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Supplementary Material

Learning Transferable Adversarial Robust Representations via

Multi-view Consistency

A EXPERIMENTAL DETAILS1

A.1 DATASET

For meta-training, we utilize CIFAR-FS (Bertinetto et al., 2019) and Mini-ImageNet (Russakovsky
et al., 2015). CIFAR-FS and Mini-ImageNet each consist of 100 classes, with 64 classes for meta-
training, 16 classes for meta-validation, and 20 classes for meta-testing. To evaluate our model on
few-shot classification tasks, we utilize 6 benchmark few-shot datasets: CIFAR-FS (Bertinetto et al.,
2019), Mini-ImageNet (Russakovsky et al., 2015), Tiered-ImageNet (Finn et al., 2017), Cars (Krause
et al., 2013), CUB (Welinder et al., 2010), and Flower (Nilsback & Zisserman, 2008). Additionally,
for assessing robust transferability, we employ 3 additional benchmark standard image classification
datasets: CIFAR-10, CIFAR-100, and STL-10. CIFAR-10 and CIFAR-100 consist of 50,000 training
images and 10,000 test images each, with 10 and 100 classes, respectively. All images are resized to
a resolution of 32⇥32⇥3 (width, height, and channel) for meta-training. Specifically, we leverage
the TorchMeta

2 library to load the few-shot datasets into our frameworks.

A.2 META-TRAIN

We use ResNet12 and ResNet18 as the base encoder network for CIFAR-FS and Mini-ImageNet. All
models are trained using tasks that consist of a 5-way 5-shot support set images and a 5-way 15-shot
query set images. They are then validated using clean tasks, which consist of a 5-way 1-shot support
set images and a 5-way 15-shot query set images. Specifically, the model is trained with randomly
selected 200 tasks and validated with randomly selected 100 tasks. To optimize the models, we train
them for 100,000 steps using the SGD optimizer with a weight decay of 1e-4. For data augmentation,
we apply random crop with a size ranging from 0.08 to 1.0, color jitter with a probability of 0.8,
horizontal flip with a probability of 0.5, grayscale with a probability of 0.2, gaussian blur with a
probability of 0.0, and solarization with a probability ranging from 0.0 to 0.2. Normalization is
excluded for adversarial training.

In the case of adversarial learning, we employ 3 steps and 7 steps for our task-agnostic latent
adversarial attack. To generate adversaries using the query set images, we take a gradient step within
an l1 norm ball with ✏ = 8.0/255.0 and ↵ = 2.0/255.0. To obtain robust representations, we utilize
an original meta-training objective, a multi-view instance-wise adversarial training objective, and
a cosine distance loss with a regularization hyperparameter � of 6.0 for adversarial training. The
overall model figure of MAVRL is shown in Figure 5.
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Figure 5: Concept of MARVRL compared to previous approach (AQ).

1Code is available in the Supplementary zip folder.
2
https://github.com/tristandeleu/pytorch-meta
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A.3 HYPERPARAMETER DETAILS OF META-LEARNING FRAMEWORK

We use a single step for the inner optimization of meta-training and meta-testing to improve computa-
tional efficiency, with an inner learning rate of 0.005. For the outer optimization, we employ an outer
learning rate of 0.005 for CIFAR-FS. In the case of Mini-ImageNet, we use the same step size as
CIFAR-FS but with a different inner learning rate of 0.001 and an outer optimization learning rate of
0.001. Both datasets utilize a batch size of 16. The training time on CIFAR-FS takes approximately
33 hours using a single NVIDIA GeForce RTX-3090.

A.4 META-TEST

The trained models are evaluated using 400 randomly selected unseen tasks from the test set. Each
task is composed of a 5-way 5-shot support set images and a 5-way 15-shot query set images. In the
evaluation process, we employ a single step for the inner optimization. It is important to note that we
use the same learning rate and meta-step size as the model was trained with during meta-training.

A.5 ADVERSARIAL EVALUATION

We evaluate the robustness of our trained models against two types of attacks: PGD (Madry et al.,
2018) and AutoAttack (Croce & Hein, 2020). For all l1 PGD attacks, we conduct them within
a norm ball size of ✏ = 8./255., with a step size of ↵ = 8./2550., and using 20 steps for inner
maximization. AutoAttack3 is a combination of four different types of attacks (APGD-CE, APGD-T,
FAB-T, and Square). During test time, we utilize the standard version of AutoAttack.

B ADVERSARIAL TRAINING

Many existing works aim at enhancing the adversarial robustness of models trained using supervised
learning (Goodfellow et al., 2015; Carlini & Wagner, 2017; Papernot et al., 2016), such as adversarial
training (AT) and regularized Kullback-Leibler divergence (KLD) loss. AT uses project gradient
descent (PGD) (Madry et al., 2018) to maximize loss in inner-maximization loops while minimizing
overall loss on adversarial samples. TRADES (Zhang et al., 2019) have theoretically shown that
KLD loss enhances robustness by enforcing consistency in predictive distribution between clean and
adversarial examples. Transfer learning (Shafahi et al., 2019) can also be used to transfer learned
robust representations to new domains with few data. One of the most similar adversarial learning
methods to ours is RoCL (Kim et al., 2020), which proposes to adversarially train a robust neural
network without labeled data, by instance-wise adversarial attack. However, we found that the simple
application of instance-wise attacks on few-shot learning is not effective (Table 6).

C ADDITIONAL ABLATION EXPERIMENTAL RESULTS

C.1 MAVRL VS NAÏVE COMBINATION OF SSL AND AML.

Our framework consists of three novel technical components: 1) Bootstrapping multi-view encoders
2) task-agnostic multi-view latent adversarial attack and 3) meta-adversarial multi-view representation
learning. To provide more detailed ablation experiments on our approach, we demonstrate the results
of each ablation experiment along with the figure and algorithms.

As discussed in Section 3.3, a naive combination of self-supervised learning (SSL) and adversarial
meta-learning (AML) fails to achieve transferable robust representation learning. We investigate
two cases of this naÏve combination. First, we incorporate task-agnostic instance-wise attacks
for adversarial training with a single encoder during the outer optimization phase. We generate
adversarial examples following previous works (Kim et al., 2020) using a single encoder (parameters
✓⌧ ), as shown in Eq. 7. We then minimize the adversarial loss in the outer optimization, as indicated in
Eq. 8 [1], i.e., Labl[1]. However, as demonstrated in Table 6, without multi-view encoders, the model
fails to generate strong adversarial examples, resulting in insufficient robustness even within the seen
domain. Additionally, when we incorporate representation learning loss in the outer optimization
using Eq. 8 [2], i.e., Labl[2]. the model exhibits slightly improved transferable robustness but still

3
https://github.com/fra31/auto-attack
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performs poorly. The difference is illustrated as blue text in Eq. 7, 8. In conclusion, a simple
combination of self-supervised learning and adversarial meta-learning, as presented in Algorithm 3,
leads to representation collapse due to the small batch size, rendering the task-agnostic adversarial
attack ineffective in leveraging transferable robustness in unseen domains.
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Algorithm 2: MAVRL.
Input: Meta-training distribution pD(⌧),

random data augmentations t1(·), t2(·),
feature encoder f✓(·), classifier g�(·),
meta-learning rate �

Output: Adversarially meta-trained
parameters ✓,�,↵

while not converged do

Sample M different meta-training tasks
{⌧} = {(S,Q)} ⇠ pD(⌧)

for i = 1, · · · ,M do

/* Bootstrapped multi-view

encoders. */

✓⌧j  ✓ � ↵r✓ES [Lce(g� �
f✓(tj(xs)), ys)], for j = 1, 2

/* Generate multi-view

latent adversaries. */

t1(x
q)adv, t2(x

q)adv  
t1(x

q) + �q1 , t2(x
q) + �q2

// �q1 , �
q
2 are obtained by

Eq. 5

/* Our loss. */

L⌧
ours  EQ

⇥P
j=1,2

�
Lce(·, ·) +

�Lkl(·, ·)
�
+ Lcos(·, ·)

⇤

// See details in Eq. 6

/* Update meta-parameters */

[✓,�,↵] 
[✓,�,↵]� �r✓,�,↵

P
{⌧} L

⌧
ours/M

return meta-parameters ✓,�,↵

Algorithm 3: Naïve combination.
Input: Meta-training distribution pD(⌧), random

data augmentations t1(·), t2(·), feature
encoder f✓(·), classifier g�(·),
meta-learning rate �

Output: Adversarially meta-trained
parameters ✓,�,↵

while not converged do

Sample M different meta-training tasks
{⌧} = {(S,Q)} ⇠ pD(⌧)

for i = 1, · · · ,M do

/* Single encoder. */

✓⌧  ✓�↵r✓ES [Lce(g� � f✓(xs), ys)]

/* Generate multi-view

latent adversaries. */

t1(x
q)adv, t2(x

q)adv  
t1(x

q) + �q1 , t2(x
q) + �q2

// �q1 , �
q
2 are obtained by

Eq. 7

/* Ablation loss. */

[1] L⌧
abl  EQ

⇥
Lce(·, ·) + �Lkl(·, ·)

⇤

[2] L⌧
abl  

EQ
⇥
Lce(·, ·) + �Lkl(·, ·) +Lcos(·, ·)

⇤

// See details in Eq. 8

/* Update meta-parameters */

[✓,�,↵] 
[✓,�,↵]� �r✓,�,↵

P
{⌧} L

⌧
abl/M

return meta-parameters ✓,�,↵

We conducted ablation experiments on each component of our framework, as summarized in Table 6.
Each component significantly contributes to improving robustness in both seen and unseen domains.
Notably, when we incorporate bootstrapping multi-view encoders, the model achieves substantially
enhanced robustness in the unseen domains. These results highlight the crucial role of each of our
novel components in achieving robustness in unseen domains.
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Table 6: Results of adversarial robustness for 5-way 5-shot classification tasks on unseen and seen domains.
All adversarial meta-learning methods are trained on CIFAR-FS. Rob. stands for accuracy (%) calculated with
PGD-20 attack (✏ = 8./255., � = ✏/10). Ablation condition is as follow: [1]: bootstrap multi-view encoders,
[2]: task-agnostic adversarial attack, [3]: cosine distance loss.

CIFAR-FS! Mini-ImageNet Tiered-ImageNet CUB Flower Cars Avg. CIFAR-FS

[1] [2] [3] Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

Naive Combination - X - 20.30 17.99 21.70 18.66 21.59 18.19 24.77 21.33 21.74 19.30 22.02 19.09 22.64 19.84
- X X 20.01 19.24 20.02 18.39 20.00 18.68 20.01 19.56 19.98 19.66 20.00 19.11 20.04 18.52

Ablation X X - 40.42 16.60 54.55 28.93 50.01 21.92 69.47 39.79 40.52 16.79 50.99 24.81 68.08 42.97
X - X 45.47 12.63 56.14 27.02 52.78 20.32 72.53 39.05 41.44 15.20 53.67 22.84 70.14 41.75

Ours X X X 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43 50.32 28.20 67.75 43.42

Table 7: Results of adversarial robustness for 5-way 5-shot classification tasks on unseen and seen domains.
All adversarial meta-learning methods are trained on CIFAR-FS. Rob. stands for accuracy (%) calculated with
PGD-20 attack (✏ = 8./255., � = ✏/10).

CIFAR-FS! Mini-ImageNet Tiered-ImageNet CUB Flower Cars Avg. CIFAR-FS

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

RMAML (Wang et al., 2021) 28.05 6.65 29.54 9.30 30.24 5.67 42.91 10.79 31.72 5.56 32.49 7.39 57.95 35.30
Ours-MAML 30.35 15.02 40.12 23.83 37.52 18.67 46.54 29.09 31.48 16.24 37.20 20.57 47.26 31.58
Ours-MetaSGD 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43 50.32 28.20 67.75 43.42

C.2 DIFFERENT META-LEARNING METHODS AND ADVERSARIAL ATTACK ITERATIONS

To demonstrate the efficacy of MAVRL in achieving robust and transferable representations, we
conducted experiments across three distinct meta-learning frameworks, including MAML (Finn et al.,
2017), FOMAML (Finn et al., 2017) and MetaSGD (Li et al., 2017). Furthermore, we evaluate
the resilience of MAVRL by subjecting it to multi-view latent attacks of varying attack iterations,
specifically 3-step and 7-step.

Table 8 highlights that MAVRL outperforms the previous adversarial meta-learning model (Goldblum
et al., 2020) in terms of adversarial robustness by more than 10%, irrespective of meta-learning
strategies. Furthermore, MAVRL exhibits remarkable robustness with just 3 steps of multi-view
latent attacks compared to AQ (Goldblum et al., 2020), which is trained with PGD-7 attacks (i.e.,
class-wise attack). To emphasize the superiority of multi-view latent attacks over class-wise attacks at
the representation level, we calculate feature similarity between clean and adversarial examples using
CKA (Kornblith et al., 2019). Notably, the latent attack yielded a lower CKA value than the class-wise
attack (as seen in Figure 4b), which means that latent attacks produce perturbations that deviate
more significantly from the original clean images, making them more challenging. Through these
remarkable results, we underscore that our proposed multi-view latent attack served as a stronger
attack that promotes the robust transferability of the model to unseen domains, even with fewer
gradient steps of attacks and limited data.

C.3 CONSISTENCY LOSS REGULARIZED TO LEARN GENERALIZED FEATURES

The objective of the proposed meta-adversarial learning framework consists of three different ele-
ments, 1) cross-entropy loss, 2) multi-view instance-wise adversarial loss, and 3) cosine distance
loss as in Eq. 6. In particular, cosine distance loss enforces the consistency between two maximally
dissimilar views of adversaries, leading meta-learners to achieve transferable robustness. We further
examine the effectiveness of cosine distance loss by altering it to other consistency loss including
contrastive loss and KLD loss. As shown in Table 9, the cosine similarity term was the most effective
objective for aligning the multi-view latent spaces, demonstrating the highest unseen domain robust-
ness on average. This is because cosine distance loss explicitly aligns the two latent vectors obtained
from multi-view latent attacks while others implicitly enforce the consistency to differently generated
adversarial representations.

D MAVRL META-TRAINED ON LARGER DATASET

To provide a more convincing comparison, we additionally conduct experiments where models are
meta-trained on a larger dataset, Tiered-ImageNet (Russakovsky et al., 2015). Tiered-ImageNet
consists of 779,165 images and 608 classes which are 351, 97, and 160 classes for meta-training,
meta-validation, and meta-testing respectively. All images are resized by 3 ⇥ 32 ⇥ 32 resolution
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Table 8: Results of transferable robustness with different meta-learning framework and attack iteration in
5-shot tasks. All models are trained with 5-way 5-shot images on CIFAR-FS and Mini-ImageNet. Rob. stands
for accuracy(%) that is calculated with PGD-20 attack (✏ = 8./255., step size=✏/10). Clean stands for test
accuracy(%) of clean images. All models are trained on ResNet12. The number of attack iterations during
training is marked in parentheses next to the meta-train dataset. Further, we denote (✓) next to the meta-learning
strategies to notice that we update only the encoder parameters during inner optimization.

CIFAR-FS (3 steps)! Mini-ImageNet Tiered-ImageNet CUB Flower Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

M
AV

R
L +MAML (✓) (Finn et al., 2017) 34.35 15.76 39.06 20.08 42.32 17.46 57.74 32.70 35.78 15.79

+FOMAML (✓) (Finn et al., 2017) 32.06 16.69 37.97 22.15 37.65 17.50 56.68 34.08 36.33 18.45
+MetaSGD (✓) (Li et al., 2017) 44.64 15.75 53.25 28.05 50.78 22.44 70.08 41.52 40.08 16.88
AQ (Goldblum et al., 2020) 33.79 1.59 36.41 2.27 39.35 2.88 58.69 6.59 37.39 2.30

CIFAR-FS (7 steps)! Mini-ImageNet Tiered-ImageNet CUB Flower Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

M
AV

R
L +MAML (✓) (Finn et al., 2017) 32.57 16.12 38.90 22.51 39.44 16.52 56.79 32.83 36.58 16.56

+FOMAML (✓) (Finn et al., 2017) 31.71 17.40 37.33 23.28 38.63 18.79 59.57 36.79 37.94 21.34
+MetaSGD (✓) (Li et al., 2017) 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43
AQ (Goldblum et al., 2020) 33.09 3.32 37.41 5.05 38.37 4.10 60.14 11.03 36.83 4.47

Table 9: Ablation results of transferable robustness with different consistency loss in MAVRL framework. Rob.
stands for accuracy (%) that is calculated with PGD-20 attack (✏ = 8./255., step size=✏/10). Clean stands for
test accuracy (%) of clean images. All models are meta-trained on CIFAR-FS with PGD-7 attacks on ResNet12.

CIFAR-FS!
Consistency Mini-ImageNet Tiered-ImageNet CUB Flower Cars Avg.

Loss Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

KL 21.69 17.56 25.52 20.22 25.78 19.49 33.76 24.80 23.25 18.22 26.00 20.06
Contrastive 43.62 20.17 45.47 22.98 50.59 25.36 70.61 40.12 39.32 18.60 49.92 25.45
Cosine distance 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43 50.32 28.20

(channel, width, and height) to validate the model’s robust transferability to unseen domain tasks.
As demonstrated in Table 10, when the models are meta-trained on a larger dataset, our meta-leaner
consistently outperforms the previous adversarial meta-learning method (AQ) for both clean and
robust accuracy on unseen domain tasks. This indicates that MAVRL can effectively learn robust
representations transferred to unseen domains, regardless of how unseen domains are different from
the meta-trained dataset.

E TRANSFERABLE ROBUSTNESS ON NON-RGB DOMAINS

To demonstrate the ability to learn transferable robustness on unseen domain tasks of the proposed
framework MAVRL, we further employ unseen domains of non-RGB domains (i.e., ISIC (Codella
et al., 2018), CropDisease (Mohanty et al., 2016), and EuroSAT (Helber et al., 2019)), which have
much more different distributions from meta-trained RGB dataset (i.e., CIFAR-FS). This experiment
can encompass variations such as color scale (RGB, Gray-scale), and distinct image type (i.e., MRI,
satellite imagery), enabling more accurate evaluation of the transferable robustness across a wide
range of domains. As shown in Table 11, MAVRL exhibits outstanding transferable robustness
of 17.47% on average even in non-RGB unseen domain tasks compared to previous adversarial
meta-learning method.

F OBFUSCATED GRADIENT

All robust accuracies reported in our paper are calculated using the strength ✏ = 8./255., step size
↵ = 8./2550., and 20 steps for the `1 PGD attacks. In order to assess the presence of obfuscated
gradient issues, we conduct experiments with two different settings of `1 PGD attacks. Firstly, we
apply PGD attacks with an extremely large strength, expecting the robust accuracy to be nearly zero.
Secondly, we use the same strength but different step sizes and steps, specifically 4./2550. and 40
respectively. In this case, we expect the robust accuracy to remain the same as the robust accuracy
from our original evaluation setting. To demonstrate this, we evaluate MAVRL trained on CIFAR-FS
with ResNet12 as the base encoder, and built on top of the FOMAML architecture as reported in
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Table 10: Results of transferable robustness in 5-way 5-shot unseen domain tasks that are trained on 5-way
5-shot Tiered-ImageNet. Rob. stands for accuracy (%) that is calculated with PGD-20 attack (✏ = 8./255., step
size=✏/10). Clean stands for test accuracy (%) of clean images. All models are trained with PGD-7 attacks on
ResNet12.

Tiered-ImageNet! CIFAR-FS Mini-ImageNet CUB Flower Cars Avg.

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

AQ (Goldblum et al., 2020) 42.33 2.48 25.91 0.44 36.29 0.31 56.01 1.81 32.64 1.01 38.64 1.21
Ours 71.11 33.68 51.16 17.40 53.48 17.75 63.58 16.12 40.14 12.00 55.89 19.39

Table 11: Results of transferable adversarial robustness in 5-way 15-shot non-RGB unseen domain tasks that
are trained on CIFAR-FS.

CIFAR-FS! EuroSAT ISIC CropDisease Avg.

Clean Rob. Clean Rob. Clean Rob. Clean Rob.

AQ 46.05 4.62 31.90 0.62 47.38 0.51 41.78 1.92
Ours 59.39 19.90 30.77 5.23 57.85 27.28 49.34 17.47

Table 8. As shown in Table 12, we confirm that our models do not exhibit any obfuscated gradient
issues.

G VISUALIZATION OF LOSS SURFACE

AQ Ours

Figure 6: CIFAR-FS - seen

AQ Ours

Figure 7: Mini-ImageNet-unseen

AQ Ours

Figure 8: Tiered-ImageNet-unseen

AQ Ours

Figure 9: CUB-unseen

AQ Ours

Figure 10: CARS-unseen

AQ Ours

Figure 11: Flowers-unseen

We visualize the loss surface of our model and baseline AQ (Goldblum et al., 2020) model. As
shown in the above Figure our model has a smoother loss surface both in the seen domain and unseen
domain while the baseline has a relatively less smooth surface.
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Table 12: Test accuracy(%) on multiple benchmark datasets for 5-shots. Robustness is calculated with PGD-20
attack (✏ = 8./255., step size=✏/10), clean is for clean images. All models are adversarially meta-trained on
CIFAR-FS.

CIFAR-FS Mini-ImageNet Tiered-ImageNet CUB Cars

Strength (✏) Step size (↵) Steps Clean PGD `1 Clean PGD `1 Clean PGD `1 Clean PGD `1 Clean PGD `1

3
st

ep
s 8.0/255.0 8.0/2550.0 20 53.42 35.95 32.06 16.69 37.97 22.15 37.65 17.50 36.33 18.45

8.0/255.0 4.0/2550.0 40 53.04 35.35 31.70 16.01 38.06 21.98 37.77 18.12 36.10 18.02
300.0 8.0/2550.0 20 52.72 0.47 31.83 0.92 37.73 0.85 38.14 0.55 36.21 0.44

7
st

ep
s 8.0/255.0 8.0/2550.0 20 51.90 36.01 31.71 17.40 37.33 23.28 38.63 18.79 37.94 21.34

8.0/255.0 4.0/2550.0 40 52.50 36.39 31.95 17.49 38.44 24.22 38.18 18.87 37.41 20.92
300.0 8.0/2550.0 20 52.20 0.50 31.97 0.59 37.53 0.65 38.78 0.45 37.64 0.48

Table 13: Experiments results for self-supervised robust full-finetuning of MAVRL and the state-of-the-art
adversarial self-supervised models on unseen domains. While MAVRL is trained on CIFAR-FS with bilevel
attacks , adversarial self-supervised models are trained on full-dataset of CIFAR-100. All models are trained on
ResNet18, and evaluated against PGD-20 attacks (✏ = 8./255.) and AutoAttack (AA) (Croce & Hein, 2020)

CIFAR-10 CIFAR-100 STL-10 Cars CUB

Method Clean PGD `1 AA Clean PGD `1 AA Clean PGD `1 AA Clean PGD `1 AA Clean PGD `1 AA

SS
L RoCL (Kim et al., 2020) 76.76 50.72 45.52 51.91 27.77 22.79 60.44 31.90 27.38 35.00 8.11 5.67 17.21 2.55 1.71

ACL (Jiang et al., 2020) 75.99 50.35 45.50 51.91 27.77 22.79 63.46 30.24 25.73 30.95 5.86 3.80 17.00 2.33 1.54
Ours (3 steps) 74.26 49.38 44.31 50.23 27.05 21.96 53.46 32.65 28.96 31.47 9.58 6.19 18.07 4.49 2.73

H ROBUSTNESS ON UNSEEN DOMAINS WITH LARGER DATASETS

To demonstrate the effectiveness of our adversarially transferable meta-trained model, we conduct
further evaluations in a standard transfer learning scenario where the encoder, along with its linear
layer, is fully trained using the entire dataset. The goal is to assess the generalizable robustness of
the learned representations against a self-supervised adversarial learning model trained on a large
amount of data. Our evaluations cover both the seen domain, CIFAR-100, and two unseen domains,
CIFAR-10 and STL-10. Additionally, we showcase the robust transferability of our models on
few-shot image classification benchmark datasets, namely Cars, CUB, and Aircraft. In this case, these
datasets are treated as standard image classification tasks with 196, 200, and 100 classes respectively,
rather than few-shot image classification tasks like n-way k-shot classification. For these evaluations,
we train our models using ResNet18 with latent attacks employing 3 steps, while other self-supervised
models are trained with PGD-7 attacks due to computational constraints. The validation process
employs the same set of hyperparameters for robust full-finetuning across all datasets, and detailed
information about the experimental settings is provided in the following section.

H.1 BASELINES FOR SELF-SUPERVISED ADVERSARIAL LEARNING APPROACHES

We select baseline models with ACL (Jiang et al., 2020)4, BYORL (Gowal et al., 2020) and
RoCL (Kim et al., 2020)5 for self-supervised pre-trained baselines. We implement BYORL on
top of the BYOL (Grill et al., 2020)6 framework, following the description in the paper.

H.2 SELF-SUPERVISED ROBUST LINEAR EVALUATION

To compare MAVRL with self-supervised pre-trained models, we apply robust full-finetuning, which
is the representative evaluation method for demonstrating the quality of the learned representations
in self-supervised learning fields. In robust full-finetuning, the parameters of the entire network,
including the encoder and the classifier, are trained with adversarial examples. We generate perturbed
examples with l1 PGD-10 attack with ✏ = 8./255. and step size ↵ = 2./255. in training. All
adversarially full-finetuned models are evaluated against l1 PGD-20 attack (✏ = 8./255., ↵ =
8./2550.) and AutoAttack (Croce & Hein, 2020). Especially, in comparisons with self-supervised
models, we pre-train ResNet18 based on FOMAML (Finn et al., 2017), which is the first-order
approximation of MAML (Finn et al., 2017), and apply multi-view latent attacks with 3 steps to
reduce the computational cost. Other self-supervised models are pre-trained with PGD-7 attacks.

4
https://github.com/VITA-Group/Adversarial-Contrastive-Learning

5
https://github.com/Kim-Minseon/RoCLforself-supervisedlearning

6
https://github.com/lucidrains/byol-pytorch
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For optimization, we fine-tune the pre-trained models for 110 epochs with batch size 128 under
SGD optimizer with weight decay 5e-4, where Pang et al. (2022) demonstrated as optimal for robust
full-finetuning on CIFAR datasets.

H.3 ROBUSTNESS ON UNSEEN DOMAIN STANDARD IMAGE CLASSIFICATION TASKS

Although our models utilize only scarce data to train and even apply latent attacks with fewer
gradient steps, we show comparable clean and robust accuracy compared to self-supervised pre-
trained models which are trained with larger data and stronger attacks with more steps of inner
maximization (Table 13). Especially, our methods show a larger gap in robustness on fine-grained
datasets (i.e., CUB, Cars), which have highly different distributions from meta-trained domains
(i.e., CIFAR-FS). Further, we hope that our models to be robust in real-world adversarial perturba-
tion such as common corruption (Hendrycks & Dietterich, 2019), we evaluate our fully finetuned
models with adversarial examples on CIFAR-10, with common corruption datasets on CIFAR-10.

Table 14: Test accuracy(%) on common
corruption tasks of CIFAR-10-C. All models
are adversarially trained on ResNet18, and
finetuned on CIFAR-10.

Learning Type Model Accuracy

Self-supervised
adversarial learning

ACL (Jiang et al., 2020) 68.60
ROCL (Kim et al., 2020) 66.16

Meta-adversarial learning MAVRL 67.90

MAVRL also shows comparable accuracy with self-
supervised pre-trained models on common corruption tasks
(Table 14). From these results, we prove that MAVRL
learns good generalized representations with little data ef-
fectively. Thus, the experimental results may imply that
MAVRL can be used as a means of pretraining the repre-
sentations to ensure robustness for a variety of applications
when the training data is scarce.
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