
PinSQL: Pinpoint Root Cause SQLs to Resolve
Performance Issues in Cloud Databases

Xiaoze Liu†‡, Zheng Yin§, Chao Zhao†‡, Congcong Ge†‡, Lu Chen†, Yunjun Gao†,
Dimeng Li§, Ziting Wang§, Gaozhong Liang§, Jian Tan§, Feifei Li§

†Zhejiang University, ‡Alibaba-Zhejiang University Joint Institute of Frontier Technologies, §Alibaba Group, China
†{xiaoze, yuhao.zhao, gcc, luchen, gaoyj}@zju.edu.cn

§{yinzheng.yz, lidimeng.ldm, zizhou.wzt, gaozhong.lgz, j.tan, lifeifei}@alibaba-inc.com

Abstract—Deploying database services on cloud systems has
gained increasing popularity and has become a common practice
in the industry. However, the complicated cloud environments
make performance issues inevitable, which could violate the
service level guarantee if not addressed in a timely manner.
Among the various problems, anomalies in SQL queries are
the most commonly reported sources that cause performance
issues in database applications. These anomalous queries can be
divided into High-impact SQLs (H-SQLs) and Root Cause SQLs
(R-SQLs), representing the related SQLs that are correlated
with the anomalies and the ones that are the root causes of
the performance issue, respectively. In the presence of a large
number of queries, to pinpoint the R-SQLs is far more difficult
than to identify the H-SQLs. To address this challenge, we aim
at automatically pinpointing the R-SQLs to resolve performance
issues in cloud databases.

This paper introduces PinSQL, an autonomous diagnosing
system for Alibaba Cloud, which has four modules that are exe-
cuted sequentially, including data collection and pre-processing,
anomaly detection, root cause analysis, and repairing actions.
First, the related performance metrics and query logs from
monitored cloud database instances are collected and aggregated
as the data sources. Then, based on these inputs, efficient
anomaly detection is conducted in real-time. Upon the detection
of an anomaly, the root cause SQLs are pinpointed through
tracking the propagation chain of the involved SQLs. Finally,
repairing actions are suggested and then executed on R-SQLs
to address the anomalies. Extensive experiments on an Alibaba
production system show that PinSQL can achieve an 80%
accuracy for pinpointing the top-1 R-SQLs and successfully
resolve the database performance issues resultantly.

Index Terms—cloud databases, root cause, performance
anomaly

I. INTRODUCTION

With the development of cloud computing technologies,

many mission-critical services have been deployed on the

cloud, where the services are usually hosted on cloud database

systems such as Alibaba Cloud RDS [1], AWS RDS [2], Mi-

crosoft Azure SQL Database [3], and Google Cloud SQL [4].

However, the complicated cloud environments make perfor-

mance issues inevitable, which could violate the service level

guarantee if not addressed in a timely manner. Among the

various problems, it has been reported that 70% of them

are caused by database problems [5]. These performance

anomalies could lead to potential service interruptions and thus

adversely affect customers’ business operations. In order to

provide services with high elasticity, availability, and stability,

cloud database vendors have paid much attention to efficiently

diagnosing performance issues, such as drastic increases in

CPU usage, spikes in the number of running threads, large

fluctuations in business traffic flows, and so on.

To proactively prevent the performance issue, it is not

sufficient to detect anomalies alone, and it is also crucial

to diagnose the root cause of detected anomalies. Many

studies have investigated the problem of root cause anal-

ysis (RCA for short) of performance anomalies on cloud

databases, including classification-based, Top-SQL-based, and

Autoregressive-based approaches. Specifically, classification-

based approaches [6]–[9] divide the causes into a limited

collection of types. Top-SQL-based approaches [2], [10]–

[12] select the highest SQLs via sorting performance metrics.

Autoregressive-based approaches [13]–[15] analyze causal de-

pendency between variables on multivariate time-series data.

In real-world operations and maintenance (O&M) scenarios,

most performance anomalies in cloud databases are caused by

a large number of concurrent and competing transactions [6].

Among those anomalous SQL queries, Root Cause SQLs
(R-SQLs), such as business scenario change (QPS sudden

increase), poor SQL statements, and MDL locks/Row locks,

are the keys to resolve the performance anomalies. Although

existing studies have significantly reduced human labor for

identifying anomalies, they cannot pinpoint the R-SQLs to effi-

ciently resolve the performance issues. Moreover, many exist-

ing works [6]–[9] aim to optimize or tackle system problems.

However, system problems caused by R-SQLs might not need

special treatment. For example, for solving the CPU bottleneck

caused by some CPU-intensive R-SQLs, it is not necessary

to apply instance scaling. A more reasonable method is to

perform targeted optimization on R-SQLs instead of system

problems, which can reduce the impact of anomalies, thereby

improving the overall stability of the database instance.

As a large number of SQL queries exist in cloud databases,

it is difficult or costly for DBAs to manually find out the

anomalous queries that directly or indirectly affect key per-

formance metrics. Driven by this, we aim to pinpoint R-SQLs

automatically. Considering various types of SQLs, we usually

aggregate SQL queries into different SQL templates [16]–[19].

Hence, instead of finding out specific root cause queries, we

focus on SQL templates in this paper. Performance anomalies

caused by SQL queries are related to a high active session of

the database instance [20] (to be detailed in Definition II.4),

2549

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00236

where active session denotes the number of active SQL queries

each timestamp, and an active session of a template consists

of the number of active SQL queries that belong to this same

template. Once a group of anomalous SQLs (i.e., R-SQLs)

appear, High-impact SQLs (H-SQLs for short), being the R-

SQLs themselves or SQLs affected by R-SQLs, will appear

simultaneously. The H-SQLs directly affect the instance per-

formance, incurring the anomalies of active session detected

by the anomaly detector. We describe this entire process of

generating performance anomalies as an anomaly propagation

chain: R-SQLs→H-SQLs→active session. We aim to locate

R-SQLs through the anomaly propagation chain. Three chal-

lenges exist as below when pinpointing R-SQLs.

Challenge I: How to effectively obtain the individual active
session of templates without degrading the database instance
performance? To model the impact of templates on the in-

stance active session, we need to obtain the individual active

session of each template. A straightforward method is to

utilize the total response time of templates, as the response

time of queries is positively correlated with the active session

metric [20]. However, this method is inaccurate because the

response time of SQL queries cannot fully represent whether

they are active. In order to obtain accurate active session

of templates, conventional approaches utilize database built-

in monitoring systems [21]. However, such monitoring sys-

tems will produce performance overhead, especially in large-

scale production environments. Hence, it is difficult to obtain

accurate active sessions of templates without degrading the

database instance performance.

Challenge II: How to correctly model the impact of SQL
templates on the instance active session? After obtaining the

individual active session of each template, we need to model

the impact of each template on the instance active session in

order to locate H-SQLs, as H-SQLs are those templates that

directly cause the sudden change of active session. Templates

that have a tremendous amount of traffic flow are often

regarded as H-SQLs by Top-SQL-based approaches. However,

these templates may not be H-SQLs. This is because stable

traffic queries may not be affected by R-SQLs on large cloud

database instances. For example, given R-SQLs UPDATE
queries, they only block other queries that operate on the same

table but will not affect queries that examine other tables.

Motivated by this, templates that directly cause an anomaly

should have both considerable traffic and a similar trend with

the active session. Commonly used correlation coefficients

only consider how similar the trends of two time-series data

are, but ignore the scale. Thus, it is difficult to locate H-SQLs.

Challenge III: How to distinguish R-SQLs from massive
SQLs through the located H-SQLs? Existing industrial solu-

tions only provide a ranking of templates by metrics (e.g.,

total response time for the active session), leaving the task of

finding the root cause to DBAs. However, the active session

metric might not be affected too much by R-SQLs, while

the H-SQLs affected by R-SQLs lead to high active session.

Thus, it’s tough for DBAs to pinpoint R-SQLs by simply

ranking the related metrics of templates during the anomaly

Monitor

Query LogCloud Database Anomaly

Performance Metric

SQL Template Metrics

2304

A84F

E6DC

E6DC

E6DC

2304

A84F

2304

CC98

SQL STATEMENT

UPDATE... SET...

SET...FROM..

SELECT...WHERE

SELECT...WHERE

SELECT...WHERE

UPDATE... SET...

SET...FROM..

UPDATE... SET...

ROLLBACK

SQL STATEMENT

UPDATE... SET...

SET...FROM..

SELECT...WHERE

SELECT...WHERE

SELECT...WHERE

UPDATE... SET...

SET...FROM..

UPDATE... SET...

ROLLBACK

SQL_ID

Fig. 1. Diagnosing DB Instance Anomaly with SQL Query Logs. The
query log shows the unique SQL template ID (SQL ID for short) and SQL
Statements.

time. For example, assume a SALES table in the database

instance. A set of SQL queries to UPDATE the table arrives,

which adds exclusive locks on many rows in this table. Thus,

running SELECT threads on this table are forced to wait due

to exclusive locks, resulting in a sudden increase of active

session metric. Finally, the increase of the active session metric

is detected by anomaly detectors. In this case, the SELECT
queries are H-SQLs, while UPDATE queries are R-SQLs.

Therefore, it is difficult to find out R-SQLs, especially in

database instances with complicated business queries from

different applications.

To address the challenges stated above, we propose a system

PinSQL. As depicted in Fig. 1, PinSQL analyses aggregated

metrics from query logs to find R-SQLs that causing anomaly

cases. PinSQL consists of four modules, i.e., Data Collection
And Anomaly Detection Module, High-impact SQL Identifi-
cation Module, Root Cause SQL Identification Module, and

Repairing Module. First, Data Collection And Anomaly Detec-

tion Module collects and aggregates performance metrics and

query logs from cloud database instances. It also detects per-

formance anomalies in real-time by performance metrics. Once

an anomaly is detected, following the anomaly propagation

chain, High-impact SQL Identification Module is triggered to

locate H-SQLs. Thereafter, based on the result of High-impact

SQL Identification Module, Root Cause SQL Identification

Module select possible R-SQLs through a clustering-based

strategy. To react to the anomaly, PinSQL comes with a

Repairing Module to suggest/execute actions on R-SQLs, to

solve the anomalies. Furthermore, we integrate PinSQL into

the Database Autonomy Service (DAS) of Alibaba Cloud [22].

We summarize the key contributions as follows:

• We develop PinSQL, an autonomous diagnosing system that

includes two key features (i.e., root cause analysis and au-

tomatic repairing), to solve the problem of pinpointing root

cause SQLs for the performance issues in cloud databases.

• We introduce a Data Collection And Anomaly Detection

Module, which estimates the active session of each template

with little performance overhead on database instances.

• We propose a High-impact SQL Identification Module,

which fuses the multi-level impact of SQL templates on

active session to effectively identify H-SQLs.

• We present a Root Cause SQL Identification Module, which

2550

utilizes a clustering-based strategy to select possible R-

SQLs via their trends on execution number. It accurately

distinguishes R-SQLs based on H-SQLs by recognizing the

trends of execution number.

• Comprehensive experimental results on real-world anomaly

cases demonstrate the superiority of our proposed PinSQL
for identifying and handling R-SQLs, compared against

existing approaches.
II. PROBLEM STATEMENT

In this section, we formalize our problem of pinpointing

R-SQLs and related concepts.

Definition II.1 (Time-series Data). A time-series data is a se-

quence of data sample points: X = {x1, x2,, xN}, xi (1 ≤
i ≤ N) ∈ R, where xi (1 ≤ i ≤ N) is an observation value

at timestamp ti, and thus, X is an process observation during

the time period [t1, tN] with a fixed time interval tN−t1
N .

We usually use 1 second or 1 minute as the time interval

to record or synchronize the time-series data. To simplify

the notation, when accessing an element by its subscription

in a time-series data, we assume that directly using the

timestamp is equivalent to using the index (i.e., the distance

from the timestamp to the starting time divided by interval).

In other words, we can use both Xt1 and X1 to obtain x1.

Although these two methods are different in implementation,

the transformation between the two methods is trivial.

Definition II.2 (Anomaly Case). An anomaly case con-

tains data for root cause analysis. It is denoted as C =
(M,Q, as, ae), where M is the set of performance metrics,

Q is the set of SQL templates, and [as, ae) is the detected

anomaly time period (as and ae are the timestamps when the

anomaly starts and ends, respectively).

An anomaly is defined as a collection of multiple anomalous

phenomena of performance metrics, including spike up/down,

level shift up/down [9] observed in the performance metric.

Spike indicates a sudden increase/decrease then recover, while

level shift indicates a sudden increase/decrease without recov-

ering for a long period. The anomaly period is the period

between the anomaly phenomena is detected and it recovers.

In order to identify the root cause of the anomaly case C,

we collect the logs and metric data during the time period

[as − δs, ae) rather than [as, ae), where δs is an offset to

collect more information. Here, δs is introduced as R-SQLs

usually appear before the actual anomaly case. To simplify the

notation, we define ts = as − δs and te = ae.

Definition II.3 (SQL Template). A SQL template (or SQL

digest) is a composite of multiple SQL queries that are

structurally similar but might have different literal values.

The SQL template replaces hard-coded values in the SQL

statement with a placeholder (e.g., ‘?’). For example, a SQL

template SELECT * FROM user table WHERE uid = ?
includes the following SQL queries:
• SELECT * FROM user table WHERE uid = 123456
• SELECT * FROM user table WHERE uid = 654321
• SELECT * FROM user table WHERE uid = 123321

For each SQL query q in the template Q (∈ Q), we

collect the query response time (or DB time, execution time)

tres(q), the total number of examined rows by the query

#examined rows(q), and the timestamp (in milliseconds) that

the query reaches the database t(q).
Definition II.4 (Performance Metric). Each Performance Met-

ric M ∈M, indicating one specific system performance, is a

time-series data sampled every second by monitoring system

from the database instance during the period [ts, te).
In this paper, we only focus on the active session metric (i.e.,

the number of active queries at the current timestamp), which

is the most significant performance metric in the industry [20],

[23] for troubleshooting performance issues. The reason is

that most performance issues are always accompanied by

anomalous features (e.g., spike or sudden increase) of the

active session metric. To prove the importance of active

session, we categorize the performance issues based on the

experience of senior expert DBAs in Alibaba Cloud, and divide

R-SQLs into three categories: (1) The performance issues of

the first category are caused by business scenario changes

(e.g., Business spike in Double 11 holiday or Black Friday),

which will lead to workload changes (e.g., an increase of

active session metric). (2) The performance issues belonging

to the second category are caused by poor SQL statements

(e.g., the large number of examined rows, multiple joined

tables, unreasonable index, resource-intensive queries, etc.),

which will lead to the instance resource bottleneck (i.e.,

cpu usage, iops usage, mem usage, buffer pool usage). In

this scenario, the active session will increase since more

intermittent slow queries [9] will be pilled up. (3) The per-

formance issues belonged to the third category are caused by

lock-related problems: (i) Metadata locks that are produced

mainly by Data Definition Language (DDL) statements (e.g.,

CREATE, ALTER, etc.), accompanied with the status of

“Waiting for table metadata lock”. In this scenario, as the

entire database is locked, millions of affected queries will be

pilled up, resulting in a significant increase of active session.

(ii) Row locks accompany the spike of the rowlock metrics

(e.g., Innodb row lock waits and Innodb row lock time in

MySQL [24]). In this scenario, the conflicted queries are

slowed down, increasing active session of the instance. There-

fore, instead of using hundreds of performance metrics, we

only focus on analyzing the anomalous phenomenon of active

session metric, which can cover most performance problems.

Based on the above definitions, we model Pinpointing Root

Cause SQLs as a ranking problem, which is defined below.

Definition II.5 (Pinpointing Root Cause SQLs). Given an

anomaly case C = (M,Q, as, ae), we aim to find a ranked

list (i.e., a subset of the total SQL templates) to store R-SQLs,

where higher-ranking templates are more likely to be the root

causes. In addition, we also aim to find another ranked list to

store H-SQLs, where higher-ranking templates are more likely

to be the direct causes of performance anomalies.

III. SYSTEM OVERVIEW

Our system PinSQL, as shown in Fig. 2, automatically

identifies and handles R-SQLs for performance anomalies in

cloud databases. In PinSQL, Data Collection And Anomaly

2551

SQL Throttle

Query

Optimization

Instance

AutoScale

Repairing

History Trend

Verification
current

1d ago 7d ago

3d ago

Cluster Filtering

Rank with

Direct Cause

Cumulative

Threshold

Root Cause

SQL

Ranking

SQL Template

Clustering

Cloud Database
Performance

MetricsQuery Logs

Data Collection & Anomaly

Detection

Individual

Active

Session

Trend-level

Scale-level

Scale-trend-level

Weighted

Final Score

High-impact SQL Identification

Root Cause SQL Identification

Feature

Extraction

Basic

Perception

Phenomenon

Perception

Fig. 2. Overview of PinSQL System

Detection Module firstly collects and pre-processes the stream-

ing raw data (i.e., Performance Metrics data & Query Logs

data) from millions of database instances in real-time. Note

that, the pre-processed data will be stored persistently in

our offline storage. During the pre-processing, the changes

of performance metrics and the anomalous phenomenon will

be detected as possible anomalies. The Data Collection And

Anomaly Detection Module of PinSQL is executed in real

time and uninterruptedly. The anomaly detection module

evokes the root cause analysis modules when an anomaly

is detected with the aggregated time-series data. Thus, the

High-impact SQL Identification Module and Root Cause SQL

Identification Module only execute when an anomaly is de-

tected, and they are executed asynchronously. When an

anomalous phenomenon is detected, following the anomaly

propagation chain, High-impact SQL Identification Module is

first triggered to locate H-SQLs, and then, Root Cause SQL
Identification Module pinpoints R-SQLs through a clustering-

based strategy. Finally, Repairing Module performs various

autonomous actions to handle R-SQLs.

IV. DATA COLLECTION AND ANOMALY DETECTION

MODULE

Data Collection And Anomaly Detection Module is divided

into three components, as described below.

A. Data Collection & Pre-processing

In this component, we first deploy collectors into database

instances to collect the streaming raw data, including Perfor-

mance Metrics data [20] & Query Logs data. Performance

Metrics are used for database instances, and Query Logs

data are used for SQL queries. In terms of Query Logs

data, all the information of each SQL query is collected.

Specifically, the query information consists of the basic in-

formation (e.g., detail SQL statement, related tables), metric

data (e.g., query response time tres, the number of examined

rows #examined rows), and timestamp. The data is asyn-

chronously stored into Alibaba Cloud LogStore [25] in real-

time. As the data is asynchronously stored, it has little impact

on database instances [26], [27]. PinSQL deletes the collected

time-series data after a period to keep the log store’s size

within a specific limit. Specifically, the data will be invalidated

after three days (or another user-customized expiration period).

After the Query Log is collected, Kafka and Flink provide

stream data collection and aggregation to collect sufficient

time-series data for anomaly detection algorithms. We apply

Kafka to subscribe to the topics produced by those collectors

simultaneously. Finally, Flink aggregates the streaming data

according to different time granularities (i.e., 1 second and 1

minute), i.e., SQL queries are aggregated into SQL templates.

As massive SQL queries are aggregated into an SQL tem-

plate, the amount of data will be greatly reduced, making it

possible to save time-series data during a long period (e.g., 30

days) We can conveniently obtain SQL templates [16]–[19]

by its definition, as discussed in Section II. Next, we detail

how to aggregate the performance metrics for SQL templates.

We hash the template via a unique SQL ID and aggregate the

query metric data (i.e., the response time tres and the number

of examined rows #examined rows every second/minute) of

all the queries that belong to this template. We use sum,

mean, count functions to aggregate query metrics for each

SQL template Q. Formally, we define the metric sequence of

a SQL template as: metricQ,t = Aggregate({metric(q), ∀q ∈
Q where t(q) ∈ [t, t + �t)}), where metricQ,t denotes

specific metric data for SQL template Q at time t, and

�t ∈ {1s, 1min} is the time interval to determine the

granularity of time series. We aggregate the data at 1-minute

interval or 1-second interval depending on the demands.

In addition, we also utilize extra storage for real-time

anomaly detection and efficient root cause analysis, including

lower and upper bounds of performance metrics for real-time

anomaly detection and individual active session for H-SQL

identification. However, the amount of this data is far less

compared with the size of detailed query logs. Overall, the

storage space is sufficient and does not reach limitations.

B. Anomaly Detection

The Anomaly Detection component is responsible for de-

tecting possible anomalies in the production. We integrate a

variety of methods [9], [20], [28]–[30] and then build a real-

time anomaly detection component. The Anomaly Detection

component detects anomalies round-the-clock based on ma-

chine learning and fine-grained data monitoring. We deploy the

anomaly detection system on the functional computing service

of Alibaba Cloud [31].

2552

Call SHOW STATUS
time(q2) t3

q3

q4

q2

q1

q5

q7

q6

t+1
Timeline

t

t1 t2

Possible Active Session is 6

time(q2)+rt(q2)

SQL Queries

t t+1 t+2 t+3t-1 t t+1 t+2 t+3t-1

z

Fig. 3. Illustration of restriction in collecting Active Session value
of [t, t + 1). There are 7 running queries {q1, q2, ..., q7} in current
DB instance. Each query starts at t(qi) and ends at t(qi) + tres(qi).
We assume that the collector calls SHOW STATUS in t1 and gets
response in t2. The active session is collected by observing how many
sessions are currently running at a time point t3 between t1 and t2.
At t3, the collector will observe q2, q3, q4, q5, q6, q7 as active, so the
current active session is 6. In reality, t3 is not known and could be
any time point between [t, t + 1). Taking q2 as an example, only
when t3 ∈ [t, t(q2) + tres(q2)), q2 will be observed as active.

The Anomaly Detection component consists of Ba-

sic Perception Layer and Phenomenon Perception Layer.

After receiving the data from Data Collection & Pre-

processingcomponent, the Basic Perception Layer can detect

multiple anomalous features (e.g., spike up/down, levelshift,

etc.). Then, the Phenomenon Perception Layer can be con-

figured by the combination of anomalous features of dif-

ferent performance metrics to recognize different anomalous

phenomena. It utilizes iSQUAD [9] to decide the type of

the anomaly phenomenon. In the current implementation, we

support recording and detecting anomalies via more than 40

performance metrics [32]. Users can customize which anomaly

they concern the most from a variety of performance metric

problems and which repairing action for a specific type of

anomaly (to be discussed in Section VII). For example, the

proliferation of Active Session can be configured as [ac-

tive session.spike], meaning if a spike of the active session

metric is detected, it will be considered as an anomaly. The

default configuration is to handle anomalies in three metrics,

including active session, CPU usage, and IOPS usage (i.e.,

the percentage of the I/O per second w.r.t. the I/O capacity

of instance). Once the configured anomaly is detected, Data

Collection And Anomaly Detection Module will construct an

anomaly case with the timestamp of the first detected anomaly

and the current timestamp as the anomaly duration. Then it

will trigger the next module. Users can also configure to ignore

anomalies when their duration is less than a certain length of

time. If multiple anomaly phenomena of the same type occur

close in time (less than a configurable threshold). They will

be merged into a longer anomaly.

C. Individual Active Session Estimation of Templates

Recall that the active session metric of a database instance

(denoted as sessiont) is the number of SQL queries being

executed by the database instance at the current timestamp

t. Similarly, we define individual active session of a template

Q as the number of SQL queries of Q (Q ∈ Q) that being

executed at the current timestamp, denoted as sessionQt.

Individual active sessions can be precisely obtained by

database built-in monitoring systems such as MySQL Per-

formance Schema [33]. However, it will lead to performance

overhead on the database instance. Our experimental results

reveal that the performance degradation could be up to 30% (to

be discussed in Section VIII-F). In addition, it is unnecessary

to compute the statistics data inside the database instance con-

stantly. As a result, we need a more lightweight alternative to

estimate each active session. To find the lightweight alternative

for estimating each active session, we turn our attention to

query logs (as described in Section IV), since the response

time of SQL queries is highly correlated with sessiont [20].

To be more specific, each SQL query qi is active during

[time(qi) + rt(qi)), where time(qi) is the start time of qi,
and rt(qi) is the corresponding response time. Hence, it is

very easy to estimate the active session (e.g., counting the

number of active SQL queries) at each time. For example,

the active session is 6 at t1 but is 5 at t2. Note that, we use

SHOW STATUS statement to obtain sessiont (i.e., the active

session) as the ground truth. However, as shown in Fig. 3, we

do not know the accurate time (i.e., t3) when SHOW STATUS
executes. This means that sessiont could be obtained at any

time point between [t, t + 1). In order to estimate t3, we

split 1 second into several buckets and we find the bucket

where active session obtained by SHOW STATUS equals to

the estimation using the response time. After obtaining the

time (i.e., the bucket) when SHOW STATUS executes, we

can estimate the current active session of each SQL template.

For example, assuming that one SQL template contains q1 and

q2, the active session of this template is 1 at t3 when SHOW
STATUS executes.

In the following, we provide more details about how to

estimate sessiont according to query logs (i.e., the start time

and the response time). For a time period p = [ts, te),
the probability of a query q is observed to be active is

as: P (observed(p, q)) = |p∩[t(q),t(q)+tres(q))|
|p| . As each active

query contributes 1 to sessiont, we calculate the expecta-

tion of sessiont in current time period p = [t, t + 1) as∑
Q∈Q

∑
q∈Q P (observed(p, q)). Our purpose is to make

the estimated sum of active session close to the recorded

value from the database instance. To reach a more accurate

estimation of sessiont, we split one second [t, t + 1) into

K buckets bi = [t + i
K , t + i+1

K) (1 ≤ i ≤ K), and

then calculate the expected active session for each bucket bi
as E[sessionbi |Q)] =

∑
Q∈Q

∑
q∈Q P (observed(bi, q)). For

every second, we select one bucket bi ⊂ [t, t + 1) that the

estimated active session is the closest to the observed value,

indicating the value is most likely observed in the bucket

bi. Formally, selt = argmin
bi∈{b1,...,bK}

|sessiont − E[sessionbi |Q]|.
Through splitting buckets, we can locate in which bucket the

statement collects data. Take Fig. 3 as an example. Most

of the inaccuracy comes from the fact that t3 is randomly

distributed. We can determine whether t3 is in one bucket

in this approach by comparing the estimated with ground

truth. By limiting t3 into one specific bucket, we can im-

2553

prove the accuracy of the estimation by only considering one

bucket. Thus, we can obtain the individual active session

of each template using queries that take place during the

bucket. Formally, we can estimate for each SQL template Q,

the individual active session every second as: sessionQ =
{∑q∈Q P (observed(selt, q)), t ∈ {ts, ts + 1, ..., te}}.

Note that, in some cases, SHOW STATUS cannot finish in

one second, i.e., session t will be obtained at a time point

outside [t, t + 1). If such situation emerges, we can extend

our algorithm by splitting N (N > 1) seconds [t, t + N)

into multiple bucket for each second t. However, it rarely

happens, which can be ignored. Besides, if SHOW STATUS
cannot finish in one second, it is most likely caused by an

anomaly, which could be detected and recorded to respond

before SHOW STATUS fails. Hence, in our paper, we assume

that session t is obtained at any time point between [t, t +

1). Although this assumption is not true, it will rarely affect

the performance of PinSQL.

Discussions. Compared with DB built-in monitoring systems,

this estimation is more general and is not limited to a specific

DB engine version. Moreover, our method is more lightweight,

contributed by two reasons below. First, we can deploy this

calculation outside the database instance while DB built-

in monitoring systems cannot. The additional performance

consumption of the user database instance is only contributed

by collecting the query log data asynchronously, which is

neglectable [26], [27]. Second, the estimating process is trig-

gered only when an anomaly is detected, reducing unnecessary

performance overhead.

V. HIGH-IMPACT SQL IDENTIFICATION MODULE

In this section, we introduce the High-impact SQL Identifi-

cation Module of PinSQL. The High-impact SQL Identifica-

tion Module utilizes the estimated individual active session of

each SQL template as a measuring metric and then ranks H-

SQLs based on a weighted score to measure the impact of SQL

templates on the active session. After obtaining the sessionQt

of each template Q, we continue to determine whether each

template is a H-SQL. That is to say, we further calculate

the possibility of active session anomaly caused by these

templates. Specifically, whether a piece of SQL causing active

session anomaly is determined by fusing the trend-level, scale-

level, and scale-trend-level scores. We first briefly introduce

the correlation coefficient, then we describe each level score.

Finally, we describe how to fuse these scores.

Correlation Coefficient. In this paper, we use Pearson cor-

relation coefficient [34], a common practice in time-series

analysis to measure the correlation of two time-series X and

Y : corr(X,Y) = cov(X,Y)
σXσY

= E[(X−μX)(Y−μY)]
σXσY

.

Trend-level. For a template Q, if the trend of sessionQt

does not match sessiont, then Q is not the SQL template

that leads to a high active session. Trend-level score is

used to help filtering uncorrelated templates. In anomaly

cases, we should mainly focus on when the anomaly oc-

curs. The trend-level score calculates the weighted Pearson

coefficient between sessionQt and sessiont, i.e., trend(Q) =

corr(sessionQt, sessiont;W) calculates the weighted co-

variance: cov(X,Y ;W) =
∑

i wi·(xi−m(X;W))(yi−m(Y ;W))
∑

i wi
.

where W ∈ [0, 1]N is a weight and m(X;W) =
∑

i wixi∑
i wi

is

the weighted mean. We want to emphasize the time-series data

of the anomaly period, but the data near the anomaly period

is also informative. Therefore, a smooth weight function is

applicable, which makes the weight gently grows before the

anomaly period, and retains a high value during the whole

anomaly period, finally gently descents after the anomaly.

We construct the weight through a Sigmoid-based function

to highlight the anomaly period: Wt = σ(t−as

ks
) + σ(ae−t

ks
)−

1, t ∈ [ts, te), where σ(x) = 1
1+e−x is the Sigmoid function

and ks ∈ (0,+∞) is a smooth factor. For this Sigmoid-based

function, we have:

lim
ks→0

Wt =

{
0 if t 	∈ [as, ae)

1 otherwise
and lim

ks→∞
Wt = 1. (1)

If ks approaches 0, the weighted correlation is equivalent to

calculating correlation only on the anomaly period. If ks ap-

proaches +∞, it is equal to the naive Pearson correlation. We

can adjust to what extend the anomaly period is emphasized

by altering the smooth factor.

Scale-level. Scale-level score determines the impact of the

template on sessiont. For example, some affected templates

may well correlate with sessiont, while having executed little

times. Such templates can hardly make the sessiont fluctuate

significantly. The total active session of templates over the

anomaly time period can well present their scale. To obtain

a uniform value of scale that is consistent with the Pear-

son coefficient, we use min-max normalization to normalize

the result into [−1, 1]. We define the scale-level score as

scale(Q) = 2 ·minmaxQ∈Q(
∑

t∈[as,ae)
sessionQt)− 1.

Scale-trend-level. Scale-trend-level score targets at SQLs that

have high impacts on the active session when the anomaly

phenomenon occurs, while having low impacts on the ac-

tive session during other periods. For a SQL template Q,

the scale-trend-level score is computed as the ratio of its

active session over the total active session: scale trend(Q) =
corr(sessionQt

sessiont
, sessiont). We calculate the correlation between

sessionQt

sessiont
and sessiont, in order to make SQL templates with

large scale-trend-level scores having high impacts on active

session during the anomaly period.

Weighted Final Score. The above three score functions all

have the range of R
N → [−1, 1]. Hence, we can fuse the

scores by the weighted sum to measure how a template Q
impacts the active session metric. Here, we use the weighted

sum, which is simple but effective to control the weights of

three different levels. For example, some templates may have

a large stable traffic flow, which is also stable during the

anomaly period, resulting in high scale-level scores. The trend-

level score should filter these templates. Therefore, a large

weight of trend-level score is required. We define impact(Q) =
β · trend(Q) + scale trend(Q) + α · scale(Q), where α =
corr(sessionQmaxt, sessiont), Qmax = argmaxQ∈Q scale(Q)
and β = −α are weights to adjust the scale and trend

2554

API1

API5

API2 API3

API4
API6

API1 Code block

CALL API2

FOR

IF

CALL API4

CALL API3

User

Database

Cluster 1

Cluster 2

SQL Template Metrics of Cluster 1

SQL Template Metrics of Cluster 2

API5 Code block

CALL API6

API5 Code block

CALL API6

API2 Code block

IF

CALL API4

API2 Code block

IF

CALL API4

Fig. 4. An example of a microservice architecture accessing the cloud
database in a complex business scenario. API1, API2, and API5 are Web
back-end applications. API3, API4, and API6 encapsulate the interfaces for
database access.

respectively. These two weights detect whether the largest Q
by sessionQt have the greatest impact on the active session,

and adjust the proportion of Scale-level and Trend-level score

accordingly. Finally, the templates with a high impact score

denote the direct cause of anomaly phenomena.

VI. ROOT CAUSE SQL IDENTIFICATION MODULE

In this section we introduce the Root Cause SQL Identi-

fication Module of PinSQL. From the production practices,

we use two key observations to derive whether a template is

R-SQL: (i) this template needs to affect a H-SQL, or that it is

H-SQL; (ii) this template is usually a new SQL or SQL that

has different #execution trend from its history. Based on these

two findings, we develop a cluster-based method to locate R-

SQLs. To identify R-SQLs, we firstly cluster SQL templates

according to their trend of #executed SQLs, based on the

observation that SQLs with similar trends usually have similar

business logic. Next, we filter the template clusters according

to H-SQLs ranking. Finally, we verify whether the template is

R-SQL with the historical trend of the templates.

SQL Template Clustering. Following the anomaly propaga-

tion chain, after locating H-SQLs, we need to find R-SQLs that

may affect the H-SQLs. Specifically, for each template in H-

SQLs, we need to find its corresponding R-SQLs. An intuitive

method is to classify templates into different business logic

because SQLs in the same business logic are most likely to

affect each other. For example, two templates under the same

business logic are more likely to access the same table, causing

lock waits. The best way to distinguish different businesses is

to analyze the App ID and code corresponding to the business

logic. Unfortunately, this information belongs to user privacy

for cloud databases and is not accessible. However, we have

an alternative approach: cluster the templates with trends of

#execution. This benefits from popular modern design patterns

in back-end applications, as described below.

Modern implementation of business logic follows the mi-

croservice architecture [35], which helps back-end program-

mers reduce code coupling. Multiple microservices will call

each other to form a DAG with a call relationship in a user’s

request. Therefore, the number of calls to all APIs in this

DAG will maintain a relatively consistent trend. Take Fig. 4

as an example, in this scenario, the request trend of SQL

statements between API3 and API4 is roughly similar, and

it is unlikely that they and API6 have an obvious relationship.

Therefore, we can use trends to classify SQL requests from

API 1 to 4 into one category and to classify SQL requests from

API 5 to 6 into another category. The #execution metric of

templates is shown in the right half of the figure. The template

time-series trend in each business cluster is relatively similar.

Moreover, the back-end architecture designers often need to

ensure the idempotence [36] of the interface, which means one

business process will be accompanied by multiple templates

being serial or parallel. The trend of #execution correlates

naturally in these SQLs. This relationship is contributed by

both the business logic and the back-end system architecture.

We can cluster SQL templates by #execution.

Clustering with Trend of #execution. To cluster massive

SQL data through these trend characteristics of SQL queries,

we first calculate the pairwise Pearson correlation coefficient

of time series data for all templates. Then we can use a

threshold τ to get an adjacency matrix. We also add perfor-

mance metrics to serve as auxiliary information for clustering

SQLs. They are added as temporary nodes to form a denser

graph, providing more accurate clusters. The edges of these

temporary nodes are constructed similarly to SQL template

nodes. These operations are general and could be applied to

any other metric or logs by simply converting them to time se-

ries. Formally, adjX,Y = corr(metric(X),metric(Y)) > τ
(∀(X,Y) ∈ (Q∪M)×(Q∪M)), where metric(X) indicates

corresponding time-series data of X (e.g., #executionX if X
is a SQL template). We calculate the connected components

of adj as the clustering result (denoted as D). Note that these

temporary nodes will be filtered from the cluster results since

they are not SQL templates.

Ranking Clusters for Filtering. After that, we have obtained

clusters of multiple templates. We continue to find clusters that

may contain R-SQLs. The templates of the same cluster belong

to the same business and are more likely to have an influence

relationship. We assume that if H-SQLs exists in a cluster, then

it is very likely that R-SQLs is also in this cluster. By ranking

the impact, we can already obtain the ranking of possible H-

SQLs. We then use the largest impact value of all templates in

a cluster to sort all clusters. For a cluster c ∈ D, we define the

impact of the cluster as impact(c) = maxQ∈c impact(Q).
Cumulative Threshold. We can keep top-k clusters based

on the impact of clusters. Nevertheless, we have to make

sure to choose as many R-SQLs as possible while narrowing

the range of choices. Because the instance session anomaly

may be caused by multiple H-SQLs with different trends,

these H-SQLs with different trends will also be affected by

different R-SQLs. Those templates are divided into different

clusters. Directly selecting the cluster with the top-k impact

or filtering based on a threshold of impact cannot cover

these situations. In response to these situations, we designed

an approach with a cumulative threshold. Specifically, we

iteratively calculate a sum of sessionQ for every Q in tem-

2555

plates selected and calculate the correlation with the active

session until the threshold is reached. More specifically, we

first sort the clustering result D by impact(c) c ∈ D in

descending order, and then iterate Kc times, where Kc is a

hyperparameter. In each iteration i, we sum up all the template

sessions Si =
∑

j∈[1,i]
∑

Q∈Di
sessionQ, and check whether

the correlation score corr(Si, session) is larger than or equals

to threshold τc. Once the threshold is reached, we terminate

the iteration and select templates of top-i clusters in D.

History Trend Verification After the above steps, we have

got the possible R-SQLs set. The last stage is to use historical

data to verify whether they are R-SQLs or not. For a per-

formance anomaly, the number of executions of its R-SQLs

will definitely have a sudden increase because it is difficult for

stable traffic to cause anomalies. Such a sudden increase may

not be noticeable, as the instance is flooded with queries in the

anomaly period. For example, a newly appeared template may

have a relatively low number of executions. Such templates

may be covered by other templates with apparent growth in the

trend. As a result, we need to look back at the history of each

template to see whether the trend is actually increased. For a

template that may be R-SQL, we use historical data to confirm

whether it is R-SQL. We record the metric time-series of the

template in Nd ∈ {1, 3, 7} days ago compared with [ts, te)
in each case. We perform anomaly detection over the four

time-series data and only keep templates that satisfy these two

rules: (i) Anomaly detected during the anomaly period. (ii)

No anomaly was detected during the relative anomaly period

of Nd days ago. This ensures that the number of executions of

this template during the anomaly period has abruptly increased

and has not been dramatically increased in the last few days.

We apply Tukey’s rule [37] to detect anomalies efficiently.

Root Cause SQLs Ranking. To obtain the final ranking of R-

SQLs, we rank the remaining templates using the correlation

between templates’ number of execution and session.

VII. REPAIRING MODULE

To further improve the practical values of PinSQL, we

develop a Repairing Module that recommend problem-solving

actions on R-SQLs. We fuse multiple autonomous actions on

R-SQLs based on different situations and user demands. Users

can enable the automatic execution of suggested actions. If it

is not enabled, these actions will not be executed. The main

functionality of PinSQL is to pinpoint the problematic SQLs

for the downstream repairing algorithms. Thus, we leave the

space for user customization with a rule-based configuration.

We also do not consider the dependencies of SQLs and only

apply actions on the detected SQL templates. The repairing

actions are treated as black boxes and could be separately

executed on both SQL queries and the instance. In our

current implementation, we provide three actions, including

SQL Throttling, Query Optimization, and AutoScale, while

other actions can be easily integrated into PinSQL. The

default configuration is first to utilize SQL Throttling and then

Query Optimization, while users can switch on/off actions for

Fig. 5. Example configuration code of problem-solving actions on R-SQLs.
This example shows how to configure query optimization operation on R-
SQLs that #examined rows sudden increase, when an anomaly of CPU usage
metric is detected. Users can define the anomaly status to receive notifications
via DingTalk or SMS. The anomaly types come from the Phenomenon
Perception Layer, and the algorithm is adapted again for detecting the anomaly
phenomenon of SQL template metrics.

different types of anomalies (shown in Fig. 5). The provided

actions are described below.

SQL Throttling. When PinSQL detects R-SQLs, it will

suggest throttling R-SQLs. Specifically, the PinSQL throttles

R-SQLs by applying rate-limiting thresholds to these R-SQLs,

where the rate-limiting threshold is configurable. Users can

also customize the time duration of the throttling, the metric

thresholds to throttle R-SQLs, and whether to kill R-SQLs.

Query Optimization. PinSQL automatically reports R-SQLs

to query optimizer. By default, it is configured to exe-

cute only when the anomaly phenomenon detected by Phe-

nomenon Perception Layer that is related to CPU/IO usage

(e.g. [cpu usage.spike]). Our optimizer combines a series of

optimization techniques following previous studies, including

automatic indexing [38], SQL query rewrite [39], and so on.

We suggest DBAs to optimize the database as the optimizer

suggests for R-SQLs.

Instance AutoScale. In many cases, increased SQL traffic

is a phenomenon known in advance by the business depart-

ment, where we should not apply throttling. If the business

department has such a demand, we recommend that DBAs

turn on AutoScale. We build the AutoScale action similar to

AWS Auto Scaling [40]. It can automatically upgrade the

performance configuration of the instance, such as adding

read-only nodes or expanding the number of CPU cores.

VIII. EXPERIMENTAL EVALUATION

In this section, we detail the experimental setting and

evaluate the performance of our proposed system.

A. Experimental Setup

Evaluated Dataset. For evaluating the performance of Pin-
SQL in real-world scenarios, we randomly sample a set of

real-life anomaly cases collected from the internal databases of

Alibaba online services, termed as ADAC. These services have

two characteristics, i.e. (i) high database loads: contributed

by the success of Alibaba’s business in China and the world,

millions of users around the world have been using these

services, resulting in high database loads; and (ii) complex
business logic: different groups develop diversified services in

different application areas, such as online retail, corporate col-

laboration, and logistics, resulting in complex business logic.

More specifically, ADAC contains 168 anomaly cases. These

cases come from 36 unique DB instances with 15.9 cores

and 87.9GiB Memory on average. ADAC records anomaly

2556

time series for 1,653 minutes, during which 9.4 billion queries

are executed. The queries are aggregated into 77,450 unique

templates, with each anomaly case containing 3,357 templates

on average. In ADAC, the ground truth of both R-SQLs and

H-SQLs are two sets of templates, indicating all possible root

causes and direct causes of anomalies. They are manually

labeled by DBAs. We would like to emphasize that labeling

R-SQLs in anomaly cases is non-trivial. It requires expert

knowledge of the database to compare each SQL template’s

metric data and understand the underlying business logic of

the corresponding database instances.
Evaluation metrics. We use Hits@k (H@k), k ∈ {1, 5},
Mean Reciprocal Rank (MRR), and running time (Time) as the

evaluation metric for identifying R-SQLs and H-SQLs. Here,

H@k denotes the proportion of correctly found templates in

the top-k-ranks. MRR represents the average of the reciprocal

ranks of the correctly found template, where reciprocal rank

reports the mean rank of the correctly found template derived

from all the templates (denoted as |Q|). Formally, MRR =
1
|Q|

∑|Q|
i=1

1
ranki

. The correctly found template is considered

the first in the rank list that appears in the annotated set.
Competitors. We compare PinSQL with the following four

competitors, each of which is derived from Top SQLs, a

common practice adopted by various products. All the com-

petitors output a rank of anomalous SQLs detected. We

evaluate these methods by separately comparing the ground

truth of R-SQLs and H-SQLs with the ranks produced by

them. The competitors include (i) Top SQLs of #execution
(Top-EN): The execution number is a vital metric for SQLs.

The sudden increase of #execution may indicate a sudden

change in business logic; (ii) Top SQLs of total response time
(Top-RT): It is consistent with ranking the average active
session [21] metric, the most important metric to present the

instance load [23], [41] of each template during the anomaly

period provided by Performance Insights of Cloud vendors;

(iii) Top SQLs of #examined rows (Top-ER): This metric is

highly correlated with CPU usage and may indicate possible

CPU anomaly; and (iv) Top SQLs of all metrics (Top-All): It

tries to simulate the process that DBAs manually sort multiple

metrics and then find out the most likely root cause from top

pages. We use Top-All to denote the best results of the variants

of Top SQLs (including Top-EN, Top-RT, and Top-ER).
Recall that Autoregressive methods and classification-based

ones also can solve the root cause analysis problem. Neverthe-

less, in the current implementation, we skip the evaluation of

the comparison between the proposed PinSQL and the above

methods. The reasons why we neglect the comparison are as

follows. We conduct experiments for several Autoregressive

methods, i.e., cMLP [13], cLSTM [13], and SCGL [15]. Con-

cretely, cMLP and cLSTM use neural network models, MLP

and LSTM, respectively, to calculate the Granger causality.

SCGL [15] uses deep convolution networks and low-rank

approximation. However, they all face the problem of huge

dependency function space and gradient explosion during the

training process (e.g., as the scale of the SQL templates is

large), thus failing to give any reasonable result. For the

classification-based methods, since they are difficult to extend

to the problem of finding R-SQLs, it is not suitable for

PinSQL to compare these methods.

Implementation Details. All of the parameters are set to their

default values. We set δtstart = 30 min to obtain sufficient

data for diagnosing. For highlighting the anomaly period, we

set the smooth factor ks = 30. For clustering, we set the

threshold τ = 0.8. For ranking and filtering clusters, we set the

threshold for the cluster number Kc = 5 and the cumulative

threshold τc = 0.95. Our study was implemented in Python

3.6 and tested on an Alibaba Cloud ECS server with an Intel

Xeon E5-2682 CPU and 96GB memory.
B. Main Results

First, we evaluate the performance of PinSQL compared

against four competitors in terms of both effectiveness and

efficiency. Table I summarizes H@1, H@5, MRR, and Time

results of PinSQL and its competitors.

Effectiveness Evaluation. It is observed that PinSQL outper-

forms other competitors when identifying both R-SQLs and H-

SQLs. Specifically, when identifying R-SQLs, PinSQL brings

about 47% improvement in H@1 over the best baseline. This

is because H-SQLs are different from the R-SQLs in many

anomaly cases. In large-scale and complex business scenarios,

most of the R-SQLs are not ranked top by the metrics.

However, a latent relationship still exist between R-SQLs and

the anomaly phenomenon through H-SQLs. Thus, we can find

the root cause by looking for such a relationship. PinSQL is

able to find the relationship by tracing back the anomaly prop-

agation chain with consideration of business logic and SQL

execution trends, resulting in significantly better results. When

identifying H-SQLs, PinSQL gains ∼32% improvement in

H@1 over the best baseline (i.e., Top-All). It is attributed

to the following two reasons. First, PinSQL computes the

individual active session, which enables possible H-SQLs to

correlate with the instance session directly. Computing indi-

vidual active session of H-SQLs achieves better performance

on correlation with H-SQLs than of solely using aggregated

response time, as verified in Section VIII-F.

Second, PinSQL fuses multi-level information including

trend-level information, scale-level information and scale-

trend-level information of SQL templates. This further en-

hances the accuracy of PinSQL for identifying H-SQLs. In

addition, Top-RT achieves the best performance among all

the evaluated competitors that identify H-SQLs with a single

metric. This demonstrates that the active session metric of

instance is highly correlated with SQL response time.

Efficiency Evaluation. We now turn our attention to the effi-

ciency evaluation. As shown in Table I, the time consumption

of Top-SQL-based methods is negligible. This is because Top

SQL can get aggregated values from the stream processed

data provided by Data Collection And Anomaly Detection

Module. It only needs to sort an array that may contain several

thousand elements. The time consumption of our method is

14.94s on average. It consists of the following parts: estimating

the individual active sessions (8.01s), ranking the possible

H-SQLs (0.47s), clustering and filtering (1.01s), and finally,

2557

TABLE I
OVERALL RESULTS OF IDENTIFYING R-SQLS AND H-SQLS OF PINSQL

AND ITS COMPETITORS (H@k ARE IN PERCENTAGE).

R-SQLs H-SQLsMethod H@1 H@5 MRR Time H@1 H@5 MRR Time
Top-RT 31.0 56.0 0.40 2.73ms 64.3 97.0 0.75 2.73ms
Top-ER 13.7 47.6 0.28 2.27ms 44.0 67.3 0.52 2.27ms
Top-EN 6.5 6.5 0.08 2.26ms 3.0 10.7 0.08 2.26ms
Top-All 33.3 56.0 0.42 - 66.1 97.0 0.76 -
PinSQL 80.4 83.9 0.82 14.94s 97.6 98.8 0.98 8.48s

PinSQL w/o Direct Cause SQL Ranking
PinSQL w/o Trend-scale-level Score
PinSQL w/o Trend-level Score

PinSQL w/o Cumulative Threshold

PinSQL w/o History Trend Verifaction

PinSQL w/o Weighted Final ScorePinSQL PinSQL w/o Estimate Session
PinSQL w/o Scale-Level Score

H
it

s
(%

)

Evaluation Metrics

M
R

R

83

85

79

81

77

75

0.83

0.85

0.79

0.81

0.77

0.75
Hits@1 Hits@5 MRR

(a) R-SQLs

H
it

s
(%

)

Evaluation Metrics

M
R

R

90

100

70

80

60

50

0.9

1

0.7

0.8

0.6

0.5
Hits@1 Hits@5 MRR

(b) H-SQLs
Fig. 6. The result of ablation on identifying both R-SQLs and H-SQLs.

history trend verification (5.45s). Although the running time of

PinSQL is slower than that of competitors, the running time is

still significantly lower than the averaged anomaly time (∼540

seconds). Thus, it is able to diagnose R-SQLs in real-time.

C. Ablation Study

Second, we conduct ablation studies for identifying both

R-SQLs and H-SQLs, with results plotted in Fig. 6.

Ablation on Identifying R-SQLs. By replacing the Cu-
mulative threshold component with a fixed Top-1 cluster,

the performance of PinSQL drops in H@1 (PinSQL vs.

PinSQL w/o Cumulative threshold). This verifies that con-

sidering the combined effect of SQLs from multiple different

businesses enables PinSQL to identify sufficient R-SQLs

for anomaly cases. Furthermore, if R-SQLs are clustered

separately with corresponding H-SQLs, our system with the

Cumulative threshold can also be regarded as a remedy for the

clustering algorithm. By replacing H-SQLs with Top-RT (the

best baseline on identifying H-SQLs) for ranking the clustering

results, the results drop by 3.6% in H@1 (PinSQL vs. PinSQL
w/o Direct Cause SQL Ranking). It verifies that correctly

identifying H-SQLs following the anomaly propagation chain

is essential for identifying R-SQLs. By removing the History
Trend Verification, the results drop by 1.2% in H@1 (PinSQL
vs. PinSQL w/o History Verification). We have already ranked

the filtered result by the correlation coefficient of #executions

with instance active session.

Ablation on Identifying H-SQLs. By replacing variable

parameters α and β with a constant value 1, the performance

of PinSQL drops by 3.6% in H@1 (PinSQL vs. w/o PinSQL
Weighted Final Score). This shows that considering the effect

of templates with huge stable traffic flows is important for

identifying H-SQLs. By replacing the individual active session

with aggregated response time metric, the results drop by

31.5% in H@1 (PinSQL vs. PinSQL w/o Estimate Session).

It verifies that the estimated value of the active session has

2000 4000 6000

C
o
m

p
u

ti
n

g
 t

im
e

(s
)

0

15

30

45

60

Number of Templates

0

15

30

45

60

Anomaly period length(s)

C
o

m
p

u
ti

n
g

 t
im

e
(s

)

2000 4000 60002000 4000 6000

Fig. 7. The red dots indicate the computing time of PinSQL on anomaly
cases. The black curve is obtained by using polynomial curve fitting algorithm
to show the relationship between the number of SQL templates (or length of
the anomaly) and the computing time of PinSQL. Note that, we randomly
keep 50 red dots for a clear view of the results.

Time
08:00 12:00 16:00 20:00 24:00

R
eso

u
rc

e U
sa

g
e(%

)

0

25

50

75

100

A
c
ti

v
e
 s

es
si

o
n

0

15

30

45

60

A
c
ti

v
e
 s

es
si

o
n

0

15

30

45

60 Active session CPU Usage IOPS UsageAA sa e

Fig. 8. A real-world case from production systems. The presented metrics
include CPU usage, IOPS usage, and active session.

a great impact on the accuracy of correlation. By separately

removing each level infusing (including PinSQL vs. PinSQL
w/o Scale level, PinSQL vs. PinSQL w/o Trend level, and

PinSQL vs. PinSQL w/o Trend-scale level), H@1 drops

significantly in every case. This verifies that each level is

necessary for locating H-SQLs. Among these levels, we also

observe that, by removing each component, H@5 performs

stably in general. The reason is that large-scale templates

usually have a great impact on the active session.

D. Scalability Analysis

Next, we provide a scalability analysis of PinSQL. Specifi-

cally, we report the computing time of PinSQL by varying the

number of SQL templates and length of the anomaly period, as

shown in Fig. 7. The first observation is that the running time

of slowest cases (i.e., the anomaly takes place longer than an

hour) does not exceed 1 minute, proving that the running time

of PinSQL is efficient for diagnosing anomalies. The second

observation is that the running time is positively correlated

with the length of the anomaly period, while it does not show

a clear relationship with the number of SQL templates. This

is because the running time of PinSQL is more sensitive to

anomaly period length. Another possible reason is that the

collected anomaly cases are not sufficient.

E. Case Study: Repairing Module

Then, we present a case study on the Repairing Module to

further demonstrate the superiority of PinSQL for handling

anomalies. We first describe a real-world case taken from the

production environment to discuss the following two actions

that heavily rely on the output R-SQLs of the identification

module, i.e., SQL Throttling and Query Optimization . Then

discuss the long-term impact of the Query Optimization action.

Real-world case. In this case, all the actions are made by a

user (i.e., a system maintainer of a downstream application

2558

using Alibaba Cloud Database) under the instruction of our

customer service. We demonstrate the key performance metrics

of the user’s instance, as depicted in Fig. 8, where the anomaly

is resolved using PinSQL. In the first place, the user does

not subscribe to the function of PinSQL. It is worth noticing

that in the DAS product of Alibaba Cloud, pinpointing and

resolving R-SQLs with PinSQL are charged functions, while

other functionalities, such as warning of anomalies, actions

on a specified SQL, and Top-SQL-based algorithms, are free.

When an anomaly occurs (red rectangle), the user receives a

notice from DAS and thinks it will soon disappear. However,

the metrics do not recover after several hours. Then the user

manually applies SQL throttling on Top-1 SQL, which has

reduced the anomaly phenomenon (yellow rectangle). How-

ever, the throttling action makes running the specific queries

slow, thus sabotaging the downstream experience. Thus, the

user then switches off SQL throttling(orange rectangle), and

the anomaly phenomenon reappears. After a few hours, the

user enables PinSQL, and it starts to analyze the root cause

(blue rectangle). PinSQL then identifies the R-SQLs. PinSQL
follow the default setting to execute both SQL throttling and

Query Optimization. It recommends a SQL optimization ac-

tion, but does not recommend SQL throttling since the metrics

do not reach the default threshold. The user then approves

the optimization and executes the optimization action, and the

performance metrics are gently back to normal. PinSQL does

not recommend SQL throttling since the metrics do not reach

the default threshold. The first observation is that when the

user switches off SQL throttling on Top-SQLs, the anomaly

phenomenon reappears. This is because throttling Top-SQL

does not solve the anomaly fundamentally. However, taking

proper actions on R-SQLs can make the response time of

the affected SQLs (that originally have slowed down due to

R-SQLs) become normal, thereby fundamentally solving the

anomaly case. Compared with Top SQLs, taking actions on

R-SQLs is more practical in real-life scenarios. The second

observation is that after throttling Top SQL, the values of

metrics are still higher than their normal values. This is

because multiple SQLs are usually affected by R-SQLs. SQLs

with high total tres rankings are among these affected SQLs.

After throttling Top SQLs, other affected SQLs can still make

the values metrics high. In addition, it is infeasible for us to

perform SQL throttling on all of them. The third observation is

that the slow SQL detector doesn’t activate query optimization,

which further verifies the superiority of PinSQL.

Long-term impact of Query Optimization. Since the Query

Optimization action modifies the production environment, it

would be necessary to further evaluate the long-term impact

of this action on R-SQLs. We accumulated 141 Query opti-

mization suggestions approved by DBAs in two months. We

divide them into two categories, one is based on slow SQL

detection as in previous studies [7], [9], [11], and the other

category contains R-SQLs from PinSQL. Poor SQLs always

occupy huge resources. After optimization, queries of these

statements are expected to occupy fewer resources, resulting

in smaller metrics. Therefore, whether a query optimization

TABLE II
STATISTICS OF AVERAGED GAINS ON EACH METRIC.

#Optimized SQLs tres Gain #examined rows Gain
R-SQLs 85 92.44% 91.17%
Slow SQLs 56 82.59% 81.56%

TABLE III
CASE STUDY: ESTIMATED ACTIVE SESSION

Pearson Correlation MSE
Estimate By RT 0.54 324450.57
Estimate w/o buckets 0.92 8205.82
Estimate (K=10) 0.96 7617.44

suggestion is useful is determined by how much the averaged

metrics of SQL template have dropped (denoted as gain of

optimization). We collect the averaged metric data, including

tres and #examined rows of each query, corresponding to

the SQL template 24 hours before and after optimization.

We report the averaged gain based on the collected metrics

data in Table II. As shown in the table, on average, the gain

from R-SQLs can increase by 10% from optimizing slow

SQLs to optimizing R-SQLs of performance anomalies. This is

because slow SQLs may be due to a combination of reasons.

Although slow SQL statements themselves may have room

for optimization, they may also be slowed down by other

SQLs [9], making less gain in query optimization. Finding

R-SQLs can eliminate the possibility of slowing down due to

the influence of other SQLs, thereby increasing the gain in

optimizing statements.

F. Case Study: Individual Active Session

Last, we present a case study for the individual active

session of SQL templates, a key metric for diagnosing perfor-

mance anomalies [23]. The conventional approach uses built-in

monitoring systems to obtain accurate individual active ses-

sions. However, the database instances supporting large-scale

cloud services come from online businesses. Changing the

configuration of these databases will make their performance

unstable, which may further cause severe damage to Alibaba’s

global business. As a result, it is unable to compare our

individual active session calculation with Performance Schema

directly. Recall that if each individual is correctly estimated,

the sum of active sessions of all templates should be close

to the active session of the database instance. As mentioned

in Section IV-C, the proposed method can accurately estimate

the individual active session of each SQL template according

to the SQL query logs. Hence, we use the estimated active
session for diagnosing performance anomalies alternatively.

We utilize Mean Squared Error (MSE) and Pearson corre-
lation to determine the error between the sum of estimated

time-series and the real active session of the corresponding

database instance. We conduct evaluations on three following

methods: (i) Estimate by RT, which directly uses the response

time metric of all SQL queries per second; (ii) Estimate w/o
buckets, which utilizes our estimation method without splitting

buckets; and (iii) Estimate (K = 10), which employs our

estimation method and splits each second into 10 buckets. As

shown in Table III, estimating the active session of database

instance via our approach brings about 1.7× improvement in

2559

TABLE IV
QPS AND QPS DECLINE RATE (DENOTED AS ↓QPS, IN PERCENTAGE) OF

DIFFERENT CONFIGURATIONS.

Config Read Only Read Write Write Only
QPS ↓QPS QPS ↓QPS QPS ↓QPS

normal 72,983 0.00 41,867 0.00 37,400 0.00
pfs 63,769 12.62 37,914 9.44 34,232 8.47
pfs+ins 65,485 10.27 34,477 17.65 34,406 8.01
pfs+con 64,964 10.99 34,740 17.02 33,305 10.95
pfs+con+ins 53,870 26.19 29,935 28.50 26,033 30.39

terms of correlation with the active session. In addition, by

splitting each second into ten buckets, the accuracy of total

active session estimation further improves. This is because

it chooses the buckets by minimizing the error of individual

active sessions. This estimation of the individual active session

makes the impact of templates on instance active session

becoming nearly linear, which guarantees high quality of

followed up approaches in PinSQL.

Overhead of Built-in Monitoring Systems. We use MySQL

built-in monitoring system (i.e., Performance Schema) to

demonstrate the performance overhead of built-in monitoring

systems. We design a stress test using a 4-core, 16GB cloud

database instance with MySQL 8.0 kernel to do a 32-thread

concurrent test. The database contains 20 tables with 10

million rows [42]. We record the QPS curve under the follow-

ing configs: normal, pfs, pfs+con, pfs+ins, and pfs+con+ins,

where normal indicates PERFORMANCE SCHEMA off, con

indicates all consumers are turned on, and ins indicates all

instrumentation is turned on. The QPS and QPS decline

rate (QPS of current config vs. QPS of normal config) are

recorded until the instance reaches its CPU bottleneck. We can

observe that the performance of switching on pfs considerably

drops from 8.01% to a maximum of 30.39%, varying on

the configuration, as shown in Table IV. As a result, it is

generally not recommended to open Performance Schema on

large-scale cloud databases. Conversely, PinSQL is an external

tool that analyzes logs outside the database instance, having

little impact on the database performance.

IX. RELATED WORK

In this section, we review the work related to our problem.

Database Diagnostics Systems. many works have been fo-

cused on diagnosing DBMS, including tuning [43], optimiz-

ing [44] and workload management [45]. There are also self-

driving DBMS with the functionality of forecasting workloads

to optimize planning [46]. They have successfully improved

the performance of DBMS by optimizing the system perfor-

mance. However, these optimizing techniques focus on the

overall system performance. In contrast, PinSQL aims to

identify SQLs that cause or are highly related to performance

anomalies, increasing the robustness of cloud DBMS.

Root Cause Analysis in Cloud Databases. Most recent

studies on root cause analysis for cloud databases rely on clas-

sification algorithms. These classification-based approaches

focus on classifying the root cause of anomalies by dividing

the causes into a limited collection of types such as Poorly

Written Query and Workload Spike. Specifically, DBSherlock

utilizes ensemble causal models [6] to classify root causes.

openGauss [7], [8] use LSTM to classify root causes. Fur-

thermore, probabilistic graphical models are implemented in

Explainit [47] for causal inference to analyze root causes;

iSQUAD [9] focuses particularly on intermittent slow queries

and adopts the Bayesian case model for classification. The

ability of the above methods to locate root causes is limited

in the number of distinct causes they divide. As a result, they

can not locate specific R-SQLs in anomaly cases, which is

essential in large-scale complex business scenarios.

Top SQLs. Many cloud vendors have provided database diag-

nosing products, such as AWS Performance Insight [2], Azure

Intelligent Insight [10], Tencent DB Brain [11], and Huawei

Database Admin Service [12]. The conventional approach for

identifying R-SQLs is to sort the collected SQL metric data in

various dimensions, allowing users to locate database problems

themselves. However, it fails to locate root cause SQLs under

complex business scenarios. As many complex queries exist

in cloud databases, it is hard to tell which SQL template

contributes more to the detected anomaly.

Autoregressive-based Methods. Finding the R-SQLs can also

be seen as finding causality on multivariate time series data,

which aims to find the relationships between performance met-

rics and SQL template metrics. Many Auto-regressive-based

methods [13]–[15] have been proposed for causal inference

on time series data. Specifically, Neural-GC [13] proposes

multiple deep models, including MLP and recurrent neural

networks based on Granger causality. Seq2graph [14] is an

attention-based method for finding non-linear dependency.

SCGL [15] utilizes ResNet and low-rank approximation for

better model robustness and scalability in time and space. The

above methods can identify linear and non-linear relationships

between different variables. However, the function space for

these methods to search is huge. Thus, these methods cannot

locate R-SQLs by finding time-series dependency.

X. CONCLUSIONS

We present PinSQL, an autonomous diagnostic system with

two main features (i.e., root cause analysis and repairing)

for handling the problem of extracting and cracking root

cause SQLs in cloud databases. Extensive experimental results

demonstrate that PinSQL achieves an accuracy of 80% for its

Top-1 returned potential cause (defined as Hits@1) on iden-

tifying R-SQLs. In the future, it is of interest to find specific

queries (including system kernel bugs and host problems) that

cause anomalies other than SQL templates and integrate more

repairing actions into PinSQL. We also plan to utilize more

performance metrics and explore the complex relationships

among performance metrics when detecting R-SQLs.

XI. ACKNOWLEDGEMENTS

This work was supported by the NSFC under Grants

No. (62025206, 61972338, and 62102351), Alibaba Group

through Alibaba Innovation Research Program, and the Zhe-

jiang Provincial Natural Science Foundation under Grant No.

LR21F020005. Yunjun Gao is the corresponding author of the

work.

2560

REFERENCES

[1] Alibaba Cloud. Alibaba Cloud Databases. [Online]. Available:
https://www.alibabacloud.com/product/databases

[2] Amazon EC. Amazon web services. [Online]. Available:
http://aws.amazon.com/es/ec2/

[3] M. Copel, J. Soh, A. Puca, M. Manning, and D. Gollob, “Microsoft
azure,” New York, NY, USA:: Apress, 2015.

[4] S. P. T. Krishnan and J. L. U. Gonzalez, Building your next big thing with
google cloud platform: A guide for developers and enterprise architects.
Springer, 2015.

[5] Oracle. Oracle Performance: 80 Percent design + 20 percent hardware.
[Online]. Available: https://logicalread.com/oracle-db-perf-80-percent-
hw-dc01/#.YZUdBJOA5qs

[6] D. Y. Yoon, N. Niu, and B. Mozafari, “Dbsherlock: A performance
diagnostic tool for transactional databases,” in SIGMOD, 2016, pp.
1599–1614.

[7] G. Li, X. Zhou, J. Sun, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, and
S. Li, “opengauss: An autonomous database system,” PVLDB, vol. 14,
no. 12, pp. 3028–3041, 2021.

[8] X. Zhou, L. Jin, J. Sun, X. Zhao, X. Yu, S. Li, T. Wang, K. Li,
and L. Liu, “Dbmind: A self-driving platform in opengauss,” PVLDB,
vol. 14, no. 12, pp. 2743–2746, 2021.

[9] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu, F. Li, C. Chen, and D. Pei, “Diagnosing root causes
of intermittent slow queries in large-scale cloud databases,” PVLDB,
vol. 13, no. 8, pp. 1176–1189, 2020.

[10] Microsoft. Intelligent Insights using AI to monitor and troubleshoot
database performance (preview). [Online]. Available:
https://docs.microsoft.com/en-us/azure/azure-sql/database/intelligent-
insights-overview

[11] Tencent. Database autonomy service (das). [Online]. Available:
https://cloud.tencent.com/product/dbbrain

[12] Huawei. Data admin service. [Online]. Available:
https://www.huaweicloud.com/intl/en-us/product/das.html

[13] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox, “Neural granger
causality,” arXiv preprint arXiv:1802.05842, 2018.

[14] X. Dang, S. Y. Shah, and P. Zerfos, “seq2graph: Discovering dynamic
non-linear dependencies from multivariate time series,” in IEEE Big-
Data, 2019, pp. 1774–1783.

[15] C. Xu, H. Huang, and S. Yoo, “Scalable causal graph learning through
a deep neural network,” in CIKM, 2019, pp. 1853–1862.

[16] MySQL 8.0 Reference Manual. Performance Schema Statement
Digests and Sampling. [Online]. Available:
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-
statement-digests.html

[17] Q. T. Tran, K. Morfonios, and N. Polyzotis, “Oracle workload intelli-
gence,” in SIGMOD, 2015, pp. 1669–1681.

[18] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.
Gordon, “Query-based workload forecasting for self-driving database
management systems,” in SIGMOD, 2018, pp. 631–645.

[19] Amazon Web Services. Amazon Aurora User Guide for Aurora.
[Online]. Available:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-
ug.pdf

[20] W. Cao, Y. Gao, B. Lin, X. Feng, Y. Xie, X. Lou, and P. Wang, “Tcprt:
Instrument and diagnostic analysis system for service quality of cloud
databases at massive scale in real-time,” in SIGMOD, 2018, pp. 615–
627.

[21] Oracle. Average Active Session. [Online]. Available:
https://docs.oracle.com/cd/B16240 01/doc/doc.102/e16282/oracle database

help/oracle database instance throughput avg active sessions.html
[22] Alibaba Cloud. Database autonomy service (das). [Online]. Available:

https://www.alibabacloud.com/product/das
[23] Amazon Web Services. AWS Perfomance Insights FAQs. [Online].

Available: https://aws.amazon.com/rds/performance-insights/faqs/
[24] MySQL. Server status variables. [Online]. Available:

https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html
[25] W. Cao, X. Feng, B. Liang, T. Zhang, Y. Gao, Y. Zhang, and F. Li,

“Logstore: A cloud-native and multi-tenant log database,” in SIGMOD,
2021, pp. 2464–2476.

[26] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance and
resource modeling in highly-concurrent oltp workloads,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 301–312.

[27] M. Theriault and W. Heney, Oracle Security. O’Reilly & Associates,
Inc., 1998.

[28] A. N. Pettitt, “A non-parametric approach to the change-point problem,”
Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 28, no. 2, pp. 126–135, 1979.

[29] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao, “Unsupervised
anomaly detection via variational auto-encoder for seasonal kpis in web
applications,” in WWW, 2018, pp. 187–196.

[30] W. Chen, H. Xu, Z. Li, D. Pei, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial
training of VAE,” in INFOCOM, 2019, pp. 1891–1899.

[31] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and
Y. Cheng, “Faasnet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute,” in USENIX,
2021, pp. 443–457.

[32] Alibaba Cloud. Performance metrics of pinsql. [Online]. Available:
https://www.alibabacloud.com/help/en/doc-detail/64901.htm

[33] Oracle. MySQL Performance Schema. [Online]. Available:
https://dev.mysql.com/doc/mysql-perfschema-
excerpt/8.0/en/performance-schema.html

[34] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[35] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly
Media, Inc.”, 2016.

[36] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly Media,
Inc.”, 2008.

[37] D. C. Hoaglin, B. Iglewicz, and J. W. Tukey, “Performance of some
resistant rules for outlier labeling,” Journal of the American Statistical
Association, vol. 81, no. 396, pp. 991–999, 1986.

[38] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic, V. R. Narasayya,
M. Radulovic, M. Stikic, G. Xu, and S. Chaudhuri, “Automatically
indexing millions of databases in microsoft azure SQL database,” in
SIGMOD. ACM, 2019, pp. 666–679.

[39] Oracle. Basic query rewrite. [Online]. Available:
https://docs.oracle.com/cd/B19306 01/server.102/b14223/qrbasic.htm

[40] Amazon Web Services. New aws auto scaling –
unified scaling for your cloud applications. [Online].
Available: https://aws.amazon.com/blogs/aws/aws-auto-scaling-unified-
scaling-for-your-cloud-applications/

[41] techgoeasy. What is DB time ,DB cpu Average Active sessions, Active
session in oracle. [Online]. Available:
https://techgoeasy.com/what-is-db-time-and-average-active/

[42] Alibaba Cloud. Best practices for setting the pa-
rameter performance schema: Overview. [Online]. Available:
https://www.alibabacloud.com/blog/598273

[43] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration
parameters with ituned,” Proc. VLDB Endow., vol. 2, no. 1, pp. 1246–
1257, 2009.

[44] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-based
optimization of mapreduce programs,” Proc. VLDB Endow., vol. 4,
no. 11, pp. 1111–1122, 2011.

[45] R. Marcus and O. Papaemmanouil, “Wisedb: A learning-based workload
management advisor for cloud databases,” Proc. VLDB Endow., vol. 9,
no. 10, pp. 780–791, 2016.

[46] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor, D. V.
Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang, “Self-driving database
management systems,” in CIDR, 2017.

[47] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and
N. Yadav, “Explainit! - A declarative root-cause analysis engine for time
series data,” in SIGMOD, 2019, pp. 333–348.

2561

