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Tangram-Splatting: Optimizing 3D Gaussian Splatting Through
Tangram-inspired Shape Priors

Anonymous Author(s)

ABSTRACT
As the growth of VR and AR industry, 3D reconstruction has be-
come a more and more important topic in multimedia. Although
3D Gaussian Splatting is the state-of-the-art method of 3D Recon-
struction, it needs a large number of Gaussians to fit a 3D scene
due to the Gibbs Phenomenon. The pursuit of compressing 3D
Gaussian Splatting and reducing memory overhead has long been
a focal point. Embarking on this trajectory, our study delves into
this domain, aiming to mitigate these challenges. Inspired by tan-
gram, a Chinese ancient puzzle, we introduce a novel methodology
(Tangram-Splatting) that leverages shape priors to optimize 3D
scene fitting. Central to our approach is a pioneering technique that
diversifies Gaussian function types while preserving algorithmic
efficiency. Through exhaustive experimentation, we demonstrate
that our method achieves a remarkable average reduction of 62.4%
in memory consumption used to store optimized parameters and de-
creases the training time by at least 10 minutes, with only marginal
sacrifices in PSNR performance, typically under 0.3 dB, and our al-
gorithm is even better on some datasets. This reduction in memory
burden is of paramount significance for real-world applications, mit-
igating the substantial memory footprint and transmission burden
traditionally associated with such algorithms. Our algorithm under-
scores the profound potential of Tangram-Splatting in advancing
multimedia applications.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Multimedia, 3D Gaussian Splatting, Signals Processing

1 INTRODUCTION
In recent years, 3D reconstruction and novel view synthesis tasks
have gained increasing popularity in multimedia, driven by the
growing demand for Virtual Reality (VR) and Augmented Reality
(AR) applications [13, 31] which is an important topic in multi-
media [1, 15, 20, 22, 36]. Traditional methods for such tasks, e.g.,
Structure from Motion (SfM) [26] and Multi-View Stereo (MVS)
[12, 32, 33, 35], have yielded impressive results. Additionally, recent
advancements such as Neural Radiance Field (NeRF) [21] and 3D
Gaussian Splatting (3DGS) [14] have further pushed the boundaries
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of performance in these tasks. However, despite its advancements,
3DGS [14] still exhibits inherent limitations. The Gibbs phenome-
non [7] inherent in the Gaussian Transform implies that accurately
representing a scene requires an infinite number of Gaussians,
which is impractical to be realized. Consequently, Gaussian-based
representations have an upper bound of its performances.

In this study, we introduce Tangram-Splatting, a novel approach
aimed at providing a more precise and efficient representation for
3D scenes. This method exhibits promising potential for enhancing
3D reconstruction tasks and may serve as inspiration for future
research in the field. Inspired by previous works [4, 9, 17, 29], we
recognize the diverse range of Gaussian-based functions, such as
Gaussian Mixture functions, Difference of Gaussian functions, and
Generalized Exponential Function, each offering unique advantages.
For instance, Generalized Exponential Functions are better to con-
verge on rectangular waves, Difference of Gaussian functions are
better to converge on triangular waves and others are better to
converge on a different shape. Tangram, an ancient Chinese puzzle
which aims at filling a specific kind of shape by using different
shapes of geometry, inspires us to leverage the advantages of those
functions and combine them together to better fit the 3D scene.
According to [10], directly changing the orginal Gaussian represen-
tation to a new Gaussian-based function is non-trivial, especially
for the rasterization process. In order to reserve the original rasteri-
zation process, we use maximum likelihood estimation to represent
different functions with an adaptive multiplication matrix, instead
of directly changing the original Gaussian rasterization process.
Different parts of a 3D scene require different kinds of shape priors,
which means that we set strong condition to apply certain kind
of Gaussian function to reconstruct a certain space based on the
prior information about the eigenvalues of vanilla Gaussian. In
order to search for the best fit of the 3D scene, we change the clone
procedures of 3DGS [14] and set a brand new criterion to allocate
the types of Gaussians in 3DGS [14].

Extensive experiments show that our approach improves 3DGS
[14] approximately 62.4% in terms of memory efficiency while
maintaining comparable image quality and training speed. In fact,
our method performs even faster than 3DGS [14] for at least 10
minutes in several cases. Furthermore, we conducted experiments
to validate the proposed theories.

The main contributions are summarized as follows:
(1) To the best of our knowledge, we are the first to leverage vari-

ous types of Gaussians for 3D scene reconstruction with promising
performance.

(2) By harnessing a new cloning technique, we successfully al-
locate the types of Gaussians while not sacrificing the speed of
running the procedures which has saved almost 62.4% of the points
that 3DGS [14] originally needed and decreasing at least 10 minutes
of training time.
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Figure 1: Illustration of the proposed method. We have shown the big picture of our method in the figure. We argue that
only using one particular type of Gaussian function is not a compact representation. As a result, we leverage 3 types of
Gaussian-based functions, including vanilla Gaussian function (GS), Generalized Exponential function (GEF), Difference of
Gaussian (DoG) to reconstruct a 3D scene. However, directly using 2 new functions as basis function is non-trivial, particularly
we may face a drawback in the speed of rasterization process. As a result, we use the maximum likelihood estimation method
to diversify the Gaussian basis function while maintaining the original rasterization methods. Our method can reduce the
memory cost for about 62.4% compared to 3DGS [14], decrease the training time for about 10 minutes while maintaining the
equivalent PSNR performance.

(3) We have introduced a signal estimation framework aimed at
reconstructing a 3D scene using various types of base functions,
significantly enhancing the practical application of our work.

2 RELATEDWORK
2.1 3D Gaussian Splatting
3D reconstruction and rendering has gained increasing attention.
Algorithms include Neural Radiance Field [21, 34, 37], Structure
from Motion [28] and other works [14, 30] have tremendously im-
prove the performance of 3D reconstruction. Among them, 3DGS
[14] is the state-of-the-art algorithm in 3D rendering and reconstruc-
tion field which has gained great popularity recently. It represents a
3D scene by lots of Gaussians and leverages rasterization methods
and an adaptive control method to aprroximate a 3D scene. How-
ever, a lot of works [5, 18, 19, 24, 25] have claimed its bottleneck
in memory cost and claim that it is not a compact representation.
However, those works mainly focus on how to prune the trivial
Gaussian and how to compress the parameters. In this work, we
are going to refine the representation part. We claim that Gaussian
function itself is not compact enough due to the Gibbs Phenome-
non and we then design a brand new mechanism which can better
represent a realistic 3D scene with less points needed.

2.2 Gaussian Transform
Inspired by lots of works [3, 8, 27], especially Generalized Exponen-
tial Splatting (GES) [10], we are interested in leveraging signals and
systems perspectives to analyze the properties of 3DGS [14]. Gauss-
ian Transform is a long studied signal processing field especially
in the last century, which aimed at analyzing the properties when
trying to use Gaussian functions to approximate a signal. We have
found out that the last century’s Gaussian Transform is so useful
for analyzing 3DGS [14] and that, there is nothing new under the
sun.

3 THEORETICAL ANALYSES
In this section, we present theoretical analyses of our framework. As
we present in Fig. 1, we try to leverage different types of Gaussians
to approximate the 3D scene in order to have a more compact
representaion. The theoretical analyses involved in our approach
will be described in detail below.

3.1 Properties of Different types of Basis
Functions

To better understand the rationale behind employing diverse basis
functions as opposed to relying solely on a single Gaussian function,
as in the 3DGS algorithm [14], or a singular Generalized Exponential
Function, as utilized in the GES algorithm [10], it is imperative

2
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Figure 2: The time domain and frequency domain of the three functions.

to delve into the distinctive properties inherent in various basis
functions. This strategic approach enables the reconstruction of
scenes in accordance with localized conditions. To streamline our
analysis, we embark on an exploration of the properties exhibited
by various basis functions in a one-dimensional context.

Gaussian Function. The spatial domain expression and Fourier
transform of a Gaussian function with a mean of 𝜇 and a variance
of 𝜎2 is shown below:

1
√

2𝜋𝜎
𝑒
− (𝑥−𝜇)2

2𝜎2 ↔ 𝑒−𝑖𝜔𝜇𝑒−
𝜔2𝜎2

2 . (1)

As depicted in Fig. 2, the Fourier transform of a Gaussian signal
preserves its Gaussian nature. Notably, the temporal energy distri-
bution of a Gaussian signal is predominantly concentrated within
a range offset by 3𝜎 from its mean 𝜇. Conversely, in the frequency
domain, the energy of the signal is concentrated within a range
offset by 3

𝜎 , centered around 0. Due to its inherent low-pass filtering
characteristics, the Gaussian function necessitates an increase in
the number of Gaussian components and the adoption of smaller
Gaussian spheres by 3DGS [14] to effectively capture scene details.
However, this approach inevitably leads to redundancy, inefficient
storage utilization, and diminished computational efficiency.

Generalized Exponential Function (GEF).The one-dimensional
expression of the Generalized Exponential Function (GEF), as de-

scribed in [10], is 1√
2𝜋𝜎

𝑒
− (𝑥−𝜇)𝛽

2𝜎2 .
However, it is worth noting that the Fourier transform of GEF

might lack an analytical solution, contingent upon the parameter

𝛽 within the exponential term. This feature may contribute to the
instability observed during the reconstruction process, as noted
in [10]. For simulation purposes, specific parameter values were
selected, and the outcomes are delineated in Fig. 2.

The one-dimensional simulation results from [10] indicate that
GEF exhibits favorable performance when applied to smooth sig-
nals (e.g., Parabolic Function, Gaussian Function), requiring fewer
instances (N ) to minimize fitting errors. However, when being con-
fronted with sharp signals (e.g., Triangle Function, Exponential
Function), GEF tends to exhibit non-convergence. This observation
implies that while GEF is adept at fitting smoother regions in 3D
reconstruction, it may not yield optimal results for abrupt regions.
Consequently, the introduction of an additional basis function, such
as the Difference of Gaussians, becomes imperative.

Difference of Gaussians (DoG). The spatial domain expression
and Fourier transform of a DoG with a mean of 𝜇, a variance of 𝜎2

and a step size 𝜈 of the variance is shown below:

𝑒
− (𝑥−𝜇)2

2𝜎2 − 𝑒

− (𝑥−𝜇)2

2
(
𝜎2
𝜈

)
↔ 𝑒−𝑖𝜔𝜇

(
𝑒−

𝜔2𝜎2
2 − 𝑒−

𝜔2𝜎2
2𝜈

)
. (2)

As depicted in (2), DoG serves as a band-pass filter, with the
center frequency being contingent upon 𝜈 , as illustrated in Fig. 2
for simulation. Leveraging DoG as the basis function facilitates the
effective reconstruction of scene details at the desired frequency
by adjusting 𝜈 .

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The Gaussian function excels in reconstructing low-frequency
information, while the GEF demonstrates proficiency in capturing
smooth regions with minimal loss, even with a reduced number
of functions. On the other hand, the DoG proves effective in re-
constructing scene details. Leveraging the distinctive strengths of
these three basis functions, we introduce Tangram-Splatting. By
harnessing the low-pass property of Gaussians for large-scale scene
reconstruction, coupled with the shape adaptability of GEF and the
band-pass nature of DoG for fine-tuning, we achieve a remarkable
reduction in memory usage by 62.4% and a 44.2% increase in compu-
tational speed compared to 3DGS [14]. Notably, this improvement is
achieved without resorting to a plethora of small Gaussian spheres,
resulting in a more compact scene reconstruction.

3.2 Signal Estimation Modeling
To enhance the computational efficiency of 3DGS [14], we adopt a
novel approach in Tangram-Splatting, eschewing the construction
of three distinct models for scene reconstruction. Instead, we frame
the problem of scene reconstruction with different basis functions
as a signal estimation task.

Given that fast rasterization in 3DGS [14] is tailored for Gauss-
ian functions, we conceptualize the field space

∑𝑁
𝑗=1 𝜔 𝑗𝑒

− 1
2𝑥

TΣ−1𝑥 ,
formed by Gaussian spheres, as the observation space Z. Although
we receive a sample signal of 𝑁 Gaussian spheres from Z, it often
contains noise, such as neural network performance fluctuations
or inherent dataset noise, compromising the reconstruction quality.
To enhance the accuracy of estimating characteristic parameters
from noise-affected samples within the observation space Z, we
introduce a parameter space 𝜃 , where 𝜃0 = 𝛽 and 𝜃1 = 𝜈 . Here, 𝛽
dynamically adjusts the shape of the GEF, and 𝜈 adaptively tunes
the center frequency of the band-pass filter.

Utilizing maximum likelihood estimation, we refine 𝛽 and 𝜈 from
the noise-contaminated samples of Z. Subsequently, we adjust the
Gaussian spheres within Z to compose the estimation space Y,
comprising three distinct basis functions: Gaussian, GEF, and DoG.
This process, illustrated in Fig. 1, enables more accurate estimation
and modification of the observation space, leading to enhanced
scene reconstruction in low memory consumption.

3.3 Maximum Likelihood Estimation
The maximum likelihood estimate of GEF is discussed in work
[4], and this estimate is approximated in work [10] to a smoother
function:

𝜙 (𝛽) = 2
1 + 𝑒−𝛽

, (3)

where 𝛽 ∈ [0, +∞), (3) is a monotone increasing function. (3) gives
an estimate of the covariance in the estimation space, i.e., �̂� =

𝜙 (𝛽)𝜎 .
For the maximum likelihood estimation of DoG, we analyzed as

follows.
Theorem 3.1. (Maximum Likelihood Estimation of DoG)

The maximum likelihood estimate of the DoG function with respect

to the covariance:

�̂� =

√︂
𝜈 − 1

2 ln(2𝜈)

√√√
𝑁∑︁
𝑖=1

𝑥2
𝑖
. (4)

Proof. The likelihood function of DoG is as follows, and cross
terms in the formula are removed for easy calculation:

𝐿(𝑥 ;𝜎) = 𝑒
− (∑𝑁

𝑖=1 (𝑥𝑖 −𝜇)
2)

2𝜎2 − 𝑒

− (∑𝑁
𝑖=1 (𝑥𝑖 −𝜇)

2)
2
(
𝜎2
𝜈

)
. (5)

Then set 𝜇 = 0 and take the logarithm of both sides:

ln𝐿(𝑥 ;𝜎) = ln

𝑒
− (∑𝑁

𝑖=1 𝑥2
𝑖 )

2𝜎2 − 𝑒

− (∑𝑁
𝑖=1 𝑥2

𝑖 )
2
(
𝜎2
𝜈

)  . (6)

Take the derivative of both sides with respect to 𝜎 :

𝜕 ln𝐿(𝑥 ;𝜎)
𝜕𝜎

=
𝑒
−

∑𝑁
𝑖=1 𝑥2

𝑖

2𝜎2
∑𝑁

𝑖=1 𝑥
2
𝑖

𝜎3 − 𝑒

−
∑𝑁
𝑖=1 𝑥2

𝑖

2
(
𝜎2
𝜈

)
2𝜈

∑𝑁
𝑖=1 𝑥

2
𝑖

𝜎3

𝑒
−

∑𝑁
𝑖=1 𝑥2

𝑖

2𝜎2 − 𝑒

−
∑𝑁
𝑖=1 𝑥2

𝑖

2
(
𝜎2
𝜈

) . (7)

Let 𝜕 ln𝐿 (𝑥 ;𝜎 )
𝜕𝜎 = 0, we have:

�̂� =

√︂
𝜈 − 1

2 ln(2𝜈)

√√√
𝑁∑︁
𝑖=1

𝑥2
𝑖
. (8)

Since
√︃∑𝑁

𝑖=1 𝑥
2
𝑖
is a statistic of 𝜎 , we have the estimation formula:

𝜙 (𝜈) =
√︂

𝜈 − 1
2 ln(2𝜈) . (9)

Since the domain of 𝜙 (𝜈) does not contain 0 and is not differen-
tiable at 1

2 , in order to make the formula smooth, we let 𝜈 ∈ [2, +∞).
Through𝜙 (𝛽) and𝜙 (𝜈), we can use these two formulas to modify

the covariance of the Gaussian function in the observation space
Z, and obtain the covariance under GEF and DoG respectively, so
as to construct the estimation space Y of the span of the three
basis functions. Using an approach similar to work [10], we set
𝑆 (𝜃 ) = 𝜙 (𝜃 )𝑆 , which has the same benefit as directly modifying the
covariance matrix Σ of 3DGS [14]. Because the covariance matrix
Σ is a real symmetric semidefinite matrix. Σ = 𝑅𝑆𝑆T𝑅T, where 𝑅 is
the identity orthogonal matrix, 𝑆 is the diagonal matrix, and the
elements in 𝑆 are the root of the eigenvalues. The scaling matrix 𝑆
controls the degree of anisotropy of the covariance matrix.

4 METHODS
4.1 Preliminary
The geometry of 3DGS [14], begins with the mathematical expres-
sion of a 3D Gaussian function:

𝐺 (𝑥) = 1

(2𝜋)
𝑑
2 |𝚺|

1
2

exp
(
−1

2
(𝑥 − 𝜇)T

𝚺
−1 (𝑥 − 𝜇)

)
. (10)

It then describes how 2D projection is achieved through a view-
ing transformation (𝑊 ) and the Jacobian (𝐽 ) of an affine projective
transformation:

𝚺
′ = 𝐽𝑊 𝚺𝑊 T 𝐽T . (11)

4
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Additionally, it explains the positive semi-definite covariance of
the system, where the covariance matrix (Σ) is decomposed into
the product of scale (𝑆) and rotation (𝑅) matrices, denoting positive
semi-definite covariance:

𝚺 = 𝑅𝑆𝑆T𝑅T . (12)

3DGS [14] leverages the 3-dimensional Gaussian functions, ras-
terizationmethods and adaptive control (including cloning, splitting
and pruning methods) to approximate a 3D scene.

4.2 Diversification based on Shape Priors
The densify and clone operation in 3DGS [14] relies on thresholds for
position gradient and maximum value of the scaling matrix 𝑆 . 3DGS
[14] suggests that large position gradients indicate poor geometric
reconstruction, while small maximum values of 𝑆 trigger cloning
of small Gaussian spheres, potentially leading to excessive memory
usage and reduced computational efficiency. This highlights the
need to enhance the densify and clone operation to address under-
reconstruction issues.

In order to make the representation more compact, we allo-
cate the Gaussian form based on the shape priors. For the under-
reconstruction region, we avoid cloning a large number of small
Gaussian spheres by adding two basis functions, GEF and DoG,
on the basis of Gaussian function. The introduction of these two
basis functions with different properties can make our Tangram-
Splatting algorithm more compact in reconstruction like a Tangram
puzzle, thus compressing memory. We define the DoG formula for
position 𝑥 and the symmetric positive definite covariance matrix Σ
in three-dimensional space as follows:

𝐷 (𝑥) = 𝑒−
1
2𝑥

T (𝑅𝑆𝑆T𝑅T )−1𝑥 − 𝑒
− 1

2𝑥
T
(
𝑅

(
𝑆
𝜈

) (
𝑆
𝜈

)T
𝑅T

)−1
𝑥

, (13)

where 𝑅 is the rotation matrix of Σ and 𝑆 is the scaling matrix of Σ.
𝜈 is the step length between covariance of two Gaussians, always
larger than 2, and is updated by the neural network, while 𝜈 also
controls the anisotropic properties and center frequency of the
DoG. The GEF formula for position 𝑥 and covariance matrix Σ in
three-dimensional space is defined in [10]:

𝐿(𝑥) = 𝑒−
1
2 (𝑥 )

TΣ−1 (𝑥 )
𝛽
2
, (14)

where 𝛽 is the shape parameter of GEF and updated by network.
Thus, Eq. (10), (13), and (14) constitute the three basis function
representations of Tangram-Splatting.

4.3 Defination of the Adaptive Matrix
Inspired by the signal estimation theory in Sec. 3.2 and [10], we do
not need to explicitly construct three models for Eq. (10), (13), and
(14). We only estimate and modify the parameters of the covariance
matrix of the observation space Z through the maximum likelihood
theorem in the estimation space Y. This method not only saves the
training time, but also looks like the three basis functions spanning
the estimation space.

Since the essence of the modified covariance matrix 𝜎 is to cor-
rect the anisotropy property of the Gaussian function, and the
anisotropy property is reflected by the eigenvalues of the matrix,
we only need to correct the scaling matrix 𝑆 to achieve this purpose

(because 𝑆 is a diagonal matrix formed by the square root of the
eigenvalues). The correction method is defined by the following
two formulas:

𝑆 (𝛽) = 𝜙 (𝛽)𝑆, (15)

and

𝑆 (𝜈) = 𝜙 (𝜈)𝑆. (16)

Considering that it is necessary to increase the number of points
appropriately to achieve a better reconstruction effect in complex
scenes, we perform densify and clone operations in the first n it-
erations. This allows the algorithm to use the original Gaussian
spheres to reconstruct the scene over a wide coarse-grained range.
Then, in order to avoid the scene being filled with a lot of small
Gaussian spheres, instead of densify and clone operations, we re-
place the Gaussian spheres that satisfy the clone condition with
GEF or DoG which are optimized by the network. The choice of
GEF or DoG depends on the degree of anisotropy of the Gaussian
spheres satisfying the cloning condition. When the largest eigen-
value of the matrix 𝑆 is larger than k times of the second largest
eigenvalue (we set 𝑘 = 5), we consider its anisotropy property to
be significant, so the DoG with adaptive center frequency is used
to replace the Gaussian spheres. If not, GEF is used instead.

5 EXPERIMENTS
5.1 Datasets and Metrics
To assess the efficacy of our approach in memory compression and
training speed enhancement, we utilized the eigenvalues of the
Gaussian spheres as shape priors to construct three types of basis
functions and conducted experiments utilizing a diverse array of
real-world scene datasets. Specifically, we focused on two scenes
sourced from the Tanks&Temples dataset [16], nine scenes from the
Mip-NeRF360 dataset [2], and two scenes provided in Deep Blend-
ing [11]. These datasets were deliberately selected to align with
those utilized in the evaluation of 3DGS [14], ensuring comparabil-
ity and facilitating a comprehensive assessment of our method’s
performance.

We compared the average training time and memory consump-
tion required to store optimized parameters after 40,000 training
iterations. It is important to note that the stored parameters of point
clouds remain consistent with those used in 3DGS [14]. Further-
more, we employed standard metrics such as PSNR, L-PIPS, and
SSIM to quantitatively evaluate the reconstruction quality of test
views. To maintain consistency and avoid confusion regarding the
current state-of-the-art (SOTA) methods, we extracted numerical
results from previous works [2, 10, 14] and included them in Table
1.

5.2 Implementations
We utilized an A100 GPU for the majority of our tests. The learning
rate for the step parameter of the covariance of the DoG was set to
0.00025, with a step reset interval of 1000 iterations. The learning
rate for the shape parameter of the GEF, as well as the shape reset
interval and the density gradient threshold, were set according to
the specifications in GES [10]. Other hyperparameters and design
choices were consistent with those of 3DGS [14]. Additionally, to
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Figure 3: Qualitative Results. We compare our method to GES[10], 3DGS [14] and Mip-NeRF360[2]. From the top to bottom are
the scenes BICYCLE, GARDEN, STUMP, COUNTER, ROOM from the Mip-NeRF360 dataset [2], PLAYROOM and DRJOHNSON
from the Deep Blending [11], TRUCK and TRAIN from the Tanks&Temples dataset [16]. The reconstruction performances of
Tangram-Splatting are comparable to GES [10] and 3DGS [14].
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𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train↓ Mem↓ 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train↓ Mem↓ 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train↓ Mem↓

Plenoxels 0.626 23.08 0.463 26m 2.1GB 0.719 21.08 0.379 25m 2.3GB 0.795 23.06 0.510 28m 2.7GB
INGP 0.699 25.59 0.331 7.5m 48MB 0.745 21.92 0.305 7m 48MB 0.817 24.96 0.390 8m 48MB
Mip-NeRF360 0.792 27.69 0.237 48h 8.6MB 0.759 22.22 0.257 48h 8.6MB 0.901 29.40 0.245 48h 8.6MB
3D Gaussians-7K 0.770 25.60 0.279 6.5m 523MB 0.767 21.20 0.280 7m 270MB 0.875 27.78 0.317 4.5m 386MB
3D Gaussians-30K 0.815 27.21 0.214 42m 734MB 0.841 23.14 0.183 26m 411MB 0.903 29.41 0.243 36m 676MB
GES-40K 0.794 26.91 0.250 32m 377MB 0.836 23.35 0.198 21m 222MB 0.901 29.68 0.252 30m 399MB

Tangram-Splatting (ours) 0.793 26.95 0.225 20m 298MB 0.819 23.22 0.218 15m 150MB 0.902 29.59 0.253 23m 236MB
Table 1: Quantitative Results. This table provides a thorough comparison between our approach and established methods across
diverse datasets. By incorporating metrics such as SSIM, PSNR, and LPIPS, alongside training duration and memory usage, it
offers a comprehensive view of performance effectiveness. It is important to acknowledge that the training times for different
methods may have been calculated on different GPUs, which could affect comparability, but the results remain valid. Please
note that implicit representations, such as INGP [23] and Mip-NeRF360 [2], have limited memory as they rely on slower neural
networks for decoding. Notably, superior performance is highlighted in red.

accommodate differences in texture details among images from var-
ious datasets, we allowed densify and clone operations for different
scenes with fewer iterations, as elaborated in the Appendix.

6 RESULTS
6.1 Quantitative Results
We compared our method with 3DGS [14], GES [10], Mip-NeRF360
[2], InstantNGP [23] and Plenoxels [6] on the Tanks&Temples [16]
dataset, the Mip-NeRF360 dataset [2] and two scenes provided
in Deep Blending [11]. It is important to note that our Tangram-
Splatting approach primarily focuses on leveraging basis functions
with distinct properties to achieve a more compact representation.
As such, we only adopted the GEF basis functions from the GES
algorithm [10], and did not incorporate other innovative enhance-
ments introduced in GES [10] into our algorithm. The quantitative
results are presented in Table 1.

Compactness. From the perspective of compact representa-
tion, we compared our Tangram-Splatting algorithm, utilizing three
different types of anisotropic basis functions, with 3DGS [14] us-
ing solely anisotropic Gaussian spheres, and GES [10] employing
only GEF as the basis function. As illustrated in Table 1, for the
Tanks&Temples dataset, our method incurs a memory cost after
40,000 iterations that is 0.365 times that of the memory produced by
3DGS [14], and 0.676 times that of GES [10]. Our PSNR is increased
by 0.08 compared to 3DGS [14] while being decreased by 0.13 as
compared to GES [10], the difference is marginal.

Given the finer texture of scenes in the Mip-NeRF360 dataset [2],
we allowed certain iterations of density and clone operations for
certain scenes based on our experiences (e.g., BICYCLE, STUMP,
and GARDEN). Even with this adjustment, the memory cost after
40,000 iterations remains significantly lower, at 0.406 times and
0.790 times that of 3DGS [14] and GES [10], respectively, albeit
with a slight decrease in PSNR by about 0.26 compared to 3DGS
[14] and an increase of 0.04 compared to GES [10].

Regarding the scenes from Deep Blending [11], the PSNR is
increased by 0.18 compared to 3DGS [14] and only experiences an
average decrease of 0.09 compared to GES [10], while the memory
cost after 40,000 iterations is merely 0.349 times and 0.591 times
that of 3DGS [14] and GES [10], respectively.

In Table 1, it is evident that our algorithm significantly reduces
memory consumption while maintaining reconstruction quality.
Comparatively, our compression ratio indicates a remarkable re-
duction of 62.4% in memory usage compared to 3DGS [14], with
GES [10] achieving a slightly lower reduction of 43.2%. In terms
of PSNR, our algorithm’s performance falls between that of 3DGS
[14] and GES [10], with marginal deviations being observed.

Computational efficiency. By reducing the number of point
clouds, minimizing the computation of numerous small Gaussian
spheres, and streamlining densify and clone operations, our method
significantly decreases training time across the three aforemen-
tioned datasets. Additionally, in the replacement operations intro-
duced in Tangram-Splatting between different basis functions, we
optimize the process by replacing the computation of eigenvalues
of the covariance matrix Σ with direct sorting of the scaling ma-
trix 𝑆 , leveraging the mathematical properties of the covariance
matrix. This enhancement further contributes to the reduction in
training time. As indicated in Table 1, the training time for Tangram-
Splatting is decreased by an average of 22 minutes, 11 minutes, and
13 minutes, respectively, compared to 3DGS [14].

6.2 Qualitative Results
While compressing memory, we also need to consider the recon-
struction effect of Tangram-Splatting. The qualitative results on
the Tanks&Temples dataset [16] , the Mip-NeRF360 dataset [2] and
the two scenes provided in Deep Blending [11] are shown in Fig.
3. The results show that the overall effect of Tangram-Splatting is
comparable to the reconstruction effect of previous work, which is
hard to tell the differences of rendered images between Tangram-
Splatting and previous work. Only in some details (such as reflective
Windows in the GARDEN scene from the Mip-NeRF360 dataset [2],
shadows in the sky in the TRAIN scene from the Tanks&Temples
dataset [16]) the performances are lower than the Ground Truth.

6.3 Analysis of point clouds structure
We show the point clouds of the scene FLOWERS, COUNTER,
KITCHEN and ROOM from the Mip-NeRF360 dataset [2] from top
to bottom, as shown in Fig. 4. We showcase the comparisons of
point clouds produced by our Tangram-Splatting and 3DGS [14].
We observe that both Tangram-Splatting and 3DGS [14] effectively
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Figure 4: Point clouds Comparison. In order to check the dif-
ference between Gaussian distribution, we render the point
clouds result to make a comparison. The left hand side are
the results of Tangram-Splatting while the right hand side
are the results of 3DGS [14]. We can infer from the images
that our method can reduce the number of Gaussians needed
in reconstruction while maintaining the PSNR performance.

capture the outline contour of the 3D scene. However, Tangram-
Splatting achieves this with a significantly smaller number of Gauss-
ian counts, achieved by reducing redundant Gaussians that are un-
necessary for 3D reconstruction. We observe that our point clouds
are more sparsely distributed in specific areas: the white wall be-
hind the bicycle in the FLOWERS scene and the white wall behind
the sofa in the ROOM scene. This suggests that Tangram-Splatting
tends to reconstruct flat areas with fewer functions but larger vol-
umes.

6.4 Ablations
We re-run the GES [10] algorithm with the same parameter settings
as Tangram-Splatting to highlight the robustness of our algorithm
by comparing the reconstruction performance with approximately
the same memory. To ensure memory consistency and accurately

Ablation Study

𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Mem↓

GES-40K 0.903 29.578 0.253 305MB
Ours 0.902 29.591 0.253 236MB

Table 2: Ablation Results. We do the ablation study on the
Deep Blending dataset [11]. We try to make the Gaussian
count of GES [10] to our algorithm to see whether our repre-
sentation is better than GES’s [10] (whose paper has already
shown it is better than 3DGS’s [14]). We can indicate in the
table that our algorithm is a better representative method,
when our performance is slightly better and still reduces a
lot of memory cost.

Ground Truth GESOURS

Figure 5: Comparison of ablation experiments. We manage
memory consumption consistently and showcase the DR-
JOHNSON scene to demonstrate how the introduction of
basis functions with diverse properties enriches detail recon-
struction. Our Tangram-Splatting excels in reconstructing
the slit of the table, while the effect of GES [10] appears
blurry and includes white artifacts.

assess the reconstruction performance of both algorithms, we main-
tain the density iterations of GES [10] in line with those of Tangram-
Splatting, while leaving the remaining parameters of GES [10] un-
changed. We evaluate the entire scenes from the Deep Blending
dataset [11]. The quantitative results presented in Table 2 showcase
that, despite our lower memory consumption, our performance
consistently excels. Furthermore, the qualitative results, illustrated
in Fig. 5, highlight the proficiency of our method in reconstructing
intricate details, such as straight lines. We observe that the lines in
the magnified region of GES [10] appear more blurred compared to
ours, and there is a pronounced white artifact present in the lower
left corner, as shown in Fig. 5. This enhancement can be attributed
to the inherent anisotropy of GEF and DoG.

7 CONCLUSION AND FUTUREWORK
In this paper, we put forward a new method for a more compact
representation for 3D reconstruction. We leverage signals and sys-
tems perspective to make the base function more compact than
vanilla Gaussian function. However, our method somewhat revisits
the problem from the last century of designing base functions in
the field of signal processing. In the future work, we may borrow
the idea of implicit representation from Neural Radiance Field [21]
to use networks to represent a base function (while maintaining
the same speed) instead of manually designing a new compact base
function.
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