
Published as a conference paper at ICLR 2024

A APPENDIX

We complement the discussion with theoretical and practical considerations that facilitate understand-
ing and reproducibility.

A.1 HIGH-LEVEL DEFINITIONS OF PROBABILISTIC CIRCUITS

We introduce basic concepts of PCs to ease the understanding of readers that are less familiar with
this topic.

A probabilistic circuit (Choi et al., 2020) over a set of r.v.s X = (A1, . . . , Ad) is uniquely determined
by its circuit structure and computes a (possibly unnormalized) distribution P (X). The circuit
structure has the form of a rooted DAG, which comprises a set of computational units. In particular,
input units are those for which the set of incoming edges is empty (i.e., no children), whereas the
output unit has no outgoing edges.

The scope of a PC is a function that associates each unit of the circuit with a subset of X . For each
non-input unit, the scope of the unit is the union of the scope of the children. It follows that the scope
of the root is X .

Each input (or distribution) unit encodes a parametric non-negative function, e.g., a Gaussian or
Categorical distribution. A product unit represents the joint, fully factorized distribution between the
distributions encoded by its children. Finally, a sum unit defines a weighted sum of the children’s
distributions, i.e., a mixture model when the children encode proper distributions. The set of
parameters of a probabilistic circuit is given by the union of the parameters of all input and sum units
in the circuit.

There are different kinds of probabilistic queries that a PC can answer. The first is the complete
evidence query, corresponding to the computation of P (X = x). A single feedforward pass from the
input units to the output unit is sufficient to compute this query. Another important class of queries is
that of marginals, where we assume that not all r.v.s are fully observed, e.g., missing values. Given
partial evidence E ⊂ X and the unobserved variables Z = X \E, a marginal query is defined as
P (E = e) =

∫
p(e, z)dz. Finally, we mention the conditional query, sharing the same complexity

as the marginal, where we compute the conditional probability P (Q = q | E = e) of a subset of
r.v.s Q ⊂ X conditioned on partial evidence E and Z = X \ (E ∪Q).

To be able to tractably compute the above queries, one usually wants the PC to have specific structural
properties that guarantee a linear time complexity for marginal and conditional queries. A product
unit is said to be decomposable when the scopes of its children are disjoint, and a PC is decomposable
if all its product units are decomposable. Instead, a sum unit is smooth if all its children have identical
scopes, and a PC is smooth (or complete (Poon & Domingos, 2011)) if all its sum units are smooth.
For instance, the NB model considered in our work is implemented as a smooth and decomposable
PC.

A PC that is smooth and decomposable can tractably compute marginals and conditional queries (one
can prove that these are necessary and sufficient conditions for tractable computations of these queries),
and we call such SPNs valid. A generalization of decomposability, namely consistency, is necessary
to tractably compute maximum a posteriori queries of the form argmaxq P (Q = q,E = e).

PCs have an interpretation in terms of latent variable models (Peharz et al., 2016), and in particular
it is possible to augment PCs with specialized input units that mirror the latent variables of the
associated graphical model. However, it is not immediate at all to see that valid SPNs allow a
tractable computation of the posterior probabilities for the sum units, and we indeed refer the reader
to works in the literature that formally prove it. As stated in (Poon & Domingos, 2011; Peharz et al.,
2016), inference in unconstrained SPNs is generally intractable, but when an SPN is valid efficient
inference is possible. Concretely, one can get all the required statistics for computing the posterior
probabilities hj of any sum unit j in a single backpropagation pass across the SPN (Equation 22 of
Peharz et al. (2016)). The posterior computation involves the use of tractable quantities and hence
stays tractable. Of course, the computational costs depend on the size of the SPN and might be
impractical if the SPN is too large, but we still consider it tractable in terms of asymptotic time
complexity.

14

Published as a conference paper at ICLR 2024

A.2 THE SWITCHING PARENT DECOMPOSITION

The decomposition used in Equation 4, known as “Switching Parent” (SP) in the literature (Bacciu
et al., 2010), was formally introduced in (Saul & Jordan, 1999) in the context of mixed memory
Markov models. We report the original formulation below. Let it ∈ {1, . . . , n} denote a discrete
random variable that can take on n possible values. Then we write the SP decomposition as

P (it | it−1, . . . , it−k) =

n∑
µ=1

P (µ)Pµ(it | it−µ). (6)

The connection to Equation 4 emerges by observing the following correspondences: P (µ) is treated
as a constant 1

|chn| , P
µ(it = i | it−µ = j) implements the transition conditional probability table,

which we model in a “soft” version (see also (Bacciu et al., 2020a)) as θℓhℓ−1
u , and the conditional

variables on the left-hand-side of the equation intuitively correspond to the information hℓ−1
chn

we use
to parametrize the prior Pπℓ(Qℓ

v). Moreover, we assume full stationarity and ignore the position of
the child in the parametrization, meaning we use the same transition weights θℓ for all neighbors;
this is crucial since there is usually no consistent ordering of the vertices across different graphs, and
consequently between the children in the SPN hierarchy.

A.3 PROOF THAT EQUATION 4 IS A VALID PARAMETRIZATION

To show that the computation πℓ+1
n′ outputs a valid parametrization for the categorical distribution

Pπℓ+1

n′
(Qℓ+1

n′), it is sufficient to show that the parameters sum to 1:

C∑
i=1

πℓ+1
n′ (i) =

C∑
i=1

fθℓ+1(hℓ
1, ...,h

ℓ
|chn′ |)i =

C∑
i=1

1

|chn′ |
∑

n∈chn′

C∑
k=1

θℓ+1
ki hℓ

n(k)

=
1

|chn′ |
∑

n∈chn′

C∑
k=1

C∑
i=1

θℓ+1
ki hℓ

n(k)

=
1

|chn′ |
∑

n∈chn′

C∑
k=1

hℓ
n(k) =

1

|chn′ |
∑

n∈chn′

1 = 1, (7)

where we used the fact that the rows of θℓ and the posterior weights hℓ−1
u are normalized.

15

Published as a conference paper at ICLR 2024

A.4 DEALING WITH MORE GENERAL SPN TEMPLATES

In Section 4 we have introduced the general framework of GSPN for arbitrary SPNs, but the explicit
implementation of πℓ

n,j = fθℓ
j
(hℓ−1

n1,j
, . . . ,hℓ−1

nT ,j) and the computation of the posterior probabilities

hℓ−1
ni,j

has only been shown for the Naïve Bayes model (Section 4.1) with a single sum unit j in its
corresponding SPN template. Despite that the computation of the posterior depends on the specific
template used, we can still provide guidelines on how to use GSPN in the general case.

Consider any valid SPN template with S sum units, and w.l.o.g. we can assume that all sum units
have C different weights, i.e., each sum unit implements a mixture of C distributions. Given a
computational tree, we consider an internal node n with T children n1, . . . , nT , and we recall
that all SPNs associated with the nodes of the tree share the same template (although a different
parametrization). Therefore, there is a one-to-one correspondence between unit j of node ni, ∀i ∈
{1, . . . , T}, at level ℓ − 1 and unit j of its parent n at level ℓ, meaning that the parametrization
πℓ
n,j ∈ RC can be computed using a permutation invariant function such as

πℓ
n,j = fθℓ

j
(hℓ−1

n1,j
, . . . ,hℓ−1

nT ,j) =
1

T

T∑
i=1

θℓ
jh

ℓ−1
ni,j

∀j ∈ {1, . . . , S} (8)

that acts similarly to the neighborhood aggregation function of DGNs.

All that remains is to describe how we compute the posterior probabilities hℓ
n,j ∈ RC for all sum

units j ∈ {1, . . . , S} of a generic node n at level ℓ (now that the reader is familiar with the notation,
we can abstract from the superscript ℓ since it can be determined from n). As discussed in Section
A.1, SPNs have an interpretation in terms of latent variable models, so we can think of a sum unit j as
a latent random variable and we can augment the SPN to make this connection explicit (Peharz et al.,
2016). Whenever the SPN is valid, the computation of the posterior probabilities of all sum units is
tractable and it requires just one backpropagation pass across the augmented SPN (see Equation 22
of Peharz et al. (2016)). This makes it possible to tractably compute the posterior probabilities of
the sum units that will be used to parametrize the corresponding sum units of the parent node in the
computational tree. Below we provide a pseudocode summarizing the inference process for a generic
GSPN, but we remind the reader that the message passing procedure is equivalent to that of DGNs.

Algorithm 1 GSPN Inference on a Single Computational Tree
Input: Computational tree with T nodes and height L, valid SPN template with S sum units

and C weights for each sum unit.
Output: Set of posterior probabilities {hn,j ∀n ∈ {1, . . . , T},∀j ∈ {1, . . . , S}}

1: for ℓ = 0, . . . , L do
2: for all nodes n at height ℓ do
3: for all sum units j of SPN of node n do:
4: if ℓ > 0 then:
5: Compute πn,j (Eq. 8) ▷ message passing, parallelized
6: else
7: Use learned πn,j ▷ leaf node, no children
8: end if
9: Compute and collect hn,j (Equation 22 (Peharz et al., 2016)) ▷ computation reused

across sum units
10: end for
11: end for
12: end for
13: return {hn,j ∀n ∈ {1, . . . , T},∀j ∈ {1, . . . , S}}

On a separate note, when it comes to handling missing data, it is sufficient to marginalize out the
missing evidence by substituting a 1 in place of the missing input units. This allows us to compute
any marginal or conditional query (including the computation of the posterior probabilities) in the
presence of partial evidence.

16

Published as a conference paper at ICLR 2024

A.5 PROBABILISTIC SHORTCUT CONNECTIONS

In GSPNU , we also propose probabilistic shortcut connections to set the shared parameters ωL as a
convex combination of those at height {ω0, . . . ,ωL−1}. For instance, for a continuous r.v. X̃L

n of
the root node n, a modeling choice would be to take the mean of the L− 1 Gaussians implementing
the distributions, leveraging known statistical properties to obtain

PωL(X̃L
n | QL

n = i)
def
= N

(
· ;

L−1∑
ℓ=1

µℓ
i

L− 1
,

L−1∑
ℓ=1

(σℓ
i)

2

(L− 1)2

)
, ωℓ = (µℓ

1, σ
ℓ
1, . . . , µ

ℓ
C , σ

ℓ
C). (9)

Instead, when the r.v. is categorical, we consider a newly parametrized Categorical distribution:

PωL(X̃L
n | QL

n = i)
def
= Cat

(
· ;

L−1∑
ℓ=1

ωℓ
i

L− 1

)
,ωℓ

i ∈ C-1-probability simplex ∀i ∈ [1, C]. (10)

Akin to residual connections in neural networks (Srivastava et al., 2015; He et al., 2016), these shortcut
connections mitigate the vanishing gradient and the degradation (accuracy saturation) problem, that
is, the problem of more layers leading to higher training error. In the experiments, we treat the choice
of using residual connections as a hyper-parameter and postpone more complex design choices, such
as weighted residual connections, to future work.

A.6 HYPER-PARAMETERS TRIED DURING MODEL SELECTION

The following tables report the hyper-parameters tried during model selection.

Embedding Construction

C / latent dim # layers learning rate batch size # epochs ES patience avg emission params
across layers

GAE 32, 128, 256 2,3,5 0,1, 0.01 1024 100 50
DGI 32, 128, 256 2,3,5 0,1, 0.01 1024 100 50
GSPN 5,10,20,40 5,10,20 0.1 1024 100 50 true, false

Graph Predictor

global pooling w. decay (MLP)
dropout (GIN)

MLP 8,16,32,64 1 0.01 1024 1000 500 sum, mean 0, 0.0001
GIN 32,256,512 2,5 0.01, 0.0001 8,32,128 1000 500 sum, mean 0., 0.5

Table 4: Scarce supervision experiments. We found that too large batch sizes caused great instability
in GIN’s training, so we tried different, smaller options. DGI and GAE used the Atom Embedder of
size 100 provided by OGBG, whereas GSPN deals with categorical attributes through a Categorical
distribution. The range of hyper-parameters tried for GAE and DGI follows previous works.

C # layers learning rate batch size # epochs ES patience avg emission params
across layers

GAUSSIAN - - - - - - -
GMM 5,15,20,40 1 0,1, 0.01 32 200 50 -
GSPN 5,15,20,40 2 0,1, 0.01 32 200 50 false

Table 5: Missing data experiments. Gaussian mixtures of distributions are initialized with k-means
on the first batch of the training set. The maximum variance at initialization is set to 10.

17

Published as a conference paper at ICLR 2024

Embedding Construction

C / latent dim # layers learning rate batch size # epochs ES patience avg emission params
across layers

GSPNU 5,10,20 5, 10, 15, 20 0,1 32 500 50 true, false

Graph Predictor
global pooling

MLP 8, 16, 32, 128 1 0.001 32 1000 200 sum, mean

GSPNS
C=5,10,20
Cg=32,128 1 0.001 32 1000 200 sum, mean

Table 6: Graph classification experiments. The emission distribution is categorical for NCI1 and
univariate Gaussian otherwise. Gaussian mixtures of distributions to be learned (social datasets) are
initialized using k-means on the training set.

A.7 DATASETS STATISTICS

Below we report the set of datasets used in our work together with their characteristics.

graphs # vertices # edges # vertex attributes task metric
benzene 527984 12.00 64.94 1 categorical + 6 cont. Regression(1) MAE/NLL
ethanol 455093 9.00 36.00 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
naphthalene 226256 18.00 127.37 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
salicylic acid 220232 16.00 104.13 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
toluene 342791 15.00 96.15 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
malonaldehyde 893238 9.00 36.00 3 (1 cat.) + 6 cont. Regression(1) MAE/NLL
uracil 133770 12.00 64.44 4 (1 cat.) + 6 cont. Regression(1) MAE/NLL

ogbg-molpcba 437929 26.0 28.1 83 (9 cat.) Multi-Label
Classification(128) AP

NCI1 4110 29.87 32.30 37 (1 cat.) Classification(2) ACC
REDDIT-B 2000 429.63 497.75 1 cont. Classification(2) ACC
REDDIT-5K 5000 508.52 594.87 1 cont. Classification(5) ACC
COLLAB 5000 74.49 2457.78 1 cont. Classification(3) ACC

Table 7: Dataset statistics.

A.8 GRAPH CLASSIFICATION EXPERIMENTS: ABLATION AND HYPER-PARAMETER STUDIES

Ablation Study The following table shows the performance of GSPNU+DS when removing the
use shortcut connections from the hyper-parameter space. The results show that using shortcut
connections consistently leads to better mean classification accuracy on these tasks.

NCI1 REDDIT-B REDDIT-5K COLLAB

GSPNU+DS (no shortcut) 76.5± 1.9 88.9± 3.9 52.3± 5.2 75.7± 2.6
GSPNU+DS 76.6± 1.9 90.5± 1.1 55.3± 2.0 78.1± 2.5

Table 8: Impact of shortcut connections on the creation of unsupervised embeddings for graph
classification.

Impact of Hyper-parameters Figure 4 shows how the validation performance of GSPNS changes
for specific hyper-parameters C and CG as we add more layers. Please refer to the main text for a
discussion.

A.9 SCARCE SUPERVISION EXPERIMENTS: ADDITIONAL VISUALIZATIONS

Figure 5 provides a few, randomly picked examples of molecules from the ogbg-molpcba dataset,
modified to show the relative change in pseudo log-likelihood of some of the vertices according to
GSPN.

18

Published as a conference paper at ICLR 2024

6 8 10 12 14 16 18 20
number of layers

76

77

78

79

80

81

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

6 8 10 12 14 16 18 20
number of layers

73

74

75

76

77

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128
C
20
40

6 8 10 12 14 16 18 20
number of layers

65

70

75

80

85

90

95

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

6 8 10 12 14 16 18 20
number of layers

25

30

35

40

45

50

55

va
lid

at
io

n
ac

cu
ra

cy

CG

32
128

C
20
40

Figure 4: Impact of GSPNS layers, C and CG on NCI1 (top left), COLLAB (top right), REDDIT-
BINARY (bottom left), and REDDIT-5K (bottom right) performances, averaged across all configura-
tions in the 10 outer folds.

C N C C O N C C Cl C C C C Cl C O C C C C C S
SMILES: CN(CC(=O)Nc1c(Cl)cccc1Cl)C(=O)Cc1cccs1

lo
g

 a
fte

r c
ha

ng
e

0.00

0.25

0.50

0.75

1.00

CCNCCCOCCCCCCCCCCCOCCCCCCCCCC
SMILES: CCN1CCC(O)(/C=C/c2ccc(C)cc2)C(C(=O)/C=C/c2ccc(C)cc2)C1

lo
g

 a
fte

r c
ha

ng
e

3

2

1

0

OCCCCNCCCCCCCCCCCCCCOOCCCCCClCC
SMILES: O=C(CCc1nc(-c2ccccc2)c(-c2ccccc2)o1)OCc1ccc(Cl)cc1

lo
g

 a
fte

r c
ha

ng
e

2

0

2

C O C O C S C C C N C O C S C C C C
SMILES: COC(=O)c1sccc1NC(=O)c1sccc1C

lo
g

 a
fte

r c
ha

ng
e

0

1

2

3

4

Figure 5: Additional visualizations of randomly picked molecules from ogbg-molpcba for a specific
GSPN configuration. The heatmap shows pseudo log-likelihood variations in the vertices when
operating specific atomic changes (from left to right). Nearby atoms are affected by the change as
well, and this allows us to understand which groups are more common, or make more sense, than
others.

19

Published as a conference paper at ICLR 2024

A.10 TIME COMPARISON

Table 9 shows the time comparison of forward and backward passes on a batch of size 32 between
GSPN and GIN. We used 10 layers for both architectures and adapted the hidden dimensions to
obtain a comparable number of parameters. Despite the GIN’s implementation being more sample
efficient than GSPN, the table confirms our claims on the asymptotic complexity of GSPN.

parameters forward time (ms) backward time (ms)
GSPN GIN GSPN GIN GSPN GIN

NCI1 36876 36765 30 12 17 14
REDDIT-B 34940 35289 35 14 24 15
REDDIT-5K 34940 35289 35 14 22 15
COLLAB 34940 35289 36 14 21 15

Table 9: Time comparison between GSPN and GIN on graph classification tasks.

20

