
A Further discussions

On Primal (parameter space) vs. Dual (feature space) dynamics: Although the cross-entropy
loss is convex, it does not admit an analytical solution, even in a simple logistic regression [103].
Importantly, it also does not have a finite solution when the data is linearly separable [6] (which is
the case in high dimensions [27]). As such, our study is concerned with characterizing the solutions
that the training algorithm converges to. A dual optimization approach enables us to describe these
solutions in terms of contributions of the training examples [43]. While primal and dual dynamics
are not guaranteed to match, the solution they converge to is guaranteed to match [21], and that is
what our theory builds upon.

For further intuition, we provide a simple experiment in app C, directly visualizing the primal vs. the
dual dynamics as well as the effect of the proposed spectral decoupling method.

The intuition behind Spectral Decoupling (SD): Consider a training datapoint x in the middle of
the training process. Intuitively, the model has two options for decreasing the loss of this example:

1. Get more confident on a feature that has been learned already by other examples. or,

2. Learn a new feature.

SD, a simple L2 penalty on the output of the work, would favor (2) over (1). The reason is that
(2) does not make the network over-confident on previously learned examples, while (1) results in
over-confident predictions. Hence, SD encourages learning more features by penalizing confidence.
Our principal novel contribution is to characterize this process formally and to theoretically and
empirically demonstrate its effectiveness.

From another perspective, here we describe how one can arrive at Spectral Decoupling. From Thm.
2, we know that Gradient Starvation happens because of the coupling between features (equivalently
alphas). We notice that in Eq. 9, if we get rid of S2, then the alphas are decoupled. To get rid of
S2 , one can see that instead of ||θ||2 as the regularizer, we should have ||SV Tθ||2. Luckily, this is
exactly equal to ||ŷ2||, since ŷ = Φθ = UV Tθ. We would like to highlight that ||SV Tθ||2 as the
regularizer means that different directions are penalized according to their strength. It means that we
suppress stronger directions more than others which would allow weaker directions to flourish.

Then why not use Squared-error loss for classification too? The biggest obstacle when using
squared-error loss for classification is how to select the target. For example, in a cats vs. dogs
classification task, not all cats have the same amount of "catty features". However, recent results favor
using squared-error loss for classification and show that models trained with squared-error loss are
more robust [46]. We conjecture that the improved robustness can be attributed to a lack of gradient
starvation.

On using NTK: Theoretical analysis of neural networks in their general form is challenging and
generally intractable. Neural Tangent Kernel (NTK) has been an important milestone that has
simplified theoretical analysis significantly and provides some mechanistic explanations that are
applicable in practice. Inevitably, it imposes a set of restrictions; mainly, NTK is only accurate in
the limit of large width. Therefore, the common practice is to provide the theoretical analysis in
simplified settings and validate the results empirically in more general cases (see, e.g. [45, 24, 101]).
In this work, we build on the same established practices: Our theories analytically study an NTK
linearized network; and we further validate our findings on several standard neural networks. In fact,
in all of our experiments, learning is done in the regular "rich" (non-NTK) regime, and we verify that
our proposed method, as identified analytically, mitigates learning limitations.

Future Directions: This work takes a step towards understanding the reliance of neural networks
upon spurious correlations and shortcuts in the dataset. We believe identifying this reliance in
sensitive applications is among the next steps for future research directions. That would have a
pronounced real-world impact as neural networks have started to be used in many critical applications.
As a recent example, we would like to point to an article by researchers at Cambridge [86] where
they study more than 300 papers on detecting whether a patient has COVID or not given their CT
Scans. According to the article, none of the papers were able to generalize from one hospital data
to another since the models learn to latch on to hospital-specific features. An essential first step is
to uncover such reliance and then to design methods such as our proposed spectral decoupling to
mitigate the problem.

18

B Experimental Details

B.1 A Simple Experiment Summarizing the Theory

Here, we provide a simple experiment to study the difference between the primal and dual form
dynamics. We also compare the learning dynamics in cases with and without Spectral Decoupling
(SD).

Recall that primal dynamics arise from the following optimization,

min
θ

(
1 · log [1 + exp (−Yŷ)] +

λ

2

∥∥∥θ̂∥∥∥2) ,
while the dual dynamics are the result of another optimization,

max
αi

H(α)− 1

2λ

∑
jq

αYΦ0Φ
T
0 YTαT

 .
Also recall that Spectral Decoupling suggests the following optimization,

min
θ

(
1 · log [1 + exp (−Yŷ)] +

λ

2
‖ŷ‖2

)
.

We conduct experiments on a simple toy classification with two datapoints for which the matrix U

of Eq. 15 is defined as, U =

(
0.8 −0.6
0.6 0.8

)
. The corresponding singular values S = [s1, s2 = 2]

where s1 ∈ {2, 3, 4, 5, 6}. According to Eq. 13, when S = [2, 2], the dynamics decouple while in
other cases starvation occurs. Fig. 5 shows the corresponding features of z1 and z2. It is evident that
by increasing the value of s1, the value of z∗1 increases while z∗2 decreases (starves). Fig. 5 (left)
also compares the difference between the primal and the dual dynamics. Note that although their
dynamics are different, they both share the same fixed points. Fig. 5 (right) also shows that Spectral
Decoupling (SD) indeed decouples the learning dynamics of z1 and z2 and hence increasing the
corresponding singular value of one does not affect the other.

Figure 5: An illustration of the learning dynamics for a simple 2D classification task. x-axis and y-axis
represent learning along features of z1 and z2, respectively. Each trajectory corresponds to a combination of
the corresponding singular values of s1 and s2. It is evident that by increasing the value of s1, the value of
z∗1 increases while z∗2 decreases (starves). (Left) compares the difference between the primal and the dual
dynamics. Note that although their dynamics are different, they both share the same fixed points. (Right) shows
that Spectral Decoupling (SD) indeed decouples the learning dynamics of z1 and z2 and hence increasing the
corresponding singular value of one does not affect the other.

B.2 Two-Moon Classification: Comparison with other regularization methods

We experiment the Two-moon classification example of the main paper with different regularization
techniques. The small margin between the two classes allows the network to achieve a negligible loss
by only learning to discriminate along the horizontal axis. However, both axes are relevant for the
data distribution, and the only reason why the second dimension is not picked up is the fact that the

19

training data allows the learning to explain the labels with only one feature, overlooking the other.
Fig. 6 reveals that common regularization strategies including Weight Decay, Dropout [95] and Batch
Normalization [49] do not help achieving a larger margin classifier. Unless states otherwise, all the
methods are trained with Full batch Gradient Descent with a learning rate of 1e− 2 and a momentum
of 0.9 for 10k iterations.

Figure 6: The effect of common regularization methods on a simple task of two-moon classification. It can be
seen that common practices of deep learning seem not to help with learning a curved decision boundary. The
acronym “lr” for the Adam optimizer refers to the learning rate. Shown decision boundaries are the average
over 10 runs in which datapoints and the model initialization parameters are sampled randomly. Here, only the
datapoints of one particular seed are plotted for visual clarity.

B.3 CIFAR classification

We use a four-layer convolutional network with ReLU non-linearity following the exact setup of
[72]. Sweeping λ from 0 to its optimal value results in a smooth transition from green to orange.
However, larger values of λ will hurt the IID test (zero perturbation) generalization. The value that
we cross-validate on is the average of IID and OOD generalization performance.

B.4 Colored MNIST with color bias

For the Colored MNIST task, we aggregate all the examples from both training environments. Table.
4 reports the hyper-parameters used for each method.

Method Layers Dim Weight decay LR Anneal steps Penalty coef
ERM 2 300 0.0 1e-4 0/2000 n/a
SD 2 300 0.0 1e-4 450/2000 2e-5
IRM 2 390 0.00110794568 0.00048985365 190/500 91257.18613115903

Table 4: Hyper-parameters used for the Colored-MNIST experiment. Hyper-parameters of IRM are obtained
from their released code. “Anneal steps” indicates the number of iterations done before applying the method.

More on Fig. 3. ERM captures the color feature and in the absence of any digit features (environment
4), the network’s accuracy is low, as is expected because of reverse color-label match at testing. More-
over, the ERM network is very confident in this environment (confidence is inversely proportional
to entropy). The SD network appears to capture the color feature too, with identical classification
accuracy in environment 4, but much lower confidence which indicates the other features it expects
to classify are absent. Consistent with this, in the case where both color and digit features are present
(environment 2), SD achieves significantly better performance than ERM which is fooled by the
flipped colors. This is again consistent with SD mitigating GS caused by the color feature onto the
digit shape features. Meanwhile, IRM appears to not capture the color feature altogether. Specifically,
when only the color is presented to a network trained with IRM, network predicts 50% accuracy

20

with low confidence meaning that IRM is indeed “invariant” to the color as its name suggests. We
note that further theoretical justifications are required to fully understand the underlying mechanisms
in learning with spurious correlations.

As a final remark, we highlight that, by design, this task assumes access to the test environment for
hyperparameter tuning for all the reported methods. This is not a valid assumption in general, and
hence the results should be only interpreted as a probe that shows that SD could provide an important
level of control over what features are learned.

The hyperparameter search has resulted in applying the SD at 450th step. We observe that 450th step
is the step at which the traditional (in-distribution) overfitting occurs. This suggests that one might be
able to tune hyperparameters without the need to monitor on the test set.

For all the experiments, we use PyTorch [80]. We also use NNGeometry [31] for computing NTK.

B.5 CelebA with gender bias: The experimental details

Figure 4 depicts the learning curves for this task with and without Spectral Decoupling. For the
CelebA experiment, we follow the same setup as in [89] and use their released code. We use Adam
optimizer for the Spectral Decoupling experiments with a learning rate of 1e− 4 and a batch size
of 128. As mentioned in the main text, for this experiment, we use a different variant of Spectral
Decoupling which also provably decouples the learning dynamics,

min
θ

1 ·
(

log [1 + exp (−Yŷ)] +
λ

2
‖ŷ − γ‖2

)
.

B.5.1 Hyper-parameters

We applied a hyper-parameter search on λ and γ for each of the classes separately. Therefore, a
total of four hyper-parameters are found. For class zero, λ0 = 0.088, γ0 = 0.44 and for class one,
λ1 = 0.012, γ1 = 2.5 are found to result in the best worst-group performance.

During the experiments, we found that for the CelebA dataset, classes are imbalanced: 10875
examples for class 0 and 1925 examples for class 1; meaning a ratio of 5.65. That is why we decided
to penalize examples of each class separately with different coefficients. We also found that penalizing
the outputs’ distance to different values γ0 and γ1 helps the generalization. As stated in lines 842-844,
the hyperparameter search results in the following values: 2.5 and 0.44.

B.6 Computational Resources

For the experiments and hyper-parameter search an approximate number of 800 GPU-hours has been
used. GPUs used for the experiments are NVIDIA-V100 mostly on internal cluster and partly on
public cloud clusters.

C Proofs of the Theories and Lemmas

C.1 Eq. 7 Legendre Transformation

Following [50], we derive the Legendre transformation of the Cross-Entropy (CE) loss function.
Here, we reiterate this transformation as following,

Lemma 2 (CE’s Legendre transformation, adapted from Eq. 46 of [50]). For a variational parameter
α ∈ [0, 1], the following linear lower bound holds for the cross-entropy loss function,

L(ω) := log
(
1 + e−ω

)
≥ H(α)− αω, (19)

in which ω := yŷ and H(α) is the Shannon’s binary entropy. The equality holds for the critical value
of α∗ = −∇ωL, i.e., at the maximum of r.h.s. with respect to α.

21

Proof. The Legendre transformation converts a function L(ω) to another function g(α) of conjugate
variables α, L(ω)→ g(α). The idea is to find the expression of the tangent line to L(ω) at ω0 which
is the first-order Taylor expansion of L(ω),

t(ω, ω0) = L(ω0) + (ω − ω0)∇ωL|ω=ω0
, (20)

where t(ω, ω0) is the tangent line. According to the Legendre transformation, the function L(ω) can
be written as a function of the intercepts of tangent lines (where ω = 0). Varying ω0 along the x-axis
provides us with a general equation, representing the intercept as a function of ω,

t(ω = 0, ω0 = ω) = L(ω)− ω∇ωL. (21)

The cross-entropy loss function can be rewritten as a soft-plus function,

L(ω) = − log σ(ω) = log
(
1 + e−ω

)
, (22)

in which ω := yŷ. Letting α := −∇ωL = σ(−ω) we have,

ω = log

(
1− α
α

)
, (23)

which allows us to re-write the expression for the intercepts as a function of α (denoted by g(α)),

g(α) = L(ω)− ω∇ωL (24)
= L(ω) + αω (25)
= −α logα− (1− α) log(1− α) (26)
= H(α), (27)

where H(α) is the binary entropy function.

Now, since L is convex, a tangent line is always a lower bound and therefore at its maximum it
touches the original function. Consequently, the original function can be recovered as follows,

L(ω) = max
0≤α≤1

H(α)− αω. (28)

Note that the lower bound in Eq. 19 is now a linear function of ω := yŷ but at the expense of an
additional maximization over the variational parameter α. An illustration of the lower bound is
depicted in Fig. 7. Also a comparison between the dual formulation of other common loss functions
is provided in Table. 5.

Latex size: 14

H(↵)
<latexit sha1_base64="gn3LhZw4Bs3Vn1lH8IEk7cKdCcU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhAiSNiNgh4DXnKMYB6SLKF3MkmGzMwuM7NCWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYcyZNp737aytb2xubed28rt7+weHhaPjpo4SRWiDRDxS7RA15UzShmGG03asKIqQ01Y4vpv5rSeqNIvkg5nENBA4lGzACBorPdZKXeTxCC96haJX9uZwV4mfkSJkqPcKX91+RBJBpSEcte74XmyCFJVhhNNpvptoGiMZ45B2LJUoqA7S+cFT99wqfXcQKVvSuHP190SKQuuJCG2nQDPSy95M/M/rJGZwG6RMxomhkiwWDRLumsidfe/2maLE8IklSBSzt7pkhAqJsRnlbQj+8surpFkp+1flyv11sXqZxZGDUziDEvhwA1WoQR0aQEDAM7zCm6OcF+fd+Vi0rjnZzAn8gfP5A+Kuj70=</latexit>

⌧ = 0.1
<latexit sha1_base64="OI0ajSD+dTdoFXdPbqiKo2OwdbI=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJBUQS9CwYvHCvYD2lA22027dLOJuxOhlP4JLx4U8erf8ea/cdvmoK0PBh7vzTAzL0ylMOh5387K6tr6xmZhq7i9s7u3Xzo4bJgk04zXWSIT3Qqp4VIoXkeBkrdSzWkcSt4Mh7dTv/nEtRGJesBRyoOY9pWIBKNopVYHaXbjuX63VPZcbwayTPyclCFHrVv66vQSlsVcIZPUmLbvpRiMqUbBJJ8UO5nhKWVD2udtSxWNuQnGs3sn5NQqPRIl2pZCMlN/T4xpbMwoDm1nTHFgFr2p+J/XzjC6DsZCpRlyxeaLokwSTMj0edITmjOUI0so08LeStiAasrQRlS0IfiLLy+TRsX1L9zK/WW5ep7HUYBjOIEz8OEKqnAHNagDAwnP8ApvzqPz4rw7H/PWFSefOYI/cD5/AOytjyo=</latexit>

↵1<latexit sha1_base64="GFSzciOj9EaQL9oulxlvErHDGPY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosePFYwX5AG8pku2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsOgFqJrhkTcONYJ1EMYwCwdrB+Hbmt5+Y0jyWD2aSMD/CoeQhp2is1OmhSEbY9/rlilt15yCrxMtJBXI0+uWv3iCmacSkoQK17npuYvwMleFUsGmpl2qWIB3jkHUtlRgx7Wfze6fkzCoDEsbKljRkrv6eyDDSehIFtjNCM9LL3kz8z+umJrzxMy6T1DBJF4vCVBATk9nzZMAVo0ZMLEGquL2V0BEqpMZGVLIheMsvr5JWrepdVmv3V5X6RR5HEU7gFM7Bg2uowx00oAkUBDzDK7w5j86L8+58LFoLTj5zDH/gfP4Ar4GPqg==</latexit>

z1<latexit sha1_base64="6mM4UmpKZLPqk/C3xD9b0f3F/oU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91iPXRsTqAccJ9yM6UCIUjKKV7p96Xq9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVryLSvXuslw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx8JbI2Q</latexit>

Iterations
<latexit sha1_base64="sINtSJEWdydbGnsZ2p+yxc3u0oQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBg5SkCnoseNFbBfsBbSib7aRduvlgd6KW2J/ixYMiXv0l3vw3btMctPXBwOO9GWbmebHgCm372yisrK6tbxQ3S1vbO7t7Znm/paJEMmiySESy41EFgofQRI4COrEEGngC2t74aua370EqHoV3OInBDegw5D5nFLXUN8s9hEdMbxBkpqhp36zYVTuDtUycnFRIjkbf/OoNIpYEECITVKmuY8foplQiZwKmpV6iIKZsTIfQ1TSkASg3zU6fWsdaGVh+JHWFaGXq74mUBkpNAk93BhRHatGbif953QT9SzflYZwghGy+yE+EhZE1y8EacAkMxUQTyiTXt1psRCVlOglV0iE4iy8vk1at6pxVa7fnlfppHkeRHJIjckIcckHq5Jo0SJMw8kCeySt5M56MF+Pd+Ji3Fox85oD8gfH5AyFLlH4=</latexit>

|Z|
<latexit sha1_base64="rkHYISpop9HHmOgsK4TXUKhIph0=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8SNiNgh4DXjxGNA9MljA7mU2GzM4uM71CSPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dlZW19Y3NnNb+e2d3b39wsFh3cSpZrzGYhnrZkANl0LxGgqUvJloTqNA8kYwuJn6jSeujYjVAw4T7ke0p0QoGEUr3Y8fx51C0S25M5Bl4mWkCBmqncJXuxuzNOIKmaTGtDw3QX9ENQom+STfTg1PKBvQHm9ZqmjEjT+anTohp1bpkjDWthSSmfp7YkQjY4ZRYDsjin2z6E3F/7xWiuG1PxIqSZErNl8UppJgTKZ/k67QnKEcWkKZFvZWwvpUU4Y2nbwNwVt8eZnUyyXvolS+uyxWzrM4cnAMJ3AGHlxBBW6hCjVg0INneIU3RzovzrvzMW9dcbKZI/gD5/MHdouN2A==</latexit>

z1, s1 = 2.0
<latexit sha1_base64="UvahmQI6G2hjo0wbaj0NVNGO33o=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBQwlJFfQiFLx4rGA/oA1hs920SzebsLsRaujf8OJBEa/+GW/+G7dpDtr6YODx3gwz84KEM6Ud59sqra1vbG6Vtys7u3v7B9XDo46KU0lom8Q8lr0AK8qZoG3NNKe9RFIcBZx2g8nt3O8+UqlYLB70NKFehEeChYxgbaTBk+/WkfLdm4bt+NWaYzs50CpxC1KDAi2/+jUYxiSNqNCEY6X6rpNoL8NSM8LprDJIFU0wmeAR7RsqcESVl+U3z9CZUYYojKUpoVGu/p7IcKTUNApMZ4T1WC17c/E/r5/q8NrLmEhSTQVZLApTjnSM5gGgIZOUaD41BBPJzK2IjLHERJuYKiYEd/nlVdJp2O6F3bi/rDXrRRxlOIFTOAcXrqAJd9CCNhBI4Ble4c1KrRfr3fpYtJasYuYY/sD6/AGavJAG</latexit>

z2, s2 = 1.8
<latexit sha1_base64="EctMmLpuY/NPWStFu8hJ1SWR1Zs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBQwlJFOxFKHjxWMHWQhvCZrtpl242YXcj1NC/4cWDIl79M978N27bHLT1wcDjvRlm5oUpZ0o7zrdVWlvf2Nwqb1d2dvf2D6qHRx2VZJLQNkl4IrshVpQzQduaaU67qaQ4Djl9CMc3M//hkUrFEnGvJyn1YzwULGIEayP1nwKvjlTgXbt2I6jWHNuZA60StyA1KNAKql/9QUKymApNOFaq5zqp9nMsNSOcTiv9TNEUkzEe0p6hAsdU+fn85ik6M8oARYk0JTSaq78nchwrNYlD0xljPVLL3kz8z+tlOmr4ORNppqkgi0VRxpFO0CwANGCSEs0nhmAimbkVkRGWmGgTU8WE4C6/vEo6nu1e2N7dZa1ZL+Iowwmcwjm4cAVNuIUWtIFACs/wCm9WZr1Y79bHorVkFTPH8AfW5w+oa5AP</latexit>

L(!) = � log �(!)
<latexit sha1_base64="YiDo/BNDbvlZAmcgn3rl5Ul+Pek=">AAACEXicbVDLSgNBEJyNrxhfUY9eBoMQQcNuFPQiBLx48BDBPCAbQu9kshkys7PMzAphyS948Ve8eFDEqzdv/o2Th6DRgoaiqpvuriDmTBvX/XQyC4tLyyvZ1dza+sbmVn57p65logitEcmlagagKWcRrRlmOG3GioIIOG0Eg8ux37ijSjMZ3ZphTNsCwoj1GAFjpU6+6AswfQI8vR4VfSloCIcXxz6XIfY1CwV8i518wS25E+C/xJuRApqh2sl/+F1JEkEjQzho3fLc2LRTUIYRTkc5P9E0BjKAkLYsjUBQ3U4nH43wgVW6uCeVrcjgifpzIgWh9VAEtnN8v573xuJ/XisxvfN2yqI4MTQi00W9hGMj8Tge3GWKEsOHlgBRzN6KSR8UEGNDzNkQvPmX/5J6ueSdlMo3p4XK0SyOLNpD+6iIPHSGKugKVVENEXSPHtEzenEenCfn1Xmbtmac2cwu+gXn/QtgHJyk</latexit>

!
<latexit sha1_base64="b8vERpr0iZcq++G35GF6HqQTLo8=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgQcJuFPQY8OIxgnlAsoTZSW8yZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVFJpUcaU7ETHAmYSmZZZDJ9FARMShHY1vZ377CbRhSj7YSQKhIEPJYkaJdVKrpwQMSb9c8av+HHiVBDmpoByNfvmrN1A0FSAt5cSYbuAnNsyItoxymJZ6qYGE0DEZQtdRSQSYMJtfO8VnThngWGlX0uK5+nsiI8KYiYhcpyB2ZJa9mfif101tfBNmTCapBUkXi+KUY6vw7HU8YBqo5RNHCNXM3YrpiGhCrQuo5EIIll9eJa1aNbis1u6vKvWLPI4iOkGn6BwF6BrV0R1qoCai6BE9o1f05invxXv3PhatBS+fOUZ/4H3+AIrhjwk=</latexit>

�↵!
<latexit sha1_base64="+Ck2yCQQkJnV0zArJJSFzqE6G2Q=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BIvgQctuFfRY8OKxgv2A7lJm02wbmmzWJFsoS3+HFw+KePXHePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaFNIrlUnRA05SymTcMMp51EURAhp+1wdDfz22OqNJPxo5kkNBAwiFnECBgrBZc+8GQIvhR0AL1yxa26c+BV4uWkgnI0euUvvy9JKmhsCAetu56bmCADZRjhdFryU00TICMY0K6lMQiqg2x+9BSfWaWPI6lsxQbP1d8TGQitJyK0nQLMUC97M/E/r5ua6DbIWJykhsZksShKOTYSzxLAfaYoMXxiCRDF7K2YDEEBMTankg3BW355lbRqVe+qWnu4rtQv8jiK6ASdonPkoRtUR/eogZqIoCf0jF7RmzN2Xpx352PRWnDymWP0B87nD4TYkd4=</latexit>

↵ := �r!L
<latexit sha1_base64="xLuothXL2riejdIUbTBUj8+uFVE=">AAACDXicbVDLSsNAFJ3UV62vqks3g1VwoSWpgiIIBTcuXFSwD2hCuJlO26GTSZiZCCXkB9z4K25cKOLWvTv/xuljoa0HLhzOuZd77wlizpS27W8rt7C4tLySXy2srW9sbhW3dxoqSiShdRLxSLYCUJQzQeuaaU5bsaQQBpw2g8H1yG8+UKlYJO71MKZeCD3BuoyANpJfPHCBx33Al1cnroCAg5+6UUh7kLkh6D4Bnt5mfrFkl+0x8DxxpqSEpqj5xS+3E5EkpEITDkq1HTvWXgpSM8JpVnATRWMgA+jRtqECQqq8dPxNhg+N0sHdSJoSGo/V3xMphEoNw8B0jk5Us95I/M9rJ7p74aVMxImmgkwWdROOdYRH0eAOk5RoPjQEiGTmVkz6IIFoE2DBhODMvjxPGpWyc1qu3J2VqsfTOPJoD+2jI+Sgc1RFN6iG6oigR/SMXtGb9WS9WO/Wx6Q1Z01ndtEfWJ8/Y5Cbtw==</latexit>

!
<latexit sha1_base64="b8vERpr0iZcq++G35GF6HqQTLo8=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgQcJuFPQY8OIxgnlAsoTZSW8yZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVFJpUcaU7ETHAmYSmZZZDJ9FARMShHY1vZ377CbRhSj7YSQKhIEPJYkaJdVKrpwQMSb9c8av+HHiVBDmpoByNfvmrN1A0FSAt5cSYbuAnNsyItoxymJZ6qYGE0DEZQtdRSQSYMJtfO8VnThngWGlX0uK5+nsiI8KYiYhcpyB2ZJa9mfif101tfBNmTCapBUkXi+KUY6vw7HU8YBqo5RNHCNXM3YrpiGhCrQuo5EIIll9eJa1aNbis1u6vKvWLPI4iOkGn6BwF6BrV0R1qoCai6BE9o1f05invxXv3PhatBS+fOUZ/4H3+AIrhjwk=</latexit>

Figure 7: Diagram illustrating the Legen-
dre transformation of the function L(ω) =
log
(
1 + e−ω

)
. The function is shown in blue,

and the tangent line is shown in red. The tan-
gent line is the lower bound of the function:
H(α)− αω ≤ L(ω).

Loss Primal form Dual form

Cross-Entropy log(1 + e−w) max
0<α<1

[
H(α)− αω

]
Hinge loss max(0, 1− w) max

0≤α≤1

[
α1T − αω

]
Squared error (1− ω)2 max

α

[
− 1

2α
2 + α− αω

]
Table 5: Dual forms of other common different loss func-
tions. The dual form of the Hinge loss is commonly used in
Support Vector Machine (SVMs). For the ease of notation,
we assume scalar ω and α.

22

C.1.1 Extension to Multi-Class

Building on Eq. 65-71 of [50], which derives the Legendre transform of multi-class cross-entropy,
one can update Eq. 6 of the main paper to

−
C∑
c=1

yc log(ŷc) ≥ H(α)−
C∑
c=1

αcŷc, (29)

where H(α) is the entropy function, C = #classes, and vectors of αc are defined for each class.
Then Eq. 8 of the paper is then updated to,(

H(α)− 1

2λ

C∑
c=1

(δy − αc)ΦΦT (δy − αc)T
)
. (30)

With a change of variable αc := δy − αc, the theory of SD should remain unchanged.

C.2 Eq. 8 Dual Dynamics

In Eq. 7, the order of min and max can be swapped as proved in Lemma 3 of [50], leading to,

min
θ
L (θ) = max

α
min
θ

(
1 ·H(α)−αYŷ +

λ

2
‖θ‖2

)
.

The solution to the inner optimization is,

θ∗T =
1

λ
αYΦ0,

which its substitution into Eq. 7 results in Eq. 8.

C.3 Eq. 9

Simply taking the derivative of Eq. 8 will result in Eq. 9. When we introduce continuous gradient
ascent, we must define a learning rate parameter. This term is conceptually equivalent to the learning
rate in SGD, but in this continuous setting, it has no influence on the fixed point.

C.4 Eq. 10 Approximate Dynamics

Approximating dynamics of Eq. 9 with a first order Taylor expansion around the origin of the second
term, we obtain

α̇ ≈ η
(
− logα− 1

λ
αU

(
S2 + λI

)
UT

)
.

Proof. Starting from the exact dynamics at Eq. 9,

α̇ = η

(
− logα+ log (1−α)− 1

λ
αUS2UT

)
, (31)

we perform a first-order Taylor approximation of the second term at α = 0 :

log (1−α) = −α+O
(
α2
)
. (32)

Replacing in Eq. 31, we obtain

α̇ ≈ η
(
− logα−α− 1

λ
αUS2UT

)
, (33)

α̇ ≈ η
(
− logα−αUIUT − 1

λ
αUS2UT

)
, (34)

α̇ ≈ η
(
− logα− 1

λ
αU

(
S2 + λI

)
UT

)
. (35)

23

C.5 Thm. 1 Attractive Fixed-Points

Theorem. Any fixed points of the system in Eq. 10 is attractive in the domain αi ∈ (0, 1).

Proof. We define

fi(αj) = η

log
(1− αi)
αi

− 1

λ

∑
jk

uiks
2
k(uT)kjαj

 (36)

as the gradient function of the autonomous system Eq. 9.

We find the character of possible fixed points by linearization. We compute the jacobian of the
gradient function evaluated at the fixed point.

Jik =
dfi(αj)

dαk

∣∣∣∣
α∗
k

(37)

Jik = η

(
−δik [α∗i (1− α∗i)]−1 − λ−1

∑
l

uils
2
l (u

T)lk

)
(38)

The fixed point is an attractor if the jacobian is a negative-definite matrix. The first term is negative-
definite matrix while the second term is negative semi-definite matrix. Since the sum of a negative
matrix and negative-semi definite matrix is negative-definite, this completes the proof.

C.6 Eq. 11 Feature Response at Fixed-Point

At the fixed point α∗, corresponding to the optimum of Eq. 8, the feature response of the neural
network is given by,

z∗ =
1

λ
S2UTα∗T .

Proof. The solution to the converged θ∗ at the Fixed-Point α∗ of Eq. 10 is,

θ∗T =
1

λ
α∗YΦ0,

which by substitution into Eq. 4, Eq. 11 is derived.

C.7 Eq. 12 Uncoupled Case 1

If the matrix of singular values S2 is proportional to the identity, the fixed points of Eq. 10 are given
by,

α∗
i =

λW(λ−1s2 + 1)

s2 + λ
, z∗j =

s2W(λ−1s2 + 1)

s2 + λ

∑
i

uij , (39)

whereW is the Lambert W function.

Proof. When S2 = s2I, Eq. 10 becomes

α̇ ≈ η
(
− logα− 1

λ
αU

(
s2 + λ

)
IUT

)
, (40)

α̇ ≈ η
(
− logα− 1

λ
α
(
s2 + λ

))
. (41)

Fixed points of this system are obtained when α̇ = 0 :

0 = η

(
− logα− s2 + λ

λ
α

)
, (42)

logα = −s
2 + λ

λ
α. (43)

24

The solution of this equation is

α∗i =
λW(λ−1s2 + 1)

s2 + λ
(44)

With z given by Eq. 11, we have

z =
s2W(λ−1s2 + 1)

s2 + λ
UT1, (45)

z∗i =
s2W(λ−1s2 + 1)

s2 + λ

∑
i

uij . (46)

C.8 Eq. 13 Uncoupled Case 2

If the matrix U is a permutation matrix, the fixed points of Eq. 10 are given by,

α∗i =
λW(λ−1s2i + 1)

s2i + λ
, z∗j =

s2iW(λ−1s2i + 1)

s2i + λ
. (47)

Proof. When U is a permutation matrix, it can be made an identity matrix with a meaningless
reordering of the class labels . Without loss of generality, we therefore consider U = I

α̇ ≈ η
(
− logα− 1

λ
α
(
S2 + λ

)
I

)
. (48)

Fixed points of this system are obtained when α̇ = 0

0 = η

(
− logαi −

1

λ
αi
(
s2i + λ

))
, (49)

logαi = − 1

λ
αi
(
s2i + λ

)
(50)

The solution of this equation is

α∗i =
λW(λ−1s2i + 1)

s2i + λ
. (51)

With z given by Eq. 11, we have

z∗ =
1

λ
S2Iα∗T , (52)

z∗j =
s2iW(λ−1s2i + 1)

s2i + λ
. (53)

C.9 Lemma 1 Perturbation Solution

Proof. Starting from the autonomous system Eq. 10 and assumption in 1, we have

α = η (− logα−αA) (54)

where

A = λ−1U(S2 + λI)UT (55)

Since the off-diagonal terms are of order δ, we treat them as a perturbation. The unperturbed system
has a solution α0 given by case 2

α∗0,i =
W(Aii)

Aii
. (56)

25

We can linearize the autonomous system Eq. 10 around the unperturbed solution to find,

α̇ ' η
(
− log (α∗

0)−α∗
0 � diag (A) +

d

dα
[− log (α)−α� diag (A)]

∣∣∣
α∗

0

(α−α∗
0)

)
, (57)

α̇ ' η
(

1− log (α∗)−
(

diag (A) +α∗
0
−1
)
�α

)
. (58)

We then apply the perturbation given by off-diagonal terms of A to obtain

α̇ ' η
(

1− log (α∗)−α
[
A + diag

(
α∗0
−1
)])

, (59)

where diag
(
α∗0
−1) is the diagonal matrix obtained from α∗0

−1 and where the inverse is applied
element by element.

Solving for α̇ = 0, we obtain the solution

α∗ = (1− log (α∗0))
[
A + diag

(
α∗0
−1
)]−1

. (60)

C.10 Thm. 2 Gradient Starvation Regime

Theorem (Gradient Starvation Regime). Consider a neural network in the linear regime, trained
under cross-entropy loss for a binary classification task. With definition 1, assuming coupling between
features 1 and 2 as in Eq. 15 and s21 > s22, we have,

dz∗2
ds21

< 0, (61)

which implies GS.

Proof. From lemma 1, and with U given by Eq. 15, we find that the perturbatory solution for the
fixed point is

α
∗
1 =

λ
W

λ + δ2
(
s21 − s22

)
+ s22

λ

 + 1

δ√1 − δ2

(
s
2
2 − s

2
1

)
+ λe

W

λ+δ2
(
s21−s22

)
+s22

λ

W
λ + δ2

(
−s21

)
+ δ2s22 + s21

λ

 + 1

 δ2 (δ2 − 1
) (
s
2
1 − s

2
2

)
2
+

λ + δ
2
(
s
2
1 − s

2
2

)
+ λe

W

λ+δ2
(
s21−s22

)
+s22

λ

+ s

2
2

λ + δ

2
s
2
2 −

(
δ
2 − 1

)
s
2
1 + λe

W

λ+δ2
(
−s21

)
+δ2s22+s21
λ

−1

α
∗
2 =

λ
W

λ + δ2
(
−s21

)
+ δ2s22 + s21

λ

 + 1

δ√1 − δ2

(
s
2
2 − s

2
1

)
+ λe

W

λ+δ2
(
−s21

)
+δ2s22+s21
λ

W
λ + δ2

(
s21 − s22

)
+ s22

λ

 + 1

δ2 (δ2 − 1

) (
s
2
1 − s

2
2

)
2
+

λ + δ
2
(
s
2
1 − s

2
2

)
+ λe

W

λ+δ2
(
s21−s22

)
+s22

λ

+ s

2
2

λ + δ

2
s
2
2 −

(
δ
2 − 1

)
s
2
1 + λe

W

λ+δ2
(
−s21

)
+δ2s22+s21
λ

−1

26

We have found at Eq. 11 that the corresponding steady-state feature response is given by

z∗ =
1

λ
S2UTα∗T (62)

In the perturbatory regime δ is taken to be a small parameter. We therefore perform a first-order
Taylor series expansion of z∗ around δ = 0 to obtain

z
∗
1 =

δs21

(
W

(
λ+s22
λ

)
+ 1

)λ + λe
W

(
λ+s21
λ

)
+ s22

λ + λe

W

(
λ+s21
λ

)
+ s21

λ + λe

W

(
λ+s22
λ

)
+ s22

+

λs21e
W

(
λ+s22
λ

) (
W

(
λ+s21
λ

)
+ 1

)(
W

(
λ+s22
λ

)
+ 1

)
λ + λe

W

(
λ+s21
λ

)
+ s21

λ + λe

W

(
λ+s22
λ

)
+ s22

(63)

z
∗
2 =

λs22e
W

(
λ+s21
λ

) (
W

(
λ+s21
λ

)
+ 1

)(
W

(
λ+s22
λ

)
+ 1

)
λ + λe

W

(
λ+s21
λ

)
+ s21

λ + λe

W

(
λ+s22
λ

)
+ s22

−

δs22

(
W

(
λ+s21
λ

)
+ 1

)λ + λe
W

(
λ+s22
λ

)
+ s21

λ + λe

W

(
λ+s21
λ

)
+ s21

λ + λe

W

(
λ+s22
λ

)
+ s22

(64)

Taking the derivative of z∗2 with respect to s1, we find

dz∗2
ds21

= −
δλs22

(
e
W

(
λ+s21
λ

)
− eW

(
λ+s22
λ

))(
W
(
λ+s21
λ

)
+ 1
)

(
λ+ λe

W

(
λ+s21
λ

)
+ s21

)
2

(
λ+ λe

W

(
λ+s22
λ

)
+ s22

) (65)

Knowing that the exponential of the W Lambert function is a strictly increasing function and that
s21 > s22, we find

dz∗2
ds21

< 0. (66)

C.11 Eq. 18 Spectral Decoupling

SD replaces the general L2 weight decay term in Eq. 5 with an L2 penalty exclusively on the
network’s logits, yielding

L (θ) = 1 · log [1 + exp (−Yŷ)] +
λ

2
‖ŷ‖2.

The loss can be written as,

L (θ) = 1 · log [1 + exp (−Yŷ)] +
λ

2
‖Φθ‖2,

= 1 · log [1 + exp (−Yŷ)] +
λ

2

∥∥∥SV Tθ
∥∥∥2,

≥ 1 · [H(α)−αY ŷ] +
λ

2

∥∥∥SV Tθ
∥∥∥2.

Optimizing L (θ) wrt to θ results in the following optimum,

θ∗T =
1

λ
αYΦ0V S

−2V T ,

which by substitution into the loss function, the dynamics of gradient ascent leads to,

α̇ = η

(
log

1−α
α

− 1

λ
αUS2S−2UT

)
= η

(
log

1−α
α

− 1

λ
α

)
,

where log and division are taken element-wise on the coordinates of α and hence dynamics of each
αi is independent of other αj 6=i.

27

