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1 RELATED WORK

Recent works have extended MARL from small discrete state spaces (Yang & Gu, 2004; Busoniu
et al., 2008) to high-dimensional, continuous state spaces (Lowe et al., 2017; Peng et al., 2017).
The progresses of deep reinforcement learning give rise to an increasing effort in designing general-
purpose deep MARL methods for complex multi-agent environments, including COMA (Foerster
et al., 2018), MADDPG (Lowe et al., 2017), MAPPO (Yu et al., 2021) and etc. Currently, CTDE
is considered to be the de facto mainstream paradigm in this field (Lowe et al., 2017; Iqbal & Sha,
2019). In terms of specific methods, the Value-Decomposition Network (VDN) (Sunehag et al., 2017)
utilizes the factorization of joint-action Q-values as the sum of each agent’s utility. QMIX (Rashid
et al., 2018) is an extension of VDN which allows the joint action Q-value to be a monotonically
increasing combination of each agent’s utility, which can vary depending on the global state. There
are also other variants proposed to extend the applicability of the value decomposition methods. For
instance, QPLEX (Wang et al., 2020a) and QTRAN (Son et al., 2019) aim to learn value functions
with complete expressiveness capacity. MAVEN (Mahajan et al., 2019) hybridises value and policy-
based methods by introducing a latent space for hierarchical control. This allows MAVEN to achieve
committed, temporally extended exploration. Weighted QMIX (Rashid et al., 2020) is based on
QMIX and rectifies the suboptimality by introducing weights to place more importance on the better
joint actions. UneVEn (Gupta et al., 2021) learns a set of related tasks simultaneously with a linear
decomposition of universal successor features. Despite the effectiveness of these methods, they
are commonly designed to facilitate the learning of similar policies, it can be detrimental to the
acquisition of heterogeneous policies.

To solve the heterogeneous tasks, previous methods choose to add agent-specific information to the
observation or assign different roles to learn the distinct policies. PSHA (Terry et al., 2020) proposes
an agent indication to enable agents to represent heterogeneous policies. CDS (Li et al., 2021a)
uses mutual information to learn an agent ID-specific policy to deal with the problem of learning
diversity policies. ROMA (Wang et al., 2020c) proposes a role-oriented MARL framework to make
agents specialized in certain tasks. However, these methods, which solely focus on learning distinct
policies, often come at the cost of sacrificing the advantages associated with learning in homogeneous
scenarios. Furthermore, these methods tend to learn fixed policies that lack the necessary flexibility.

Other methods use a sequential execution policy to represent distinct policies. AR (Fu et al., 2022)
proposes a centralized sequential execution policy to solve permutation games. MAiF (Liu et al.,
2021) uses a sequential execution policy to learn a path-finding and formation policy for a multi-
agent navigation task. These methods can represent the optimal policy in both homogeneous and
heterogeneous scenarios. However, a naive sequential execution policy is not guaranteed to converge
to optimal policy and has the problem of credit assignment. Additionally, there are also methods
such as HAPPO (Kuba et al., 2021) that use sequential policy updates to guarantee monotonic
policy improvement of PPO (Schulman et al., 2017). MAT (Wen et al., 2022) adopts sequential
policy updates within the structure of a transformer. This design is aimed at executing updates both
monotonically and in parallel, thereby enhancing the time efficiency compared to previous methods
like HAPPO. SeCA (Zang et al., 2023) constructs a new advantage value to improve upon PG-based
methods. Different from focusing on an increment of PG-based methods, our work is proposed to
extend the applicability of value decomposition methods to solve the mixing of homogeneous and
heterogeneous tasks.

Our work is also related to the credit assignment. Previous methods usually use implicit credit
assignment methods to learn the policy, such as VDN and QMIX. However, explicit credit assignment
methods have also been proposed. For instance, COMA (Foerster et al., 2018) utilizes a counterfactual
advantage to learn the value function. Other methods use Shapley Value (Shapley, 2016) as the
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credit value of each agent. Shapley Value originates from cooperative game theory and is able to
distribute benefits reasonably by estimating the contribution of participating agents. In these methods,
SQDDPG (Wang et al., 2020b) and Shapley (Li et al., 2021b) use Shapley Value to estimate the
complex interactions between agents. However, these methods can only get approximated Shapley
value as calculating the Shapley value involves exponential time complexity (Wang et al., 2020b)
and they are not designed to learn similar and distinct policies simultaneously. In this work, we
introduce an explicit credit assignment method using marginal contribution in Shapley value to learn
a sequential execution policy that can represent the optimal policy in scenarios with a mixing of
homogeneous and heterogeneous tasks.

2 SCENARIOS SETTINGS AND TRAINING DETAILS

In the Multi-XOR games, agents receive two types of rewards, as illustrated in Table 1 and 2. Table 1
displays the homogeneous reward, which exhibits a non-monotonic payoff. This poses a challenge
of relative overgeneralization for the learning process. Table 2 presents the heterogeneous reward,
where agents are required to take distinct actions. Specifically, if two agents choose the joint actions
C&C to solve the task, the other two agents must choose L&L; otherwise, a penalty will be imposed.
However, if all agents select L&L, the return will be zero.

In MAgent, each agent corresponds to one grid and has a local observation that contains a square
view centered at the agent and a feature vector including coordinates, health point (HP) and ID of
agents nearby, and the agent’s last action. The discrete actions are moving, staying, and attacking.
The global state of MAgent is a mini-map (6× 6) of the global information. The opponent’s policies
used in experiments are randomly escaping policy in pursuit. We choose five different scenarios
lift, heterogeneous_lift, multi_target_lift, pursuit and bridge. There are detailed settings of these
scenarios, as shown in Table 3. We demonstrate the payoff matrix by showing the R as the reward
returned when cooperation is achieved, Pho as are penalty when taking cooperative action but failing
to achieve cooperation in homogeneous scenarios, and Phe as the penalty for taking the same action
in heterogeneous scenarios.

C L
C +0.5 -0.3
L -0.3 0

Table 1: Homogeneous payoff matrix of the Multi-XOR game.

C&C L&L
C&C -10 +0.5
L&L +0.5 0

Table 2: Heterogeneous payoff matrix of the Multi-XOR game.

Lift HeterogeneousLift MultiTargetLift Pursuit Bridge
Agent number 3 4 4 4 4
Object number 3 1 2 1 0

Map size 6 × 6 15 × 15 12 × 12 10 × 10 11 × 11
Payoff R=1,Pho=0,-0.3,Phe=0 R=1,Pho=0,Phe=-100 R=0.25,0.5,Pho=-0.2,Phe=-20,-40 R=0.5,Pho=-0.1,Phe=-1 R=0.5,Pho=-0.03,Phe=0

Table 3: Settings of MAgent Scenarios. R is the reward, Pho is the penalty of mis-coordination of
homogeneous behavior, Phe is the penalty of mis-coordination of heterogeneous behavior.

In the Overcooked environment, the objective is to perform a series of tasks involving onions, dishes,
and soups. The agents are required to place 2 onions in a pot, let them cook for 5 timesteps, transfer
the resulting soup into a dish, and finally serve it, which rewards all players with a score of 20. There
are six possible actions available to the agents: up, down, left, right, noop (no operation), and interact.
Notably, the action of picking up onions requires two agents to simultaneously take the "interact"
action, otherwise a penalty of -0.1 is incurred. On the other hand, actions such as putting onions into
the pots can be performed by a single agent. To evaluate the difficulty level of different scenarios, we
have designed three maps with varying levels of complexity. The easy map consists of more onions
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Figure 1: The images of the map of Overcooked tasks. From left to right is easy, medium and hard.

and a smaller map size (5×5), making it relatively easier to solve. The medium map, on the other
hand, contains a single onion and a smaller map size (5×5). Finally, the hard map poses a greater
challenge with its larger map size (7×7) and a single onion, making exploration more demanding for
the agents.

We set the discount factor as 0.99 and use the RMSprop optimizer with a learning rate of 5e-4 for
policy and 1e-3 for the critic. The ϵ-greedy is used for exploration with ϵ annealed linearly from
1.0 to 0.05 in 700k steps. The batch size is 4 and updating the target network every 200 episodes.
The length of each episode in MAgent is limited to 100 steps in bridge and 50 for others, except for
Multi-XOR which is a single-step game. The sample number M of our method is 5 in all scenarios.
We run all the experiments five times with different random seeds and plot the mean/std in all the
figures. All experiments are carried out on the same computer, equipped with Intel(R) Xeon(R) Gold
5218R CPU @ 2.10GHz, 64GB RAM and an NVIDIA RTX3090. The system is Ubuntu 18.04 and
the framework is PyTorch.

3 DETAILS OF MODEL IMPLEMENTATION AND HYPERPARAMETERS

The network of all compared methods uses the same LSTM network, consisting of a recurrent layer
comprised of a GRU with a 64-dimensional hidden state, with one fully-connected layer before and
two after. All mixing networks use a fully-connected layer with 32-dimensional hidden state. The
network of our critic and policy uses two fully-connected layers with 64-dimensional hidden state
and one fully-connected layers with 32-dimensional hidden state after.

4 PROOF OF THE VALUE DECOMPOSITION OF CRITIC

First of all, according to the decentralized execution setting, there exists a reward decomposition,

rtot(s, u) =
∑n

i=1 r
i
c(oi, u) =

∑n
i=1 r

i
c(oi, u

−
i , ai). (1)

This is because if the task can be solved by decentralized execution, the observation of each agent
must contain all the necessary information to identify the goals. Otherwise, agents will require
density communication to receive information about others’ observations to identify the goals, which
is not the setting that we discussed in our works. Then, we define the value decomposition Qi

c which
models each agent’s individual utility. From Eq. (1), we have

Qtot(s, u) = E
[∑∞

t=0 γ
trtot (s, u) | π

]
= E

[∑∞
t=0 γ

t ∑n
i=1 r

i
team(oi, u

−
i , ai) | π

]
=

∑n
i=1 Q

i
c(s, u).

(2)
In addition, we have

argmax
ai

(Qtot(s, u)) = argmax
ai

(Qi
c(s, u)) = argmax

ai

(Qi
c(τi, u

−
i , ai)). (3)

The first part is because the value of ai is represented by item Qi
c and the reason for the second part

is that Qi
c is only related to agent i as well as the actions of potential cooperative agents and all the

necessary information is contained in (τi, u
−
i , ai), so we can get the unbiased estimated value of Qi

c

given (τi, u
−
i , ai). Therefore, from Eq. (2) and Eq. (3) we have

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1
c(τ1, u

−
1 , a1)), ..., argmax

an

(Qn
c (τn, u

−
n , an))}. (4)
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A B
A +r1 −r2
B −r2 0

Table 4: Example of a homogeneous payoff matrix.

An intuitive understanding of Eq. (4) is that each agent takes action based on the perception of other
potential cooperative agents’ actions, so they can take the corresponding cooperative action and the
joint action is the optimal cooperative joint action.

5 LIMITATIONS OF INDIVIDUAL UTILITY

5.1 HOMOGENEOUS SCENARIOS

First, for the homogeneous task, we have the payoff matrix in Table 4. Since, we indicate that the
individual utility Qi(τi, ai), should be viewed as a variable sampled from distribution Qi

c(τi, u
−
i , ai).

Following this conclusion, we have the loss of Qi(τi, ai) should be

Li =
∑Ki

k=1 pk · (Q̂i
c(τi, u

k−
i , ai)−Qi(τi, ai))

2. (5)

where Q̂i
c means the ground true value function, uk−

i means one of the combination of u−
i and pk is

the possibility of uk−
i occurred. Therefore, Qi(τi, ai) learns to the converged value by optimizing Li,

we have the converged Q̂i(τi, ai) when Li is minimized,

Q̂i(τi, ai) =
∑Ki

k=1 pk · Q̂i
c(τi, u

k−
i , ai). (6)

For a simple demonstration, we take the example payoff into Eq. (6). The value of cooperative action
a∗i is

Q̂i(τi, a
∗
i ) = pa · Q̂i

c(τi, u
−∗
i , a∗i ) + pb · Q̂i

c(τi, u
−
i , a

∗
i ). (7)

where pa means the possibility of other agent taking cooperative actions ua−∗
i (ua−∗

i = A) and pb
means the possibility of other agents taking the other actions ub−

i (ub−
i = B). Additionally, we have

pa + pb = 1 (8)

Similarly, we have the value of lazy action a−i as

Q̂i(τi, a
−
i ) = pa · Q̂i

c(τi, u
−∗
i , a−i ) + pb · Q̂i

c(τi, u
−
i , a

−
i ). (9)

We know the policy represented by Qi(τi, ai) fails when Q̂i(τi, a
−
i ) is larger than Q̂i(τi, a

∗
i ), which

is
Q̂i(τi, a

−
i )− Q̂i(τi, a

∗
i ) = pa · (Q̂i

c(τi, u
−∗
i , a−i )−Qi

c(τi, u
−∗
i , a∗i ))

+pb · (Q̂i
c(τi, u

−
i , a

−
i )−Qi

c(τi, u
−
i , a

∗
i )) > 0

(10)

We take the +r1 and −r2 into Eq. (10),

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pa · (−r2 − r1) + pb · (0− (−r2)) = (pb − 1) · (r2 + r1) + pb · r2 > 0

(11)
This means the policy represented by Qi(τi, ai) will fail when

r1 · (1− pb) < (2pb − 1) · r2. (12)

which equals to
r1
r2

< 2pb−1
1−pb

. (13)

5.2 HETEROGENEOUS SCENARIOS

First, for the heterogeneous task, we have the payoff matrix in Table 5. Similarly, agents with the
policy represented by Qi(τi, ai) fails when Q̂i(τi, a

−
i ) is larger than Q̂i(τi, a

∗
i ) in the heterogeneous
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A B
A −r2 +r1
B +r1 −r2

Table 5: Example of a heterogeneous payoff matrix.

scenario. However, there are multiple optimal joint actions (1=A,2=B), (1=B,2=A), which are
different from the homogeneous scenarios. We first consider the (1=A,2=B) situation which is

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pb · (Q̂i

c(τi, u
−∗
i , a−i )−Qi

c(τi, u
−∗
i , a∗i ))

+pa · (Q̂i
c(τi, u

−
i , a

−
i )−Qi

c(τi, u
−
i , a

∗
i )) > 0

(14)

Taking the the +r1 and −r2 into Eq. (14),

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pb · (−r2 − r1) + pa · (r1 − (−r2))

= −pb · (r2 + r1) + (1− pb) · (r2 + r1) > 0
(15)

which equals to
1− 2pb > 0 (16)

pb <
1
2 . (17)

For situation (1=B,2=A), we have a similar conclusion,

pa < 1
2 . (18)

We notice that the overall possibility of failure is

Pf = P (pa < 1
2 ) + P (pb <

1
2 ) = P ((1− pb) <

1
2 ) + P (pb <

1
2 ) = P ( 12 < pb) + P (pb <

1
2 ) = 1.

(19)
Therefore, the policy represented by Qi(τi, ai) can never promise to solve the heterogeneous task.
Furthermore, we can calculate the possibility of reaching cooperation,

Pc = P ((1 = B, 2 = A)) + P ((1 = A, 2 = B)) = pb · pa + pa · pb = 2 · pb · (1− pb). (20)

The maximization of Eq. (20) is 0.5 when pb = pa = 0.5. The result demonstrated that decreasing
pb when pb < 0.5 causes cooperation more difficult to be reached.

6 ANALYSIS OF INDIVIDUAL UTILITY OF SEQUENTIAL EXECUTION POLICY

We have the IGM principal as

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1(τ1, a1)), ..., argmax
an

(Qn(τn, an))}. (21)

For sequential execution method, the policy is the form of

u = {argmax
a1

(Qi
s(τ1, a1)), ..., argmax

an

(Qi
s(τi, a1:n−1, an))}. (22)

We take the payoff matrix in Table 5 as an example, there are multiple optimal joint actions (1=A,2=B),
(1=B,2=A), we take the optimal actions into Eq. (22),

(1 = A, 2 = B) = {argmax
a1

(Qi
s(τ1, a1)), argmax

an

(Qi
s(τi, A, an))}

(1 = B, 2 = A) = {argmax
a1

(Qi
s(τ1, a1)), argmax

an

(Qi
s(τi, B, an))}.

(23)

We notice that although the latter utility has the correct maximization of the utility, the former one
has a conflict maximum result as it lacks the necessary information about other agents’ actions.
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