the scope of the unit is the union of the scope of the children. It follows that the scope
of the root is X .

Each input (or distribution) unit encodes a parametric non-negative function, e.g., a Gaussian or
Categorical distribution. A product unit represents the joint, fully factorized distribution between the
distributions encoded by its children. Finally, a sum unit defines a weighted sum of the children’s
distributions, i.e., a mixture model when the children encode proper distributions. The set of
parameters of a probabilistic circuit is given by the union of the parameters of all input and sum units
in the circuit.

There are different kinds of probabilistic queries that a PC can answer. The first is the complete
evidence query, corresponding to the computation of P (X = x). A single feedforward pass from the
input units to the output unit is sufficient to compute this query. Another important class of queries is
that of marginals, where we assume that not all r.v.s are fully observed, e.g., missing values. Given
partial evidence E ⊂ X and the unobserved variables Z = X \E, a marginal query is defined as
P (E = e) =

∫
p(e, z)dz. Finally, we mention the conditional query, sharing the same complexity

as the marginal, where we compute the conditional probability P (Q = q | E = e) of a subset of
r.v.s Q ⊂ X conditioned on partial evidence E and Z = X \ (E ∪Q).

To be able to tractably compute the above queries, one usually wants the PC to have specific structural
properties that guarantee a linear time complexity for marginal and conditional queries. A product
unit is said to be decomposable when the scopes of its children are disjoint, and a PC is decomposable
if all its product units are decomposable. Instead, a sum unit is smooth if all its children have identical
scopes, and a PC is smooth (or complete (Poon & Domingos, 2011)) if all its sum units are smooth.
For instance, the NB model considered in our work is implemented as a smooth and decomposable
PC.

A PC that is smooth and decomposable can tractably compute marginals and conditional queries (one
can prove that these are necessary and sufficient conditions for tractable computations of these queries),
and we call such SPNs valid. A generalization of decomposability, namely consistency, is necessary
to tractably compute maximum a posteriori queries of the form argmaxq P (Q = q,E = e).

PCs have an interpretation in terms of latent variable models (Peharz et al., 2016), and in particular
it is possible to augment PCs with specialized input units that mirror the latent variables of the
associated graphical model. However, it is not immediate at all to see that valid SPNs allow a
tractable computation of the posterior probabilities for the sum units, and we indeed refer the reader
to works in the literature that formally prove it. As stated in (Poon & Domingos, 2011; Peharz et al.,
2016), inference in unconstrained SPNs is generally intractable, but when an SPN is valid efficient
inference is possible. Concretely, one can get all the required statistics for computing the posterior
probabilities hj of any sum unit j in a single backpropagation pass across the SPN (Equation 22 of
Peharz et al. (2016)). The posterior computation involves the use of tractable quantities and hence
stays tractable. Of course, the computational costs depend on the size of the SPN and might be
impractical if the SPN is too large, but we still consider it tractable in terms of asymptotic time
complexity.

14

Published as a conference paper at ICLR 2024

A.2 THE SWITCHING PARENT DECOMPOSITION

The decomposition used in Equation 4, known as “Switching Parent” (SP) in the literature (Bacciu
et al., 2010), was formally introduced in (Saul & Jordan, 1999) in the context of mixed memory
Markov models. We report the original formulation below. Let it ∈ {1, . . . , n} denote a discrete
random variable that can take on n possible values. Then we write the SP decomposition as

P (it | it−1, . . . , it−k) =

n∑
µ=1

P (µ)Pµ(it | it−µ). (6)

The connection to Equation 4 emerges by observing the following correspondences: P (µ) is treated
as a constant 1

|chn| , P
µ(it = i | it−µ = j) implements the transition conditional probability table,

which we model in a “soft” version (see also (Bacciu et al., 2020a)) as θℓhℓ−1
u , and the conditional

variables on the left-hand-side of the equation intuitively correspond to the information hℓ−1
chn

we use
to parametrize the prior Pπℓ(Qℓ

v). Moreover, we assume full stationarity and ignore the position of
the child in the parametrization, meaning we use the same transition weights θℓ for all neighbors;
this is crucial since there is usually no consistent ordering of the vertices across different graphs, and
consequently between the children in the SPN hierarchy.

A.3 PROOF THAT EQUATION 4 IS A VALID PARAMETRIZATION

To show that the computation πℓ+1
n′ outputs a valid parametrization for the categorical distribution

Pπℓ+1

n′
(Qℓ+1

n′), it is sufficient to show that the parameters sum to 1:

C∑
i=1

πℓ+1
n′ (i) =

C∑
i=1

fθℓ+1(hℓ
1, ...,h

ℓ
|chn′ |)i =

C∑
i=1

1

|chn′ |
∑

n∈chn′

C∑
k=1

θℓ+1
ki hℓ

n(k)

=
1

|chn′ |
∑

n∈chn′

C∑
k=1

C∑
i=1

θℓ+1
ki hℓ

n(k)

=
1

|chn′ |
∑

n∈chn′

C∑
k=1

hℓ
n(k) =

1

|chn′ |
∑

n∈chn′

1 = 1, (7)

where we used the fact that the rows of θℓ and the posterior weights hℓ−1
u are normalized.

15

Published as a conference paper at ICLR 2024

A.4 DEALING WITH MORE GENERAL SPN TEMPLATES

In Section 4 we have introduced the general framework of GSPN for arbitrary SPNs, but the explicit
implementation of πℓ

n,j = fθℓ
j
(hℓ−1

n1,j
, . . . ,hℓ−1

nT ,j) and the computation of the posterior probabilities

hℓ−1
ni,j

has only been shown for the Naïve Bayes model (Section 4.1) with a single sum unit j in its
corresponding SPN template. Despite that the computation of the posterior depends on the specific
template used, we can still provide guidelines on how to use GSPN in the general case.

Consider any valid SPN template with S sum units, and w.l.o.g. we can assume that all sum units
have C different weights, i.e., each sum unit implements a mixture of C distributions. Given a
computational tree, we consider an internal node n with T children n1, . . . , nT , and we recall
that all SPNs associated with the nodes of the tree share the same template (although a different
parametrization). Therefore, there is a one-to-one correspondence between unit j of node ni, ∀i ∈
{1, . . . , T}, at level ℓ − 1 and unit j of its parent n at level ℓ, meaning that the parametrization
πℓ
n,j ∈ RC can be computed using a permutation invariant function such as

πℓ
n,j = fθℓ

j
(hℓ−1

n1,j
, . . . ,hℓ−1

nT ,j) =
1

T

T∑
i=1

θℓ
jh

ℓ−1
ni,j

∀j ∈ {1, . . . , S} (8)

that acts similarly to the neighborhood aggregation function of DGNs.

All that remains is to describe how we compute the posterior probabilities hℓ
n,j ∈ RC for all sum

units j ∈ {1, . . . , S} of a generic node n at level ℓ (now that the reader is familiar with the notation,
we can abstract from the superscript ℓ since it can be determined from n). As discussed in Section
A.1, SPNs have an interpretation in terms of latent variable models, so we can think of a sum unit j as
a latent random variable and we can augment the SPN to make this connection explicit (Peharz et al.,
2016). Whenever the SPN is valid, the computation of the posterior probabilities of all sum units is
tractable and it requires just one backpropagation pass across the augmented SPN (see Equation 22
of Peharz et al. (2016)). This makes it possible to tractably compute the posterior probabilities of
the sum units that will be used to parametrize the corresponding sum units of the parent node in the
computational tree. Below we provide a pseudocode summarizing the inference process for a generic
GSPN, but we remind the reader that the message passing procedure is equivalent to that of DGNs.

Algorithm 1 GSPN Inference on a Single Computational Tree
Input: Computational tree with T nodes and height L, valid SPN template with S sum units

and C weights for each sum unit.
Output: Set of posterior probabilities {hn,j ∀n ∈ {1, . . . , T},∀j ∈ {1, . . . , S}}

1: for ℓ = 0, . . . , L do
2: for all nodes n at height ℓ do
3: for all sum units j of SPN of node n do:
4: if ℓ > 0 then:
5: Compute πn,j (Eq. 8) ▷ message passing, parallelized
6: else
7: Use learned πn,j ▷ leaf node, no children
8: end if
9: Compute and collect hn,j (Equation 22 (Peharz et al., 2016)) ▷ computation reused

across sum units
10: end for
11: end for
12: end for
13: return {hn,j ∀n ∈ {1, . . . , T},∀j ∈ {1, . . . , S}}

On a separate note, when it comes to handling missing data, it is sufficient to marginalize out the
missing evidence by substituting a 1 in place of the missing input units. This allows us to compute
any marginal or conditional query (including the computation of the posterior probabilities) in the
presence of partial evidence.

16

Published as a conference paper at ICLR 2024

A.5 PROBABILISTIC SHORTCUT CONNECTIONS

In GSPNU , we also propose probabilistic shortcut connections to set the shared parameters ωL as a
convex combination of those at height {ω0, . . . ,ωL−1}. For instance, for a continuous r.v. X̃L

n of
the root node n, a modeling choice would be to take the mean of the L− 1 Gaussians implementing
the distributions, leveraging known statistical properties to obtain

PωL(X̃L
n | QL

n = i)
def
= N

(
· ;

L−1∑
ℓ=1

µℓ
i

L− 1
,

L−1∑
ℓ=1

(σℓ
i)

2

(L− 1)2

)
, ωℓ = (µℓ

1, σ
ℓ
1, . . . , µ

ℓ
C , σ

ℓ
C). (9)

Instead, when the r.v. is categorical, we consider a newly parametrized Categorical distribution:

PωL(X̃L
n | QL

n = i)
def
= Cat

(
· ;

L−1∑
ℓ=1

ωℓ
i

L− 1

)
,ωℓ

i ∈ C-1-probability simplex ∀i ∈ [1, C]. (10)

Akin to residual connections in neural networks (Srivastava et al., 2015; He et al., 2016), these shortcut
connections mitigate the vanishing gradient and the degradation (accuracy saturation) problem, that
is, the problem of more layers leading to higher training error. In the experiments, we treat the choice
of using residual connections as a hyper-parameter and postpone more complex design choices, such
as weighted residual connections, to future work.

A.6 HYPER-PARAMETERS TRIED DURING MODEL SELECTION

The following tables report the hyper-parameters tried during model selection.

Embedding Construction

C / latent dim # layers learning rate batch size # epochs ES patience avg emission params
across layers

GAE 32, 128, 256 2,3,5 0,1, 0.01 1024 100 50
DGI 32, 128, 256 2,3,5 0,1, 0.01 1024 100 50
GSPN 5,10,20,40 5,10,20 0.1 1024 100 50 true, false

Graph Predictor

global pooling w. decay (MLP)
dropout (GIN)

MLP 8,16,32,64 1 0.01 1024 1000 500 sum, mean 0, 0.0001
GIN 32,256,512 2,5 0.01, 0.0001 8,32,128 1000 500 sum, mean 0., 0.5

Table 4: Scarce supervision experiments. We found that too large batch sizes caused great instability
in GIN’s training, so we tried different, smaller options. DGI and GAE used the Atom Embedder of
size 100 provided by OGBG, whereas GSPN deals with categorical attributes through a Categorical
distribution. The range of hyper-parameters tried for GAE and DGI follows previous works.

C # layers learning rate batch size # epochs ES patience avg emission params
across layers

GAUSSIAN - - - - - - -
GMM 5,15,20,40 1 0,1, 0.01 32 200 50 -
GSPN 5,15,20,40 2 0,1, 0.01 32 200 50 false

Table 5: Missing data experiments. Gaussian mixtures of distributions are initialized with k-means
on the first batch of the training set. The maximum variance at initialization is set to 10.

17

Published as a conference paper at ICLR 2024

Embedding Construction

C / latent dim # layers learning rate batch size # epochs ES patience avg emission params
across layers

GSPNU 5,10,20 5, 10, 15, 20 0,1 32 500 50 true, false

Graph Predictor
global pooling

MLP 8, 16, 32, 128 1 0.001 32 1000 200 sum, mean

GSPNS
C=5,10,20
Cg=32,128 1 0.001 32 1000 200 sum, mean

Table 6: Graph classification experiments. The emission distribution is categorical for NCI1 and
univariate Gaussian otherwise. Gaussian mixtures of distributions to be learned (social datasets) are
initialized using k-means on the training set.

A.7 DATASETS STATISTICS

Below we report the set of datasets used in our work together with their characteristics.

graphs # vertices # edges # vertex attributes task metric
benzene 527984 12.00 64.94 1 categorical + 6 cont. Regression(1) MAE/NLL
ethanol 455093 9.00 36.00 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
naphthalene 226256 18.00 127.37 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
salicylic acid 220232 16.00 104.13 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
toluene 342791 15.00 96.15 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
malonaldehyde 893238 9.00 36.00 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
uracil 133770 12.00 64.44 4 (1 cat.) + 6 cont. Regression(1) MAE/NLL

ogbg-molpcba 437929 26.0 28.1 83 (9 cat.) Multi-Label
Classification(128) AP

NCI1 4110 29.87 32.30 37 (1 cat.) Classification(2) ACC
REDDIT-B 2000 429.63 497.75 1 cont. Classification(2) ACC
REDDIT-5K 5000 508.52 594.87 1 cont. Classification(5) ACC
COLLAB 5000 74.49 2457.78 1 cont. Classification(3) ACC

Table 7: Dataset statistics.

A.8 GRAPH CLASSIFICATION EXPERIMENTS: ABLATION AND HYPER-PARAMETER STUDIES

Ablation Study The following table shows the performance of GSPNU+DS when removing the
use shortcut connections from the hyper-parameter space. The results show that using shortcut
connections consistently leads to better mean classification accuracy on these tasks.

NCI1 REDDIT-B REDDIT-5K COLLAB

GSPNU+DS (no shortcut) 76.5± 1.9 88.9± 3.9 52.3± 5.2 75.7± 2.6
GSPNU+DS 76.6± 1.9 90.5± 1.1 55.3± 2.0 78.1± 2.5

Table 8: Impact of shortcut connections on the creation of unsupervised embeddings for graph
classification.

Impact of Hyper-parameters Figure 4 shows how the validation performance of GSPNS changes
for specific hyper-parameters C and CG as we add more layers. Please refer to the main text for a
discussion.

A.9 SCARCE SUPERVISION EXPERIMENTS: ADDITIONAL VISUALIZATIONS

Figure 5 provides a few, randomly picked examples of molecules from the ogbg-molpcba dataset,
modified to show the relative change in pseudo log-likelihood of some of the vertices according to
GSPN.

18

Published as a conference paper at ICLR 2024

6 8 10 12 14 16 18 20
number of layers

76

77

78

79

80

81

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

6 8 10 12 14 16 18 20
number of layers

73

74

75

76

77

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128
C
20
40

6 8 10 12 14 16 18 20
number of layers

65

70

75

80

85

90

95

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

6 8 10 12 14 16 18 20
number of layers

25

30

35

40

45

50

55

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

Figure 4: Impact of GSPNS layers, C and CG on NCI1 (top left), COLLAB (top right), REDDIT-
BINARY (bottom left), and REDDIT-5K (bottom right) performances, averaged across all configura-
tions in the 10 outer folds.

C N C C O N C C Cl C C C C Cl C O C C C C C S
SMILES: CN(CC(=O)Nc1c(Cl)cccc1Cl)C(=O)Cc1cccs1

lo
g

 a
fte

r c
ha

ng
e

0.00

0.25

0.50

0.75

1.00

CCNCCCOCCCCCCCCCCCOCCCCCCCCCC
SMILES: CCN1CCC(O)(/C=C/c2ccc(C)cc2)C(C(=O)/C=C/c2ccc(C)cc2)C1

lo
g

 a
fte

r c
ha

ng
e

3

2

1

0

OCCCCNCCCCCCCCCCCCCCOOCCCCCClCC
SMILES: O=C(CCc1nc(-c2ccccc2)c(-c2ccccc2)o1)OCc1ccc(Cl)cc1

lo
g

 a
fte

r c
ha

ng
e

2

0

2

C O C O C S C C C N C O C S C C C C
SMILES: COC(=O)c1sccc1NC(=O)c1sccc1C

lo
g

 a
fte

r c
ha

ng
e

0

1

2

3

4

Figure 5: Additional visualizations of randomly picked molecules from ogbg-molpcba for a specific
GSPN configuration. The heatmap shows pseudo log-likelihood variations in the vertices when
operating specific atomic changes (from left to right). Nearby atoms are affected by the change as
well, and this allows us to understand which groups are more common, or make more sense, than
others.

19

Published as a conference paper at ICLR 2024

A.10 TIME COMPARISON

Table 9 shows the time comparison of forward and backward passes on a batch of size 32 between
GSPN and GIN. We used 10 layers for both architectures and adapted the hidden dimensions to
obtain a comparable number of parameters. Despite the GIN’s implementation being more sample
efficient than GSPN, the table confirms our claims on the asymptotic complexity of GSPN.

parameters forward time (ms) backward time (ms)
GSPN GIN GSPN GIN GSPN GIN

NCI1 36876 36765 30 12 17 14
REDDIT-B 34940 35289 35 14 24 15
REDDIT-5K 34940 35289 35 14 22 15
COLLAB 34940 35289 36 14 21 15

Table 9: Time comparison between GSPN and GIN on graph classification tasks.

20

	Introduction
	Related Work
	Background
	GSPN: Learning Tractable Probabilistic Graph Representations
	Naive Bayes GSPNs
	Modeling Missing Data
	A Global Readout for Supervised Learning
	Limitations and Future Directions

	Experiments
	Results
	Conclusions
	Appendix
	High-level Definitions of Probabilistic Circuits
	The Switching Parent decomposition
	Proof that Equation 4 is a valid parametrization
	Dealing with more general SPN templates
	Probabilistic Shortcut Connections
	Hyper-parameters tried during model selection
	Datasets Statistics
	Graph Classification Experiments: Ablation and Hyper-parameter Studies
	Scarce Supervision Experiments: Additional Visualizations
	Time Comparison

