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A Broader Impact

This work is part of the burgeoning field of explainable AI which has a potential positive impact on
society including transportation, science and medicine. There is now broad consensus that many (if
not all) the Al systems deployed in real-world settings exhibit significant biases including gender
and racial biases. Understanding how these systems arrive at their decisions is a necessary first
step before these biases can be corrected. We described a method that provides explanations for
predictions made by black-box models that are as faithful as possible (in the sense that it reflects the
true inner-working of the model). We thus feel it is important for any explainability method to be
built on a rigorous theoretical framework. Here, we borrowed methods from Sensitivity Analysis
which has been extensively used to evaluate critical systems and that we showed compare favorably to
other approaches on fidelity benchmarks. Nevertheless, progress in explicability should not result in
a blind trust in the explanations of the models, which should always be used in the knowledge of their
associated flaws. Finally, the attribution methods presented in this work are sensitive to adversarial
attacks that can be used to hide the behavior of a model [62, 50] which is still an open problem in the
frame of attribution methods.

B Qualitative comparison

Regarding the visual consistency of our method, Fig. S| shows a side-by-side comparison between our
method and the other methods tested in the Fidelity benchmark. The images are not hand-picked but
are the first images from the ImageNet validation set. To allow better visualization, the gradient-based
methods were 2 percentile clipped. The only black box methods are Occlusion, Rise and St,. We
found that St, consistently provides a sparser map than RISE [8] while being equally consistent. On
the other hand, we found that in general, the gradient-based method provides the sharpest map, but
some are prone to failure (fourth row in the Fig. S1), which is a known problem [49].

C Effectiveness of modeling higher-order interactions

We introduced two approaches, Sobol (SATi) and Sobol signed (Sﬁ ), that combine effects of first- and
all higher-orders interactions between image regions. For comparison, Occlusion [2] only accounts
for the first order as it removes one region at a time, while RISE [8] accounts for higher-order by
removing around 50% of regions at a time. As seen in Table S, RISE already surpasses Occlusion
on ImageNet in term of Deletion scores, which may indicate that using higher-order information is
effective.

To further demonstrates that it is critical to model the higher orders, we evaluate Sobol first-order
(S;) on our Deletion benchmark. We report that Sobol (St,) reaches lower deletions scores (lower is
better) than Sobol first-order (S;) with 0.121 against 0.170 respectively on ResNet50v2, and similar
differences on VGG16, EfficientNet and MobileNetV2.

Method ResNet50V2  VGGI6  EfficientNet MobileNetV2
Sobol first-order (S;) 0.170 0.147 0.129 0.143
Sobol (St;,) 0.121 0.109 0.104 0.107

Table S1: Deletion scores obtained on 2,000 ImageNet validation set images. Lower is better.

D Efficiency of Sobol estimator

Regarding the estimation of the Sobol indices, we notice that we can derive a ‘brute-force’ (or often
called double-loop method [13]) estimator from the definition 2:

[ F(X)dX)PdX, — ([ f(X)dX)?
[ F(X)2dX — ([ f(X)dX)?

S, = ®)
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Figure S1: Qualitative comparison with other explainability methods. The heatmaps are normalized
and clipped at 2 percentile for Saliency, Guided-Backprop, DeconvNet, Smoothgrad and Integrated-
Gradients. Explanations are generated from a ResNet50V2.

However, one the main problems with this estimator is the cost of computation, which can be too
heavy, especially with complex models such as large neural networks. This difficulty is particularly
true for the calculation of total Sobol indices.

Since the perturbation masks are used to approximate these integrals, an efficient way to proceed is to
generate those masks from a low discrepancy sequences, also called Quasi-random sequences. These
sequences allow to efficiently integrate functions on the hypercube [0, 1]¢. In fact, they have a faster
convergence rate compared to ordinary Monte Carlo methods [35] (with f sufficiently regular). This
difference being due to the use of a deterministic sequence that covers [0, 1]% more uniformly. In our
experiments we used Sobol sequences [63], we refer the readers to [64] for more informations. The
efficiency of the estimator and the sampling is shown on Figures S2, S3 and S4 where our estimator
consistently converges faster than RISE [8].

We also perform an ablation study of the number of forwards on the Deletion benchmark. In Table S2,
we show that competitive scores can be obtained with lower number of forwards such as 0.151 in
Deletion score with 492 forwards instead of 0.121 with 3936 forwards which is our default number
of forwards.
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Figure S2: Spearman rank correlation of explanations as a function of the number of forwards,
compared to an explanation generated with 10, 000 forwards. The model used is a ResNet50V2.
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Figure S3: Spearman rank correlation of explanations as a function of the number of forwards,
compared to an explanation generated with 1, 0000 forwards. The model used is a VGG16.

E Explanation methods

In the following section, the formulation of the different methods used in the experiment is given. We
define f(x) the logit score (before softmax) for the class of interest. An explanation method provides
an attribution score for each input variables. Each value then corresponds to the importance of this
feature for the model results.

Saliency is a visualization techniques based on the gradient of a class score relative to the input,
indicating in an infinitesimal neighborhood, which pixels must be modified to most affect the score
of the class of interest.

9 (@) = |IVaf ()l

Gradient ® Input [57] is based on the gradient of a class score relative to the input, element-wise
with the input, it was introduced to improve the sharpness of the attribution maps. A theoretical
analysis conducted by [65] showed that Gradient ® Input is equivalent to e-LRP and DeepLIFT [66]
methods under certain conditions: using a baseline of zero, and with all biases to zero.

99 (@) = 2 O [|Vaf(z)
Integrated Gradients consists of summing the gradient values along the path from a baseline state

to the current value. The baseline is defined by the user and often chosen to be zero. This integral
can be approximated with a set of m points at regular intervals between the baseline and the point
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Figure S4: Spearman rank correlation of explanations as a function of the number of forwards,
compared to an explanation generated with 1,0000 forwards. The model used is a MobileNetV2.

Number of samples  Deletion scores

492 0.151
984 0.140
1476 0.132
1968 0.123
2460 0.121
2952 0.120
3444 0.120
3936 0.121

Table S2: Deletion scores averaged over 2,000 images of ImageNet validation set using ResNet50V2
and Sobol (St,). Lower is better.

of interest. In order to approximate from a finite number of steps, we use a Trapezoidal rule and
not a left-Riemann summation, which allows for more accurate results and improved performance
(see [67] for a comparison). The final result depends on both the choice of the baseline x( and the
number of points to estimate the integral. In the context of these experiments, we use zero as the
baseline and m = 80.

4" () = (2 — o) / Vaf (@ + alz — z0)))da
0

SmoothGrad is also a gradient-based explanation method, which, as the name suggests, averages the
gradient at several points corresponding to small perturbations (drawn i.i.d from a normal distribution
of standard deviation ) around the point of interest. The smoothing effect induced by the average
help reducing the visual noise, and hence improve the explanations. In practice, Smoothgrad is
obtained by averaging after sampling m points. In the context of these experiments, we took m = 80
and o = 0.2 as suggested in the original paper.

gSG(w) = IEsfv./\/(O,Icr) (vw.f(w + E))

Grad-CAM can be used on Convolutional Neural Network (CNN), it uses the gradient and the
feature maps A of the last convolution layer. More precisely, to obtain the localization map for a
class, we need to compute the weights o associated to each of the feature map activation A*, with &

of (z)
j A,

the number of filters and Z the number of features in each feature map, with of = % D

and
g%Y = mazx(0, Z as AF)
k
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Notice that the size of the explanation depends on the size (width, height) of the last feature map, a
bilinear interpolation is performed in order to find the same dimensions as the input.

Occlusion is a sensitivity method that sweep a patch that occludes pixels over the images, and use
the variations of the model prediction to deduce critical areas. In the context of these experiments,
we took a patch size and a patch stride of 20.

92¢ = f(z) — f(T(s,—q))

RISE is a black-box method that consist of probing the model with randomly masked versions of
the input image to deduce the importance of each pixel using the corresponding outputs. The masks
m ~ M are generated randomly in a subspace of the input space, then upsampled with a bilinear
interpolation (once upsampled the masks are no longer binary).

As recommended in the original paper, we used N = 8,000 and E(M) = 0.5 for all the experiments.

N

F Fidelity with Insertion

Insertion is an evaluation procedure introduced in [8] at the same time as Deletion. Deletion assumes
that the more faithful an explanation is, the faster the prediction score should drop when pixels that
are considered important are reset to a baseline value (e.g., gray values). Insertion is the opposite
of Deletion in that it assumes that the prediction score should go up faster for the most faithful
explanations when pixels from the original image that are considered important are added to a
baseline image (e.g., gray image). Metrics similar to Insertion are less common than Deletion in
the literature that is why we focus on Deletion in the main paper. Moreover, just like Deletion, the
Insertion score is largely influenced by the first steps [8]: the first pixels removed from the original
image for deletion, and the first pixels inserted in the insertion case. Maximizing Insertion means
exploring in a space close to the baseline, while maximizing Deletion means exploring a space around
the original image. We suggest that for this reason, the Insertion score is not as relevant as Deletion.

Method ResNet50V2  VGGI6  EfficientNet MobileNetV2
Random Baseline (ours) 0.233 0.166 0.115 0.138
Saliency [1] 0.363 0.303 0.229 0.253
y Guided-Backprop. [3] 0.377 0.242 0.229 0.361
8 DeconvNet [2] 0.307 0.221 0.229 0.166
2 Grad.-Input [57] 0.194 0.219 0.098 0.126
§ Integ.-Grad. [7] 0.264 0.237 0.143 0.166
SmoothGrad [32] 0.445 0.374 0.299 0.307
GradCAM [5] 0.524 0.438 0.393 0.419
x Occlusion [2] 0.154 0.115 0.152 0.135
° RISE [8] 0.546 0.484 0.439 0.443
& Sobol (‘SA‘Ti) (ours) 0.370 0.313 0.309 0.331
® Sobol signed (S’%) (ours) 0.258 0.290 0.204 0.211

Table S3: Insertion scores, obtained on 2,000 images from ImageNet validation set. Higher is better.
Random consists in inserting randomly among the pixels remaining at each step. The first and second
best results are bolded and underlined.

G Sanity check

We followed the procedure used by [49], namely the progressive reset of the network weights. We
used an Inception V3 [68] model, each images shows the St, explanation for the network in which
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Original Mixed 6 Mixed 5 Mixed 4 Mixed 3 Mixed 2 Mixed 1

Figure S5: Sanity Check model weights are progressively reinitialized from Mixed 6 to Mixed 1 in
InceptionV3 [68], demonstrating our method’s sensitivity to model weights.

the upper layers (from logits) were reset. Fig. S5 shows that our method passes the sanity check: it
turns out to be sensitive to the modification of the model weights.

H Word Deletion

For the bidirectional LSTM [69], the word embedding is in R3°° and is initialized with the pre-trained
GloVe embedding [70]. The layer has a hidden size of 64 (bidirectional architectures: 32 dimensions
per direction). The resulting document representation is projected to 64 dimensions then 2 dimensions
using fully connected layers, followed by a softmax and reached an accuracy of 89% on the test
dataset.

For the BERT-based models, we use the Transformers library from HuggingFace [71] and more
specifically the bert-base-uncased model. The final layer is tuned to minimize cross-entropy, with
Adam optimizer [72] and initial learning rate of 1e~3 to reach an accuracy of 92% on the test dataset.

The observation that local perturbation: with the majority of words present, gets a better score is
verified by playing on the threshold of the perturbation function. By decreasing the percentage of
words removed on average we observe that a better deletion score is obtained.

St,A50% SA90% Sr,A95%  Occlusion

Deletion 0.598 0.553 0.527 0.531

Table S4: Word deletion scores on the Bert based model when the perturbation threshold is modified
to control the average presence of words in each generated perturbated input. Lower is better.
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