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ABSTRACT

Diffusion-based representation learning has achieved substantial attention due to
its promising capabilities in latent representation and sample generation. Recent
studies have employed an auxiliary encoder to extract a corresponding representa-
tion from data and adjust the dimensionality of a latent variable z. Meanwhile, this
auxiliary structure invokes an information split problem; the information of each
data instance x0 is divided into diffusion endpoint xT and encoded z because there
exist two inference paths starting from the data. The latent variable modeled by
the diffusion endpoint xT has several disadvantages. The diffusion endpoint xT is
computationally expensive to obtain and inflexible in terms of dimensionality. To
address this problem, we introduce Diffusion Bridge AutoEncoders (DBAE), which
enables z-dependent endpoint xT inference through a feed-forward architecture.
This structure creates an information bottleneck at z, ensuring that xT depends
on z during its generation. This results in z holding the full information of the
data. We propose an objective function for DBAE to enable both reconstruction
and generative modeling, with theoretical justification. Empirical evidence demon-
strates the effectiveness of the intended design in DBAE, which notably enhances
downstream inference quality, reconstruction, and disentanglement. Additionally,
DBAE generates high-fidelity samples in an unconditional generation. Our code is
available at https://github.com/aailab-kaist/DBAE.

1 INTRODUCTION

Unsupervised representation learning is a fundamental topic within the latent variable generative
models (Hinton et al., 2006; Kingma & Welling, 2014; Higgins et al., 2017; Chen et al., 2016;
Jeff; Alemi et al., 2018). Effective representation supports better downstream inference as well as
realistic data synthesis. Variational autoencoders (VAEs) (Kingma & Welling, 2014) are frequently
used because they inherently include latent representations with flexible dimensionality. Generative
adversarial networks (GANs) (Goodfellow et al., 2014) with inversion (Abdal et al., 2019; 2020)
are another method to find latent representations. Additionally, diffusion probabilistic models
(DPMs) (Ho et al., 2020; Song et al., 2021c) have achieved state-of-the-art performance in terms of
generation quality (Dhariwal & Nichol, 2021), naturally prompting efforts to explore unsupervised
representation learning within the DPM framework (Preechakul et al., 2022; Zhang et al., 2022; Yue
et al., 2024), which have recently dominated generative representation learning studies.

DPMs are a type of latent variable generative model, but inference on latent variables is not straightfor-
ward. DPMs progressively map from data x0 to a latent endpoint xT via a predefined noise injection
schedule, which does not facilitate learnable encoding. DDIM (Song et al., 2021a) introduces an
ODE-based deterministic encoding from the data x0 to the endpoint xT . However, this encoding is
determined by the choice of the forward process (Song et al., 2021c). Since the forward process with
fixed noise injection is difficult to interpret as having semantic meaning, the ODE-based encoding
remains challenging to consider as an effective semantic representation. Moreover, the encoding x0

into xT is expensive because it requires solving the ODE, and its inflexible dimensionality poses
disadvantages for downstream applications (Sinha et al., 2021).

To tackle this issue, recent DPM-based representation learning studies (Preechakul et al., 2022;
Zhang et al., 2022; Kim et al., 2022b; Wang et al., 2023; Yang et al., 2023; Yue et al., 2024; Wu &
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(a) Bayesian network of DiffAE (b) Reconstruction varying xT ∼ N (0, I) in DiffAE

(c) Bayesian network of DBAE (d) Inferred xT from DiffAE and DBAE with inference time (ms).

Figure 1: Comparison between DiffAE (Preechakul et al., 2022) and DBAE. (a) depicts the simplified
Bayesian network of DiffAE, illustrating two inference paths for the distinct latent variables xT and
z. (b) shows the reconstruction using the inferred z in DiffAE on CelebA, where the reconstruction
results perceptually vary depending on the selection of xT . (c) shows the simplified Bayesian network
of DBAE with z-dependent xT inference. (d) shows the inferred xT from DiffAE and DBAE.

Zheng, 2024) suggest an auxiliary latent variable z with an encoder used in VAEs, to combine the
generation performance of diffusion models and the representation learning capabilities of VAEs.
The encoder-generated latent variable z is obtained without solving the ODE, and the encoder also
facilitates the learning of semantic representations with dimensionality reduction. The reconstruction
capability from the extracted latent representation z is the primary focus of these studies, facilitating
downstream inference, attribute manipulation, and interpolation.

This paper points out the remaining problem in auxiliary encoder models, which we refer to as the
information split problem, hindering reconstruction capability. The information is not solely retained
in the latent variable z; rather, a portion is also distributed into the latent variable xT as evidenced by
Figure 1b. If the auxiliary encoder models only infer z and reconstruct using a random xT , the facial
details of the original image are not properly reconstructed, indicating that the missing information is
contained within xT . Furthermore, the inference of xT is computationally expensive and inflexible in
dimensionality. To address this issue, we introduce Diffusion Bridge AutoEncoders (DBAE), which
incorporate z-dependent endpoint xT inference using a feed-forward architecture.

The proposed model DBAE systematically resolves the information split problem. Unlike the two split
inference paths in the previous approach in Figure 1a, DBAE encourages z to become an information
bottleneck during inference (dotted line in Figure 1c), making z more informative. DBAE establishes
this bottleneck structure by defining a learnable forward process that starts from the data x0 and ends
at the encoded endpoint xT by utilizing Doob’s h-transform. Moreover, DBAE does not require
solving an ODE to infer endpoint xT , thereby making endpoint inference more efficient, as shown in
Figure 1d. This efficient inference of xT benefits interpolation and attribute manipulation tasks. In
experiments, DBAE outperforms the previous works in downstream inference quality, reconstruction,
disentanglement, and unconditional generation. DBAE also demonstrates satisfactory results in
interpolation and attribute manipulation with its qualitative advantages.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) with a continuous
time formulation (Song et al., 2021c) define a forward stochastic differential equation (SDE)

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ qdata(x0), (1)

where wt denotes a standard Wiener process, f : Rd× [0, T ] → Rd is a drift term, and g : [0, T ] → R
is a volatility term. Eq. (1) starts from data distribution qdata(x0) and gradually perturbs it into noise
xT . Let the marginal distribution of Eq. (1) at time t be denoted as q̃t(xt). There exists a unique
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reverse-time SDE (Anderson, 1982)

dxt = [f(xt, t)− g2(t)∇xt
log q̃t(xt)]dt+ g(t)dw̄t, xT ∼ pprior(xT ), (2)

where w̄t denotes a reverse-time Wiener process, ∇xt log q̃t(xt) is the time-dependent score function,
and pprior(xT ) stands for the prior distribution, which closely resembles a Gaussian distribution with
the specific form of f and g (Song et al., 2021c; Ho et al., 2020). Eq. (2) traces back from noise xT

to data x0. The reverse-time ordinary differential equation (ODE)

dxt = [f(xt, t)−
1

2
g2(t)∇xt

log q̃t(xt)]dt, xT ∼ pprior(xT ), (3)

produces a marginal distribution identical to Eq. (2) for all t, offering an alternative generative process
while confining the stochasticity of the trajectory solely to xT . To construct both reverse SDE and
ODE, the diffusion model estimates a time-dependent score function ∇xt

log q̃t(xt) ≈ sθ(xt, t)
using a neural network and the score-matching objective (Vincent, 2011; Song & Ermon, 2019).

2.2 LATENT REPRESENTATION LEARNING WITH DIFFUSION MODELS

From the perspective of representation learning, the ODE in Eq. (3) (a.k.a DDIM (Song et al., 2021a)
in discrete time diffusion formulation) provides a deterministic encoding from the data x0 to the
latent xT . However, the latent representation xT has some disadvantages. First, it is hard to learn its
semantic meaning. This encoding is determined by the forward process (f , g) given a data distribution
and assuming perfect optimization (Song et al., 2021c). The forward process (f , g) is set to a fixed
noise injection process, but the noise is hard to consider as a semantically meaningful encoding.
Second, the dimension cannot be reduced. According to the definition of the diffusion process in
Eq. (1), the dimension of xT must be the same as the data dimension. This hinders learning a compact
representation, making it hard to facilitate downstream inference or attribute manipulation (Sinha
et al., 2021). Finally, xT is computationally expensive to obtain. To infer xT from the data point
x0, it is necessary to numerically solve the ODE in Eq. (3). This results in high time complexity for
inferring xT , which makes it inefficient to exploit latent representations.

To resolve the problem in the latent endpoint xT , some previous literature, e.g., DiffAE (Preechakul
et al., 2022), proposes an auxiliary latent space utilizing a learnable encoder Encϕ : Rd → Rl, which
maps from data x0 to an auxiliary latent variable z. Unlike DDIM, these approaches tractably obtain
z from x0 without solving the ODE, and the encoder can directly learn the latent space in reduced
dimensionality. Consequently, the generative ODE

dxt = [f(xt, t)−
1

2
g2(t)sθ(xt, z, t)]dt, (4)

becomes associated with the z-conditional score function sθ(xt, z, t), which approximates
∇xt log q

t
ϕ(xt|z). The generation starts from two distinct latent variables z and xT , and defines the

conditional probability pODE
θ (x0|z,xT ). The ODE also provides an encoding from x0 and z to xT ,

which defines the conditional probability qODE
θ (xT |z,x0). However, the auxiliary encoder framework

encounters an information split problem which this paper raises in Section 3. This paper proposes a
method to mitigate this problem.

2.3 DIFFUSION PROCESS WITH FIXED ENDPOINTS

To control the information regarding the diffusion endpoint xT , it is imperative to specify a forward
SDE that terminates at the desired endpoint. We employ Doob’s h-transform (Doob & Doob, 1984),
which facilitates the conversion of the original forward SDE in Eq. (1) into

dxt = [f(xt, t) + g2(t)h(xt, t,y, T )]dt+ g(t)dwt, x0 ∼ qdata(x0), xT = y, (5)

where h(xt, t,y, T ) := ∇xt
log q̃t(xT |xt)|xT=y is the score function of the perturbation kernel

from the original forward SDE, and y denotes the desired endpoint. Let qt(xt) denote the marginal
distribution of Eq. (5) at t. It is noteworthy that when both x0 and xT are given, the conditional
probability of xt becomes identical to that of the original forward SDE, i.e., qt(xt|xT ,x0) =
q̃t(xt|xT ,x0). If the original forward SDE in Eq. (1) is set to be a specific form (e.g., variance
preserving SDE (Ho et al., 2020)), then qt(xt|xT ,x0) follows a Gaussian distribution. This means
that sampling of xt ∼ qt(xt|xT ,x0) at any time t is tractable with an exact density function.
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Corresponding to the h-transformed forward SDE of Eq. (5), there also exist unique reverse-time
SDE and ODE (Anderson, 1982; Zhou et al., 2024)

dxt = [f(xt, t)− g2(t)∇xt
log qt(xt|xT ) + g2(t)h(xt, t,y, T )]dt+ g(t)dw̄t,xT = y, (6)

dxt = [f(xt, t)−
1

2
g2(t)∇xt

log qt(xt|xT ) + g2(t)h(xt, t,y, T )]dt, xT = y, (7)

where qt(xt|xT ) is the conditional probability defined by Eq. (5). To construct the reverse SDE and
ODE, it is necessary to estimate ∇xt log qt(xt|xT ) ≈ sθ(xt, t,xT ) through a neural network with a
score matching objective (Zhou et al., 2024)

1

2

∫ T

0

Eqt(xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt log qt(xt|xT )||22]dt. (8)

3 MOTIVATION: INFORMATION SPLIT PROBLEM

This paper raises a problem in diffusion-based representation learning with auxiliary en-
coders (Preechakul et al., 2022; Zhang et al., 2022; Wang et al., 2023; Yang et al., 2023; Yue
et al., 2024; Wu & Zheng, 2024) introduced in Section 2.2. The latent variable z from the encoder
has benefits compared to the latent endpoint xT , but the auxiliary encoder framework encounters an
information split problem: the information of the data is split into two latent variables z and xT . The
generative process in Eq. (4) initiates with two latent variables z and xT . If the framework only relies
on the tractably inferred latent variable z, the reconstruction outcomes depicted in Figure 1b appear
to fluctuate depending on the choice of xT . This implies that xT encompasses crucial information
necessary for reconstructing x0. To represent all the information of x0, it is necessary to infer xT

by solving the ODE in Eq. (4) from input x0 to endpoint xT , enduring its computational costs.
Consequently, the persisting issue within the latent variable xT remains unresolved in this framework.

To learn an informative latent representation, the mutual information between the data and the latent
variable needs to be maximized (Alemi et al., 2018). The information split problem hinders the
maximization of the mutual information between the data x0 and the latent variable z. The variational
lower bound of the mutual information in the auxiliary encoder framework is

Eqdata(x0),qϕ(z|x0)[−CE(qODE
θ (xT |z,x0)||pprior(xT ))] +H ≤ MI(x0, z), (9)

where MI(x0, z) := Eqϕ(x0,z)[log
qϕ(x0,z)

qdata(x0)qϕ(z)
] represents the mutual information,

H := H(qdata(x0)) denotes the data entropy, and CE(qODE
θ (xT |z,x0)||pprior(xT )) :=

EqODE
θ (xT |z,x0)[− log pprior(xT )] is the cross-entropy. The cross-entropy term increases as the

discrepancy between qODE
θ (xT |z,x0) and pprior(xT ) increases, resulting in a looser lower bound on

the mutual information. Since qODE
θ (xT |z,x0) inherently forms a Dirac delta distribution due to

the nature of ODEs, the discrepancy between qODE
θ (xT |z,x0) and pprior(xT ) is inevitable in this

framework. For more details, please refer to Appendix A.4.1.

4 METHOD: DIFFUSION BRIDGE AUTOENCODERS

To resolve the information split problem in auxiliary encoder models, we introduce Diffusion Bridge
AutoEncoders (DBAE) featuring z-dependent endpoint xT inference using a single network propaga-
tion. The endpoint xT in DBAE only depends on z, making z an information bottleneck. Figure 2
illustrates the overall schematic for DBAE. Section 4.1 explains the latent variable inference with the
encoder-decoder structure and a learnable forward SDE utilizing Doob’s h-transform. Section 4.2 de-
lineates the generative process from the information bottleneck z to data x0. Section 4.3 analyzes the
benefit of DBAE for mutual information maximization between x0 and z. Section 4.4 elaborates on
the objective function for reconstruction, unconditional generation, and its theoretical justifications.

4.1 ENCODING FROM x0 TO xT CONDITIONED ON z

We can access i.i.d. samples from qdata(x0). The encoder Encϕ : Rd → Rl maps data x0 to the latent
variable z, defining the conditional probability qϕ(z|x0). To condense the high-level representation of
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Figure 2: A schematic for Diffusion Bridge AutoEncoders. The blue line shows the latent variable
inference. DBAE infers the z-dependent endpoint xT to make xT tractable and to establish z as an
information bottleneck. The paired x0 and xT define a new forward SDE utilizing the h-transform.
The decoder and the red line show the generative process. The generation starts from the bottleneck
latent variable z and decodes it to the endpoint xT . The reverse process generates x0 from xT .

x0, the latent dimension l is set to be lower than the data dimension d. The decoder Decψ : Rl → Rd

maps from the latent variable z to the endpoint xT , defining the conditional probability qψ(xT |z). The
encoder and decoder can be deterministic (i.e., Dirac delta distribution) or stochastic (i.e., Gaussian
distribution) depending on the experimental choice. Since the decoder generates the endpoint xT

solely based on the latent variable z, z becomes a bottleneck for all the information in x0. The
encoder-decoder structure provides the endpoint distribution qϕ,ψ(xT |x0) =

∫
qψ(xT |z)qϕ(z|x0)dz

for a given starting point x0. We now discuss a new diffusion process {xt}Tt=0 with a given starting
point and endpoint pair.

To establish the relationship between the starting point and endpoint given by the encoder-decoder,
we utilize Doob’s h-transform to define a new forward SDE

dxt = [f(xt, t) + g2(t)h(xt, t,xT , T )]dt+ g(t)dwt, x0 ∼ qdata(x0), xT ∼ qϕ,ψ(xT |x0), (10)

where h(xt, t,xT , T ) := ∇xt
log q̃t(xT |xt) is the score function of the perturbation kernel in the

original forward SDE in Eq. (1). The forward SDE in Eq. (10) determines the distribution of xt,
where t ∈ (0, T ). Let us denote the marginal distribution of Eq. (10) at time t as qtϕ,ψ(xt).

4.2 GENERATIVE PROCESS

The generative process begins with the bottleneck latent variable z, which can be inferred from the
input data x0 or is randomly drawn from the prior distribution pprior(z). The decoder Decψ : Rl → Rd

maps from the latent variable z to the endpoint xT with the probability pψ(xT |z).1 Corresponding to
a new forward SDE in Eq. (10), there exists a reverse ODE

dxt = [f(xt, t)−
1

2
g2(t)∇xt

log qtϕ,ψ(xt|xT ) + g2(t)h(xt, t,xT , T )]dt, (11)

where the conditional probability qtϕ,ψ(xt|xT ) is defined by Eq. (10). However, computing the con-
ditional probability qtϕ,ψ(xt|xT ) is intractable, so we parameterize our score model sθ(xt, t,xT ) :=

∇xt
log ptθ(xt|xT ) to approximate ∇xt

log qtϕ,ψ(xt|xT ). Our parametrized generative process be-
comes

dxt = [f(xt, t)−
1

2
g2(t)∇xt

log ptθ(xt|xT ) + g2(t)h(xt, t,xT , T )]dt. (12)

Stochastic sampling with an SDE is also naturally possible as shown in Section 2.3, but we describe
only the ODE for convenience.

1The two distributions pψ(xT |z) and qψ(xT |z) are the same. However, to distinguish between inference
and generation, they are respectively denoted as p and q.
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Algorithm 1: DBAE Training Algorithm for Reconstruction
Input: data distribution qdata(x0), drift term f , volatility term g
while not converges do

Sample time t from [0, T ]
x0 ∼ qdata(x0),
z = Encϕ(x0) and xT = Decψ(z)
xt ∼ q̃t(xt|x0,xT )
LAE ← 1

2 g
2(t)||sθ(xt, t,xT )−∇xt log q̃t(xt|x0,xT )||22

Update ϕ,ψ, θ by LAE using the gradient descent method
Output: Encϕ, Decψ , score network sθ

Algorithm 2: Reconstruction
Input: Encϕ, Decψ , score network sθ ,

sample x0, discretized time steps
{ti}Ni=0

z = Encϕ(x0)
xT = Decψ(z)
for i = N, ..., 1 do

Update xti
using Eq. (12)

Output: Reconstructed sample x̂0

4.3 MUTUAL INFORMATION ANALYSIS

From the definition of inference and generation of DBAE in Sections 4.1 and 4.2, the variational
lower bound on the mutual information between x0 and z is

Eqϕ(x0,z)[Eqψ(xT |z)[log pθ(x0|xT )]−DKL(qψ(xT |z)||pψ(xT |z))] +H ≤ MI(x0, z), (13)

where pθ(x0|xT ) is defined by the generative process in Section 4.2. Please see Appendix A.4.2
for a detailed derivation. Here, the term DKL(qψ(xT |z)||pψ(xT |z)) becomes zero because both
conditional probabilities of xT given z are the same in the inference and the generation. The
remaining term Eqϕ(x0,z)[Eqψ(xT |z)[log pθ(x0|xT )] can be controlled by the optimization of ϕ,ψ,
and θ. The relation between an objective function and mutual information is declared in Theorem 2.

4.4 OBJECTIVE FUNCTION

The objective function bifurcates depending on the specific tasks. The model requires a recon-
struction capability for downstream inference, attribute manipulation, and interpolation. To achieve
reconstruction capability, the model needs 1) an encoding capability (x0 → z → xT ) and 2)
a regeneration capability (xT → x0). The encoding process should infer a distinct latent vari-
able for each data point x0 to ensure that the original information is preserved during recon-
struction. The regeneration capability needs to estimate the reverse process by approximating
sθ(xt, t,xT ) ≈ ∇xt

log qtϕ,ψ(xt|xT ). For an unconditional generation, the model must possess
the ability to generate random samples from the endpoint xT , which implies that the generative
endpoint distribution pψ(xT ) =

∫
pψ(xT |z)pprior(z)dz should closely match the aggregated inferred

distribution qϕ,ψ(xT ) =
∫
qψ(xT |z)qϕ(z|x0)qdata(x0)dx0dz.

4.4.1 RECONSTRUCTION

For successful reconstruction, the model needs to fulfill two criteria: 1) encoding the latent variable
xT uniquely depending on the data point x0, and 2) regenerating from xT to x0. The inferred latent
distribution qϕ,ψ(xT |x0) should provide unique information for each x0. To achieve this, we aim to
minimize the entropy H(qϕ,ψ(xT |x0)) to embed x0-dependent xT with minimum uncertainty. On
the other hand, we maximize the entropy H(qϕ,ψ(xT )) to embed different xT for each x0. Since the
posterior entropy H(qϕ,ψ(x0|xT )) = H(qϕ,ψ(xT |x0)) − H(qϕ,ψ(xT )) + H(qdata(x0)) naturally
includes the aforementioned terms, we use this term as a regularization. Minimizing the gap between
Eqs. (11) and (12) is necessary for regenerating from xT to x0. This requires alignment between the
inferred score function ∇xt

log qtϕ,ψ(xt|xT ) and the model score function sθ(xt, t,xT ). Similarly
to Eq. (8), we propose the score-matching objective function LSM described as

LSM :=
1

2

∫ T

0

Eqtϕ,ψ(xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt log q

t
ϕ,ψ(xt|xT )||22]dt. (14)

We train DBAE with the entropy-regularized score matching objective LAE described as

LAE := LSM +H(qϕ,ψ(x0|xT )). (15)

The detailed training and testing procedures are outlined in algorithms 1 and 2, respectively. Theo-
rem 1 demonstrates that the entropy-regularized score matching objective in LAE becomes a tractable
form of objective, and it is equivalent to the reconstruction formulation. The inference distribution
qϕ,ψ(xt,xT |x0) is optimized to provide the best information about x0 for easy reconstruction.
Theorem 1. For the objective function LAE, the following equality holds.

LAE =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log q̃t(xt|x0,xT )||22]dt (16)
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Moreover, if Eq. (1) is a linear SDE.2, there exists α(t), β(t), γ(t), λ(t), such that

LAE =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[λ(t)||x0
θ(xt, t,xT )− x0||22]dt, (17)

where x0
θ(xt, t,xT ) := α(t)xt + β(t)xT + γ(t)sθ(xt, t,xT ), and qtϕ,ψ(x0,xt,xT ) =∫

qdata(x0)qϕ(z|x0)qψ(xT |z)qt(xt|xT ,x0)dz, following the graphical model in Fig. 1c.

The assumptions and proof of Theorem 1 are in Appendix A.1. Moreover, Theorem 2 shows the
objective functions LAE is the upper bound of the negative mutual information between x0 and z up to
a constant. Since the optimization direction of LAE is aligned with maximizing the mutual information,
our objective function makes the mutual information higher, which can make z informative. The
proof of Theorem 2 is in Appendix A.5.
Theorem 2. −MI(x0, z) ≤ LAE −H , where H = H(qdata(x0)) is a constant w.r.t. ϕ,ψ,θ.

4.4.2 GENERATIVE MODELING

In Section 4.4.1, the discussion focused on the objective function for reconstruction. The distribution
of xT should be considered for generative modeling. This section addresses the discrepancy between
the inferred distribution qϕ,ψ(xT ) and the generative prior distribution pψ(xT ). To address this, we
propose the objective LPR related to the generative prior.

LPR :=Eqdata(x0)[DKL(qϕ,ψ(xT |x0)||pψ(xT ))] (18)
Theorem 3 demonstrates that the autoencoding objective LAE and prior objective LPR bound the
Kullback-Leibler divergence between data distribution qdata(x0) and the generative model distribution
pψ,θ(x0) =

∫
pθ(x0|xT )pψ(xT |z)pprior(z)dzdxT up to a constant. The proof is in Appendix A.2.

Theorem 3. DKL(qdata(x0)||pψ,θ(x0)) ≤ LAE + LPR −H , where H = H(qdata(x0)) is a constant
w.r.t. ϕ,ψ,θ.

For generative modeling, we separately minimize the terms LAE and LPR, following (Esser et al.,
2021; Preechakul et al., 2022; Zhang et al., 2022). The separate training of the generative prior
distribution with a powerful generative model effectively reduces the mismatch between the prior
and the aggregated posterior (Sinha et al., 2021; Aneja et al., 2021). Initially, we optimize LAE with
respect to the parameters of encoder (ϕ), decoder (ψ), and score network (θ), and fix the parameters
θ,ϕ,ψ. Subsequently, we newly parameterize the generative prior pprior(z) := pω(z) using a shallow
latent diffusion models, and optimize LPR w.r.t ω. See Appendix A.3 for further details.

5 EXPERIMENT

This section empirically validates the effectiveness of the intended design of the proposed model,
DBAE. We utilize the U-Net architecture for the score network (θ), as shown in Fig. 7b. Since
our score network needs to account for the additional input xT , we concatenate xt and xT as the
U-Net input. We employ half of the U-Net architecture as the encoder (ϕ) and use a CNN-based
upsampler as the decoder (ψ), adopted from (Liu et al., 2021). The encoder and decoder architectures
are detailed in Fig. 7a. To compare DBAE with previous diffusion-based representation learning
approaches, we adopt the remaining experimental configurations (e.g., batch size, learning rate) from
DiffAE (Preechakul et al., 2022) as closely as possible. Detailed experimental configurations are
provided in Appendix C. We evaluate both latent encoding capability and generation quality across
various tasks. We quantitatively assess the performance of downstream inference, reconstruction, dis-
entanglement, and unconditional generation. Additionally, we qualitatively demonstrate interpolation
and attribute manipulation capabilities. Finally, we conduct experiments with two variations of the
proposed model’s encoder: 1) a Gaussian stochastic encoder (DBAE) and 2) a deterministic encoder
(DBAE-d) for ablation studies. We use a deterministic structure for the decoder.

5.1 DOWNSTREAM INFERENCE

To examine the learned latent representation capability of Encϕ, we perform a linear-probe attribute
prediction following DiTi (Yue et al., 2024). We train a linear classifier with parameters (w, b) using

2Eq. (1) is a linear SDE when the drift function f is linear with respect to xt.
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Table 1: Linear-probe attribute prediction quality comparison for models trained on CelebA and
FFHQ with dim(z) = 512. ‘Gen’ indicates the generation capability. The best and second-best results
are highlighted in bold and underline, respectively. We evaluate 5 times and report the average.

CelebA FFHQ
Method Gen AP (↑) Pearson’s r (↑) MSE (↓) AP (↑) Pearson’s r (↑) MSE (↓)

SimCLR (Chen et al., 2020) ✗ 0.597 0.474 0.603 0.608 0.481 0.638
β-TCVAE (Chen et al., 2018) ✓ 0.450 0.378 0.573 0.432 0.335 0.608
IB-GAN (Jeon et al., 2021) ✓ 0.442 0.307 0.597 0.428 0.260 0.644

DiffAE (Preechakul et al., 2022) ✓ 0.603 0.598 0.421 0.605 0.606 0.410
PDAE (Zhang et al., 2022) ✓ 0.602 0.596 0.410 0.597 0.603 0.416
DiTi (Yue et al., 2024) ✓ 0.623 0.617 0.392 0.614 0.622 0.384
DBAE-d ✓ 0.650 0.635 0.413 0.656 0.638 0.404
DBAE ✓ 0.655 0.643 0.369 0.664 0.675 0.332

data-attribute pairs (x0, y). The attribute prediction ŷ = wT z + b is based on the learned latent
representation z = Encϕ(x0), which is fitted to predict the ground-truth label y. An informative latent
representation allows the linear classifier to predict the ground-truth label y more effectively. We
evaluate Encϕ(x0) trained on CelebA (Liu et al., 2015) and FFHQ (Karras et al., 2019). We train a
linear classifier on 1) CelebA with 40 binary labels, measuring accuracy as AP, and 2) LFW (Kumar
et al., 2009) for attribute regression, measuring accuracy using Pearson’s r and MSE. Table 1 shows
that DBAE outperforms other diffusion-based representation learning baselines. Since DiffAE, PDAE,
and DiTi suffer from the information split problem, they produce a z that is less informative than
DBAE. Figure 3 presents statistics for 100 reconstructions of the same image with inferred z. Because
PDAE’s reconstruction varies depending on the selection of xT , it suggests that intricate details, such
as hair and facial features, are contained in xT , which z fails to capture. This observation aligns with
Figure 8, where significant performance gains are observed for attributes related to facial details, such
as shadows and hair. A comparison between DBAE-d and DBAE reveals that the stochastic encoder
performs slightly better. We conjecture that the stochastic encoder leverages a broader latent space,
which benefits discriminative downstream inference.

5.2 RECONSTRUCTION

Table 2: Autoencoding reconstruction quality comparison. Among tractable
and 512-dimensional latent variable models, the one yielding the best perfor-
mance is highlighted in bold, underline for the next best performer.

Method Tractability Latent dim (↓) SSIM (↑) LPIPS (↓) MSE (↓)

StyleGAN2 (W) (Karras et al., 2020) ✗ 512 0.677 0.168 0.016
StyleGAN2 (W+) (Abdal et al., 2019) ✗ 7,168 0.827 0.114 0.006
VQ-GAN (Esser et al., 2021) ✓ 65,536 0.782 0.109 3.61e-3
VQ-VAE2 (Razavi et al., 2019) ✓ 327,680 0.947 0.012 4.87e-4
NVAE (Vahdat & Kautz, 2020) ✓ 6,005,760 0.984 0.001 4.85e-5

DDIM (Inferred xT ) (Song et al., 2021a) ✗ 49,152 0.917 0.063 0.002
DiffAE (Inferred xT ) (Preechakul et al., 2022) ✗ 49,664 0.991 0.011 6.07e-5
PDAE (Inferred xT ) (Zhang et al., 2022) ✗ 49,664 0.994 0.007 3.84e-5

DiffAE (Random xT ) (Preechakul et al., 2022) ✓ 512 0.677 0.073 0.007
PDAE (Random xT ) (Zhang et al., 2022) ✓ 512 0.689 0.098 5.01e-3
DBAE ✓ 512 0.920 0.094 4.81e-3
DBAE-d ✓ 512 0.953 0.072 2.49e-3

Figure 3: Reconstruc-
tion w/ inferred z.

We examine the reconstruction quality following DiffAE (Preechakul et al., 2022) to quantify
information loss in the latent variable. For a test sample x0, the procedure in algorithm 2 provides
a reconstructed sample x̂0. The reconstruction error is the distance d(x0, x̂0), where the distance
function can be SSIM (Wang et al., 2003), LPIPS (Zhang et al., 2018), or MSE. Table 2 reports
the averaged reconstruction error over the test dataset Eptest(x0)[d(x0, x̂0)]. We trained DBAE on
FFHQ and evaluated it on CelebA-HQ (Karras et al., 2018). Tractability refers to the ability to
perform inference on latent variables without repeated neural network evaluations. Tractability is
crucial for regularizing the latent variable to achieve specific goals (e.g., disentanglement) during the
training phase. The latent dimension refers to the dimension of the bottleneck latent variable during
inference. A lower dimension is advantageous for applications such as downstream inference or
attribute manipulation. The third block in Table 2 compares performance under the same qualitative
conditions. DBAE-d exhibits performance that surpasses both DiffAE and PDAE. Naturally, DiffAE
and PDAE exhibit worse performance because the information is split between xT and z. Unlike the
downstream inference experiments in Section 5.1, the deterministic encoder performs better.
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5.3 DISENTANGLEMENT

Table 3: Disentanglment and sample quality comparisons on CelebA.

Method Reg z TAD (↑) ATTRS (↑) FID (↓)

AE ✗ 0.042±0.004 1.0±0.0 90.4±1.8
DiffAE (Preechakul et al., 2022) ✗ 0.155±0.010 2.0±0.0 22.7±2.1
DBAE ✗ 0.124±0.078 2.2±1.3 11.8±0.2

VAE (Kingma & Welling, 2014) ✓ 0.000±0.000 0.0±0.0 94.3±2.8
β-VAE (Higgins et al., 2017) ✓ 0.088±0.051 1.6±0.8 99.8±2.4
InfoVAE (Zhao et al., 2019) ✓ 0.000±0.000 0.0±0.0 77.8±1.6
InfoDiffusion (Wang et al., 2023) ✓ 0.299±0.006 3.0±0.0 22.3±1.2
DisDiff (Yang et al., 2023) ✓ 0.305±0.010 - 18.3±2.1
DBAE+TC ✓ 0.362±0.036 3.8±0.8 13.4±0.2

Figure 4: TAD-FID tradeoffs
compared to the baselines.

Unsupervised disentanglement of the latent variable z is an important application of generative repre-
sentation learning, as it enables controllable generation without supervision. The goal of disentangle-
ment is to ensure that each dimension of the latent variable captures distinct information. To achieve
this, we apply regularization to minimize total correlation (TC), i.e., DKL(qϕ(z)||Πl

i=1qϕ(zi)),
adopted from (Chen et al., 2018). TC regularization decouples the correlation between the dimensions
of z, allowing different information to be captured in each dimension. Following InfoDiffusion (Wang
et al., 2023), we measure TAD and ATTRS (Yeats et al., 2022) to quantify disentanglement in z. Since
sample quality and disentanglement often involve a trade-off, we also measure FID (Heusel et al.,
2017) between 10k samples. Table 3 shows the performance comparison, where DBAE outperforms
all the baselines. Figure 4 demonstrates the effects of coefficients on TC regularization, showing that
DBAE envelops all the baselines. To disentangle information, a well-encoded representation must
first be achieved. The informative representation capability of DBAE supports this application.

5.4 UNCONDITIONAL GENERATION

Table 4: Unconditional generation on FFHQ. ‘+AE’ indicates the
use of the inferred distribution qϕ(z) instead of pω(z).

Method Prec (↑) IS (↑) FID 50k (↓) Rec (↑)

DDIM (Song et al., 2021a) 0.697 3.14 11.27 0.451
DDPM (Ho et al., 2020) 0.768 3.11 9.14 0.335
DiffAE (Preechakul et al., 2022) 0.762 2.98 9.40 0.458
PDAE (Zhang et al., 2022) 0.695 2.23 47.42 0.153
DBAE 0.780 3.87 11.25 0.392

DiffAE+AE 0.750 3.63 2.84 0.685
PDAE+AE 0.709 3.55 7.42 0.602
DBAE+AE 0.751 3.57 1.77 0.687

Figure 5: Top two rows: un-
curated samples. Bottom two
rows: the sampling trajectory
with ODE and SDE.

To generate a sample unconditionally, the generation starts from the learned prior distribution
z ∼ pω(z). The latent variable z is decoded into xT = Decψ(z), and the sample x0 is finally
obtained through the generative process described in Eq. (12). For CelebA, a comparison with DiffAE
in Table 3 shows that DBAE surpasses DiffAE by a large margin in FID (Heusel et al., 2017) (22.7
vs. 11.8). Table 4 shows the performance on FFHQ, which is known to be more diverse than CelebA.
DBAE still performs the best among the baselines in terms of Precision (Kynkäänniemi et al., 2019)
and Inception Score (IS) (Salimans et al., 2016), both of which are highly influenced by image
fidelity. However, DBAE shows slightly worse FID (Heusel et al., 2017) and Recall (Kynkäänniemi
et al., 2019), which are more affected by sample diversity. To analyze this, we alter the learned
generative prior pω(z) to the inferred distribution qϕ(z) as shown in the second block of Table 4.
In this autoencoding case, DBAE captures both image fidelity and diversity. We speculate that it is
more sensitive to the gap between qϕ(z) and pω(z) since the information depends solely on z, not on
the joint condition of xT and z. A complex generative prior model ω could potentially solve this
issue (Esser et al., 2021; Vahdat et al., 2021). Figure 5 shows the randomly generated samples and
sampling trajectories on FFHQ from DBAE.

5.5 INTERPOLATION

For the two images x1
0 and x2

0, DBAE can mix the styles by exploring the intermediate points in
the latent space. We encode images into z1 =Encϕ(x1

0) and z2 =Encϕ(x2
0). We then regenerate
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Figure 6: Interpolation (top) and attribute manipulation (bottom) with DBAE. (Red box: input image)

from zλ = λz1 + (1 − λ)z2 to data x0 using the generative process specified in Eq. (12). The
unique properties of DBAE offer distinct benefits here: 1) DiffAE (Preechakul et al., 2022) and
PDAE (Zhang et al., 2022) need to infer x1

T , x2
T by solving the ODE in Eq. (4) with hundreds of

score function evaluations (Preechakul et al., 2022; Zhang et al., 2022). They then geometrically
interpolate between x1

T and x2
T to obtain xλ

T , regardless of the correspondence between zλ and xλ
T .

2) DBAE directly obtains an intermediate value of xλ
T =Decψ(zλ). This does not require solving the

ODE, and the correspondence between xλ
T and zλ is also naturally determined by the decoder (ψ).

Figure 6 shows the interpolation results on the LSUN Horse, Bedroom (Yu et al., 2015) and FFHQ
datasets. The top row shows the corresponding endpoints xλ

T in the interpolation, which changes
smoothly between x1

T and x2
T . The bottom row shows the interpolation results on FFHQ, which

smoothly changes semantic information such as gender, glasses, and hair color.

5.6 ATTRIBUTE MANIPULATION

The linear classifier used in Section 5.1 can also be utilized to identify the manipulation direction of z.
From the prediction of a linear classifier ŷ = wT z+ b, traversing in the direction dy

dz = w increases
or decreases the logit. For a image x0, this is encoded as z = Encϕ(x0). The encoded representation
z is manipulated as znew = z+ λw. The manipulated image xnew

0 is obtained by decoding xnew
T =

Decψ(znew), and the reverse process in Eq. (12). DiffAE and PDAE additionally infer from x0 to
xT by solving Eq. (4) with hundreds of score function evaluations, fixing xT to prevent undesirable
variations in xT . Table 8 describes the long inference time for xT in previous approaches. Moreover,
if some information is split into xT , these methods cannot handle this information. On the other
hand, DBAE infers xT directly from manipulated z, ensuring that the endpoint xT is also controlled
through the decoder (ψ). Figure 6 shows the manipulation results for both CelebA-HQ images and
FFHQ images with various attributes.

6 CONCLUSION

This paper identifies the information split problem in diffusion-based representation learning, stem-
ming from separate inferences of the forward process and the auxiliary encoder. This issue hinders the
representation capabilities of the tractable latent variable z. The proposed method, Diffusion Bridge
AutoEncoders, systematically addresses these challenges by constructing z-dependent endpoint
xT inference. By transforming z into an information bottleneck, DBAE extracts more meaningful
representations within the tractable latent space. The notable enhancements in the latent quality of
DBAE improve downstream inference and image manipulation applications. This work lays a solid
foundation for further exploration of effective representation in learnable diffusion inference.
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A PROOFS AND MATHEMATICAL EXPLANATIONS

In this section, we follow the assumptions from Appendix A in (Song et al., 2021b), and we also
assume that both sθ and qtϕ,ψ have continuous second-order derivatives and finite second moments,
which are the same assumptions of Theorems 2 and 4 in (Song et al., 2021b).

A.1 PROOF OF THEOREM 1

Theorem 1. For the objective function LAE, the following equality holds.

LAE =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log q̃t(xt|x0,xT )||22]dt (16)

Moreover, if Eq. (1) is a linear SDE.3, there exists α(t), β(t), γ(t), λ(t), such that

LAE =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[λ(t)||x0
θ(xt, t,xT )− x0||22]dt, (17)

where x0
θ(xt, t,xT ) := α(t)xt + β(t)xT + γ(t)sθ(xt, t,xT ), and qtϕ,ψ(x0,xt,xT ) =∫

qdata(x0)qϕ(z|x0)qψ(xT |z)qt(xt|xT ,x0)dz, following the graphical model in Fig. 1c.

Proof. Note that the definitions of the objective functions are

LSM :=
1

2

∫ T

0

Eqtϕ,ψ(xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log qtϕ,ψ(xt|xT )||22]dt, (19)

LAE := LSM +H(qϕ,ψ(x0|xT )). (20)

We derive the score-matching objective LSM with the denoising version for tractability. First, LSM is
derived as follows.

LSM =
1

2

∫ T

0

Eqtϕ,ψ(xt,xT )[g
2(t)||sθ(xt, t,xT )||22 + g2(t)||∇xt

log qtϕ,ψ(xt|xT )||22

− 2g2(t)sθ(xt, t,xT )
T∇xt

log qtϕ,ψ(xt|xT )]dt. (21)

Then, the last inner product term of Eq. (21) can be deduced in a similar approach to (Vincent, 2011):

Eqtϕ,ψ(xt,xT )[sθ(xt, t,xT )
T∇xt

log qtϕ,ψ(xt|xT )] (22)

=

∫
qtϕ,ψ(xt,xT )sθ(xt, t,xT )

T∇xt
log qtϕ,ψ(xt|xT )dxtdxT (23)

=

∫
qtϕ,ψ(xT )q

t
ϕ,ψ(xt|xT )sθ(xt, t,xT )

T∇xt
log qtϕ,ψ(xt|xT )dxtdxT (24)

= Eqtϕ,ψ(xT )

[ ∫
qtϕ,ψ(xt|xT )sθ(xt, t,xT )

T∇xt log q
t
ϕ,ψ(xt|xT )dxt

]
(25)

= Eqtϕ,ψ(xT )

[ ∫
sθ(xt, t,xT )

T∇xt
qtϕ,ψ(xt|xT )dxt

]
(26)

= Eqtϕ,ψ(xT )

[ ∫
sθ(xt, t,xT )

T
{
∇xt

∫
qtϕ,ψ(x0|xT )q

t
ϕ,ψ(xt|xT ,x0)dx0

}
dxt

]
(27)

= Eqtϕ,ψ(xT )

[ ∫
sθ(xt, t,xT )

T
{∫

qtϕ,ψ(x0|xT )∇xt
qtϕ,ψ(xt|xT ,x0)dx0

}
dxt

]
(28)

= Eqtϕ,ψ(xT )

[ ∫
sθ(xt, t,xT )

T
{∫

qtϕ,ψ(x0|xT )q
t
ϕ,ψ(xt|xT ,x0)∇xt log q

t
ϕ,ψ(xt|xT ,x0)dx0

}
dxt

]
(29)

= Eqtϕ,ψ(xT )

[ ∫ ∫
qtϕ,ψ(x0|xT )q

t
ϕ,ψ(xt|xT ,x0)sθ(xt, t,xT )

T∇xt
log qtϕ,ψ(xt|xT ,x0)dx0dxt

]
(30)

= Eqtϕ,ψ(x0,xt,xT )[sθ(xt, t,xT )
T∇xt log q

t
ϕ,ψ(xt|xT ,x0)] (31)

3Eq. (1) is a linear SDE when the drift function f is linear with respect to xt.
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Next, we rewrite the second term of Eq. (21). To begin, we express the entropy H(qϕ,ψ(x0|xT ))
with ∇xt

log qtϕ,ψ(xt|xT ), which is similar to the proof of Theorem 4 in (Song et al., 2021b). Let
H(qϕ,ψ(xt,xT )) := −

∫
qϕ,ψ(xt,xT ) log qϕ,ψ(xt,xT )dxtdxT be the joint entropy function of

qϕ,ψ(xt,xT ). Note that H(qϕ,ψ(xT ,xT )) = H(qϕ,ψ(xT )). Then, we have

H(qϕ,ψ(x0,xT )) =H(qϕ,ψ(xT ,xT )) +

∫ 0

T

∂Ht(xt,xT )

∂t
dt. (32)

We can expand the integrand of Eq. (32) as follows.

∂Ht(xt,xT )

∂t
=

∂

∂t

[
−
∫

qϕ,ψ(xt,xT ) log qϕ,ψ(xt,xT )dxtdxT

]
(33)

=
∂

∂t

[
−
∫

qϕ,ψ(xT )qϕ,ψ(xt|xT )[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]dxtdxT

]
(34)

= −
∫

qϕ,ψ(xT )
∂

∂t

{
qϕ,ψ(xt|xT )[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]

}
dxtdxT

(35)

= −Eqϕ,ψ(xT )

[ ∫ ∂

∂t

{
qϕ,ψ(xt|xT )[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]

}
dxt

]
(36)

We further expand the integration in the last term as follows.∫
∂

∂t

{
qϕ,ψ(xt|xT )[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]

}
dxt (37)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )] + qϕ,ψ(xt|xT )

∂ log qϕ,ψ(xt|xT )

∂t
dxt

(38)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )] +

∂qϕ,ψ(xt|xT )

∂t
dxt (39)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]dxt +

∂

∂t

∫
qϕ,ψ(xt|xT )dxt (40)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
[log qϕ,ψ(xT ) + log qϕ,ψ(xt|xT )]dxt (41)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
log qϕ,ψ(xT )dxt +

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
log qϕ,ψ(xt|xT )dxt (42)

= log qϕ,ψ(xT )
∂

∂t

∫
qϕ,ψ(xt|xT )dxt +

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
log qϕ,ψ(xt|xT )dxt (43)

=

∫
∂

∂t

{
qϕ,ψ(xt|xT )

}
log qϕ,ψ(xt|xT )dxt (44)

Note that we use
∫
qϕ,ψ(xt|xT )dxt = 1 in Eqs. (41) and (44).

By eq. (51) in (Zhou et al., 2024), the Fokker-Plank equation for qϕ,ψ(xt|xT ) follows

∂

∂t
qϕ,ψ(xt|xT ) =−∇xt

·
[
(f(xt, t) + g2(t)h(xt, t,xT , T ))qϕ,ψ(xt|xT )

]
+

1

2
g2(t)∇xt

· ∇xt
qϕ,ψ(xt|xT ) (45)

=−∇xt
· [f̃ϕ,ψ(xt, t)qϕ,ψ(xt|xT )], (46)

where f̃ϕ,ψ(xt, t) := f(xt, t) + g2(t)h(xt, t,xT , T )− 1
2g

2(t)∇xt log qϕ,ψ(xt|xT ).
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Combining Eqs. (36), (44) and (46), we have
∂Ht(xt,xT )

∂t
(47)

= −Eqϕ,ψ(xT )

[ ∫
−∇xt

· [f̃ϕ,ψ(xt, t)qϕ,ψ(xt|xT )] log qϕ,ψ(xt|xT )dxt

]
(48)

= Eqϕ,ψ(xT )

[ ∫
∇xt · [f̃ϕ,ψ(xt, t)qϕ,ψ(xt|xT )] log qϕ,ψ(xt|xT )dxt

]
(49)

= Eqϕ,ψ(xT )

[
f̃ϕ,ψ(xt, t)qϕ,ψ(xt|xT ) log qϕ,ψ(xt|xT )

−
∫

qϕ,ψ(xt|xT )f̃ϕ,ψ(xt, t)
T∇xt

log qϕ,ψ(xt|xT )dxt

]
(50)

= Eqϕ,ψ(xT )

[
−
∫

qϕ,ψ(xt|xT )f̃ϕ,ψ(xt, t)
T∇xt log qϕ,ψ(xt|xT )dxt

]
(51)

= Eqϕ,ψ(xT )

[
−
∫
{f(xt, t) + g2(t)h(xt, t,xT , T )−

1

2
g2(t)∇xt

log qϕ,ψ(xt|xT )}T

∇xt
log qϕ,ψ(xt|xT )qϕ,ψ(xt|xT )dxt

]
(52)

= Eqϕ,ψ(xt,xT )

[
{−f(xt, t)− g2(t)h(xt, t,xT , T ) +

1

2
g2(t)∇xt

log qϕ,ψ(xt|xT )}T

∇xt log qϕ,ψ(xt|xT )
]

(53)

= Eqϕ,ψ(xt,xT )

[1
2
g2(t)||∇xt log qϕ,ψ(xt|xT )||22

− {f(xt, t) + g2(t)h(xt, t,xT , T )}T∇xt log qϕ,ψ(xt|xT )
]
. (54)

Therefore, the joint entropy function H(qϕ,ψ(x0,xT )) can be expressed as

H(qϕ,ψ(x0,xT )) = H(qϕ,ψ(xT )) +

∫ 0

T

Eqtϕ,ψ(xt,xT )

[1
2
g2(t)||∇xt

log qtϕ,ψ(xt|xT )||22

− f(xt, t)
T∇xt

log qtϕ,ψ(xt|xT )− g2(t)h(xt, t,xT , T )
T∇xt

log qtϕ,ψ(xt|xT )
]
dt. (55)

We can re-write the above equation as follows.∫ T

0

Eqtϕ,ψ(xt,xT )[g
2(t)||∇xt log q

t
ϕ,ψ(xt|xT )||22]dt (56)

=− 2H(qϕ,ψ(x0|xT )) (57)

+

∫ T

0

Eqtϕ,ψ(xt,xT )[2f(xt, t)
T∇xt log q

t
ϕ,ψ(xt|xT ) + 2g2(t)h(xt, t,xT , T )

T∇xt log q
t
ϕ,ψ(xt|xT )]dt

=− 2H(qϕ,ψ(x0|xT )) + 2

∫ T

0

Eqtϕ,ψ(xt,xT )[∇xt
· {f(xt, t) + g2(t)h(xt, t,xT , T )}]dt (58)

Similar to the process above, we can obtain the following results for the following joint entropy
function H(qϕ,ψ(x0,xt,xT )) := −

∫
qϕ,ψ(x0,xt,xT ) log qϕ,ψ(x0,xt,xT )dx0dxtdxT .

H(qϕ,ψ(x0,x0,xT )) = H(qϕ,ψ(x0,xT ,xT )) +

∫ 0

T

∂H(x0,xt,xT )

∂t
dt (59)

In the following results, we utilize the Fokker-Plank equation for qϕ,ψ(xt|x0,xT ), which comes
from eq. (49) in (Zhou et al., 2024):

∂

∂t
qϕ,ψ(xt|x0,xT ) =−∇xt

·
[
(f(xt, t) + g2(t)h(xt, t,xT , T ))qϕ,ψ(xt|x0,xT )

]
+

1

2
g2(t)∇xt · ∇xtqϕ,ψ(xt|x0,xT ) (60)

=−∇xt
· [f̂ϕ,ψ(xt, t)qϕ,ψ(xt|x0,xT )], (61)
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where f̂ϕ,ψ(xt, t) := f(xt, t) + g2(t)h(xt, t,xT , T )− 1
2g

2(t)∇xt
log qϕ,ψ(xt|x0,xT ).

Then, we have

0 =

∫ 0

T

Eqtϕ,ψ(x0,xt,xT )

[1
2
g2(t)||∇xt log q

t
ϕ,ψ(xt|xT ,x0)||22 − f(xt, t)∇xt log q

t
ϕ,ψ(xt|xT ,x0)

− g2(t)h(xt, t,xT , T )∇xt
log qtϕ,ψ(xt|xT ,x0)

]
dt, (62)

where the left hand side is from 0 = H(qϕ,ψ(x0,x0,xT ))−H(qϕ,ψ(x0,xT ,xT )), and right hand
side is from

∫ 0

T
∂H(x0,xt,xT )

∂t dt. We can further derive as follows.∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||∇xt log q

t
ϕ,ψ(xt|xT ,x0)||22]dt

= 2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[∇xt · {f(xt, t) + g2(t)h(xt, t,xT , T )}]dt (63)

Combining Eqs. (58) and (63), we have∫ T

0

Eqtϕ,ψ(xt,xT )[g
2(t)||∇xt

log qtϕ,ψ(xt|xT )||22]dt

= −2H(qϕ,ψ(x0|xT )) +

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||∇xt

log qtϕ,ψ(xt|xT ,x0)||22]dt (64)

Combining all results, the score-matching objective LSM can be expressed as

LSM =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )||22 + g2(t)||∇xt

log qtϕ,ψ(xt|xT ,x0)||22

− 2g2(t)sθ(xt, t,xT )
T∇xt log q

t
ϕ,ψ(xt|xT ,x0)]dt−H(qϕ,ψ(x0|xT ))

(65)

=
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt log q̃t(xt|x0,xT )||22]dt−H(qϕ,ψ(x0|xT ))

(66)

The last equality comes from qtϕ,ψ(xt|x0,xT ) = q̃t(xt|x0,xT ), which is based on the Doob’s
h-transform (Doob & Doob, 1984; Rogers & Williams, 2000; Zhou et al., 2024). Finally, we have

LAE = LSM +H(qϕ,ψ(x0|xT )) (67)

=
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log q̃t(xt|x0,xT )||22]dt. (68)

From here, we show that the objective LAE is equivalent to the reconstruction objective. Assume
that the forward SDE in Eq. (1) is a linear SDE in terms of xt (e.g. VP (Ho et al., 2020), VE (Song
et al., 2021c)). Then the transition kernel q̃(xt|x0) becomes Gaussian distribution. Then, we can
represent reparametrized form xt = αtx0 + σtϵ, where αt and σt are time-dependent constants
determined by drift f and volatility g, and ϵ ∼ N (0, I). The time-dependent constant signal-to-noise
ratio SNR(t) :=

α2
t

σ2
t

often define to discuss on diffusion process (Kingma et al., 2021). We define

SNR ratio, R(t) := SNR(T )
SNR(t) for convenient derivation.

Zhou et al. (2024) show the exact form of q̃t(xt|x0,xT ) := N (µ̂t, σ̂
2
t I), where µ̂t = R(t) αt

αT
xT +

αtx0(1−R(t)) and σ̂t = σt

√
1−R(t). This Gaussian form determines the exact analytic form of

the score function ∇xt log q̃t(xt|x0,xT ). We plug this into our objective LAE.
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LAE =
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log q̃t(xt|x0,xT )||22]dt (69)

=
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[g
2(t)||sθ(xt, t,xT )−

−xt + (R(t) αt

αT
xT + αtx0(1−R(t)))

σ2
t (1−R(t))

||22]dt

(70)

=
1

2

∫ T

0

Eqtϕ,ψ(x0,xt,xT )[λ(t)||x0
θ(xt, t,xT )− x0||22]dt, (71)

where

λ(t) =
αt

σ2
t

g2(t), (72)

x0
θ(xt, t,xT ) := α(t)xt + β(t)xT + γ(t)sθ(xt, t,xT ), (73)

α(t) =
1

αt(1−R(t))
, β(t) = − R(t)

αT (1−R(t))
, γ(t) =

σ2
t

αt
. (74)

A.2 PROOF OF THEOREM 3

Theorem 3. DKL(qdata(x0)||pψ,θ(x0)) ≤ LAE + LPR −H , where H = H(qdata(x0)) is a constant
w.r.t. ϕ,ψ,θ.

Proof. From the data processing inequality with our graphical model, we have the following result,
similar to eq. (14) in (Song et al., 2021a).

DKL(qdata(x0)||pψ,θ(x0)) ≤ DKL(qϕ,ψ(x0:T , z)||pψ,θ(x0:T , z)) (75)

Also, the chain rule of KL divergences, we have

DKL(qϕ,ψ(x0:T , z)||pψ,θ(x0:T , z)) (76)
= DKL(qϕ,ψ(xT , z)||pψ,θ(xT , z)) + Eqϕ,ψ(xT ,z)[DKL(µϕ,ψ(·|xT , z)||νθ,ψ(·|xT , z))], (77)

where µϕ,ψ and νθ,ψ are the path measures of the SDEs in Eqs. (78) and (79), respectively:

dxt = [f(xt, t) + g2(t)h(xt, t,y, T )]dt+ g(t)dwt, x0 ∼ qdata(x0), xT ∼ qϕ,ψ(xT |x0),
(78)

dxt = [f(xt, t)− g2(t)[∇xt log pθ(xt|xT )− h(xt, t,y, T )]]dt+ g(t)dw̄t, xT ∼ pψ(xT ).
(79)

By our graphical modeling, z is independent of {xt} given xT . Therefore, we have

Eqϕ,ψ(xT ,z)[DKL(µϕ,ψ(·|xT , z)||νθ(·|xT , z))] = Eqϕ,ψ(xT )[DKL(µϕ,ψ(·|xT )||νθ(·|xT ))], (80)

where µϕ,ψ(·|xT ) and νθ(·|xT ) are the path measures of the SDEs in Eqs. (81) and (82), respectively:

dxt = [f(xt, t)− g2(t)[∇xt
log qϕ,ψ(xt|xT )− h(xt, t,y, T )]]dt+ g(t)dw̄t, x(T ) = xT ,

(81)

dxt = [f(xt, t)− g2(t)[∇xt
log pθ(xt|xT )− h(xt, t,y, T )]]dt+ g(t)dw̄t, x(T ) = xT (82)

Similar to eq. (17) in (Song et al., 2021a), this KL divergence can be expressed using the Girsanov
theorem (Oksendal, 2013) and martingale property.

DKL(µϕ,ψ(·|xT )||νθ(·|xT )) =
1

2

∫ T

0

Eqϕ,ψ(xt|xT )[g
2(t)||sθ(xt, t,xT )−∇xt

log qtϕ,ψ(xt|xT )||22]dt

(83)
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From Eqs. (75), (77) and (83) and Theorem 1, we have:

DKL(qdata(x0)||pψ,θ(x0)) ≤ DKL(qϕ,ψ(xT , z)||pψ,θ(xT , z)) + LAE −H(qϕ,ψ(x0|xT )) (84)

Furthermore, the first and third terms of RHS in Eq. (84) can be expressed as follows.

DKL(qϕ,ψ(xT , z)||pψ,θ(xT , z))−H(qϕ,ψ(x0|xT )) (85)

=

∫
qϕ,ψ(xT , z)) log

qϕ,ψ(xT , z)

pψ,θ(xT , z)
dxTdz+

∫
qϕ,ψ(x0,xT ) log qϕ,ψ(x0|xT )dx0dxT (86)

=

∫
qϕ,ψ(x0,xT , z)

[
log

qϕ,ψ(xT , z)

pψ,θ(xT , z)
+ log qϕ,ψ(x0|xT )

]
dx0dxTdz (87)

=

∫
qϕ,ψ(x0,xT , z)

[
log

qϕ,ψ(xT )qψ(z|xT )

pψ(xT )pψ(z|xT )
+ log qϕ,ψ(x0|xT )

]
dx0dxTdz (88)

=

∫
qϕ,ψ(x0,xT , z)

[
log

qϕ,ψ(xT )

pψ(xT )
+ log qϕ,ψ(x0|xT )

]
dx0dxTdz (89)

=

∫
qϕ,ψ(x0,xT )

[
log

qϕ,ψ(xT )qϕ,ψ(x0|xT )

pψ(xT )

]
dx0dxT (90)

=

∫
qϕ,ψ(x0,xT )

[
log

qdata(x0)qϕ,ψ(xT |x0)

pψ(xT )

]
dx0dxT (91)

=

∫
qdata(x0)qϕ,ψ(xT |x0)

[
log

qϕ,ψ(xT |x0)

pψ(xT )
+ log qdata(x0)

]
dx0dxT (92)

= Eqdata(x0)[DKL(qϕ,ψ(xT |x0)||pψ(xT ))]−H(qdata(x0)) (93)

= LPR −H(qdata(x0)) (94)

To sum up, we have

DKL(qdata(x0)||pψ,θ(x0)) ≤ LAE + LPR −H(qdata(x0)). (95)

A.3 PRIOR OPTIMIZATION OBJECTIVE

This section explains the details of the prior related objective function mentioned in Section 4.4.2.
The proposed objective is LPR as shown in Eq. (96).

LPR =Eqdata(x0)[DKL(qϕ,ψ(xT |x0)||pψ(xT ))] (96)

To optimize this term, we fix the parameters of the encoder (ϕ→ ϕ∗), the decoder (ψ → ψ∗), and
score network (θ → θ∗), which is optimized by LAE . And we newly parameterize the generative
prior pprior(z) → pω(z), so the generative endpoint distribution becomes pψ(xT ) → pψ∗,ω(xT ). We
utilize MLP-based latent diffusion models following (Preechakul et al., 2022; Zhang et al., 2022).

The objective function in Eq. (96) with respect to ω is described in Eq. (97) and extends to Eq. (99)
with equality. Equation (100) is derived from the same optimality condition. In other words, it
reduces the problem of training an unconditional generative prior pω(z) to matching the aggregated
posterior distribution qϕ∗(z).

argmin
ω

Eqdata(x0)[DKL(qϕ∗,ψ∗(xT |x0)||pψ∗,ω(xT ))] (97)

⇔ argmin
ω

∫
qdata(x0)qϕ∗,ψ∗(xT |x0) log

qϕ∗,ψ∗(xT |x0)

pψ∗,ω(xT )
dx0dxT (98)

⇔ argmin
ω

DKL(qϕ∗,ψ∗(xT )||pψ∗,ω(xT )) + C (99)

⇔ argmin
ω

DKL(qϕ∗(z)||pω(z)) (100)
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A.4 MUTUAL INFORMATION ANALYSIS

Alemi et al. (2018) shows the distortion; reconstruction error with inferred z is the variational
bound of mutual information between x0 and z in the autoencoding framework. We explain the
functional form of distortion in both the auxiliary encoder framework (Appendix A.4.1) and DBAE
(Appendix A.4.2).

A.4.1 AUXILIARY ENCODER FRAMEWORK

In the auxiliary encoder framework (e.g., DiffAE (Preechakul et al., 2022)), the distortion :=

Eqdata(x0),qϕ(z|x0)[− log pθ(x0|z)] and mutual information MI(x0, z) := Eqϕ(x0,z)[log
qϕ(x0,z)

qdata(x0)qϕ(z)
]

has a relation

−Eqdata(x0),qϕ(z|x0)[− log pθ(x0|z)] +H(qdata(x0)) ≤ MI(x0, z), (101)

where pθ(x0|z) =
∫
pprior(xT )p

ODE
θ (x0|z,xT )dxT , when this framework reconstruct only with

inferred z.

We have the followings

log pθ(x0|z) (102)

= log

∫
pprior(xT )p

ODE
θ (x0|z,xT )dxT (103)

= log

∫
pprior(xT )p

ODE
θ (x0|z,xT )

qODE
θ (xT |z,x0)

qODE
θ (xT |z,x0)

dxT (104)

≥
∫

qODE
θ (xT |z,x0) log

pprior(xT )p
ODE
θ (x0|z,xT )

qODE
θ (xT |z,x0)

dxT (105)

= EqODE
θ (xT |x0,z)[log p

ODE
θ (x0|z,xT )]−DKL(q

ODE
θ (xT |x0, z)||pprior(xT )). (106)

=

∫
qODE
θ (xT |z,x0) log

pprior(xT )(((((((
pODE
θ (x0|z,xT )

(((((((
qODE
θ (xT |z,x0)

dxT (107)

=

∫
qODE
θ (xT |z,x0) log pprior(xT )dxT (108)

= −CE(qODE
θ (xT |z,x0)||pprior(xT )) (109)

Note that pODE
θ (x0|z,xT ) = qODE

θ (xT |z,x0) because the deterministic coupling of (x0,xT ) is given
by the ODE in Eq. (110). When the coupling (x0, xT ) lies on the ODE path, both probabilities
pODE
θ (x0|z,xT ) and qODE

θ (xT |z,x0) become infinite. When the coupling (x0, xT ) is outside the
ODE path, both probabilities pODE

θ (x0|z,xT ) and qODE
θ (xT |z,x0) become zero.

dxt = [f(xt, t)−
1

2
g2(t)sθ(xt, z, t)]dt. (110)

From Eq. (101) and Eq. (109), we have the following.

Eqdata(x0),qϕ(z|x0)[−CE(qODE
θ (xT |z,x0)||pprior(xT ))] +H(qdata(x0)) ≤ MI(x0, z) (111)

The discrepancy between qODE
θ (xT |x0, z) and pprior(xT ) makes the lower bound of mutual infor-

mation between x0 and z loose. This discrepancy is inevitable from the deterministic nature of
qODE
θ (xT |z,x0).

This discrepancy is empirically observed in Table 2, providing two cases of xT draw (random
xT , inferred xT ) in the auxiliary encoder models. The reconstruction gap between (random xT ,
inferred xT ) is significant in practice. However, the inference of xT is computationally expensive
and inflexible in terms of dimensionality. If we only consider z inference, the information leakage is
inevitable due to the functional form of diffusion models with an auxiliary encoder.
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A.4.2 DIFFUSION BRIDGE AUTOENCODERS

In the DBAE, the distortion := Eqdata(x0),qϕ(z|x0)[− log pθ,ψ(x0|z)] term and mutual information
between x0 and z has relation in Eq. (112).

−Eqdata(x0),qϕ(z|x0)[− log pθ,ψ(x0|z)] +H(qdata(x0)) ≤ MI(x0, z), (112)

where pθ,ψ(x0|z) =
∫
pθ(x0|xT )pψ(xT |z)dxT . We have followings

log pθ,ψ(x0|z) (113)

= log

∫
pθ(x0|xT )pψ(xT |z)dxT (114)

= log

∫
pθ(x0|xT )pψ(xT |z)

qψ(xT |z)
qψ(xT |z)

dxT (115)

≥
∫

qψ(xT |z) log
pθ(x0|xT )pψ(xT |z)

qψ(xT |z)
dxT (116)

= Eqψ(xT |z)[log pθ(x0|xT )]−DKL(qψ(xT |z)||pψ(xT |z)) (117)

Since DKL(qψ(xT |z)||pψ(xT |z)) = 0, we have followings from Eq. (112) and Eq. (117).

Eqdata(x0),qϕ(z|x0)[Eqψ(xT |z)[log pθ(x0|xT )]] +H(qdata(x0)) ≤ MI(x0, z). (118)

Unlike in Eq. (111), the xT related term does not hinder maximizing mutual information between x0

and z. Moreover, the remaining term Eqdata(x0),qϕ(z|x0)[Eqψ(xT |z)[log pθ(x0|xT )]] can maximized by
our training, as we explain in Theorem 2.

A.5 PROOF OF THEOREM 2

Theorem 2. −MI(x0, z) ≤ LAE −H , where H = H(qdata(x0)) is a constant w.r.t. ϕ,ψ,θ.

Proof. From data processing inequality similar in Eq. (75),

Eqϕ,ψ(xT )[DKL(qϕ,ψ(x0|xT )||pθ(x0|xT ))] ≤ Eqϕ,ψ(xT )[DKL(µϕ,ψ(·|xT )||νθ(·|xT ))] (119)

The LHS of Eq. (119) becomes followings,

Eqϕ,ψ(xT )[DKL(qϕ,ψ(x0|xT )||pθ(x0|xT ))] = Eqϕ,ψ(x0,xT )[− log pθ(x0|xT )]−H(qϕ,ψ(x0|xT ))

(120)

The RHS of Eq. (119) becomes followings from the result of Eq. (83),

Eqϕ,ψ(xT )[DKL(µϕ,ψ(·|xT )||νθ(·|xT ))] = LSM = LAE −H(qϕ,ψ(x0|xT )) (121)

From Eqs. (119) to (121), we have the followings

Eqϕ,ψ(x0,xT )[− log pθ(x0|xT )] ≤ LAE (122)

We have the following to sum up Eq. (122) and Eq. (118).

−MI(x0, z) ≤ LAE −H(qdata(x0)) (123)

B RELATED WORK

B.1 REPRESENTATION LEARNING IN DIFFUSION MODELS

Expanding the applicability of generative models to various downstream tasks depends on exploring
meaningful latent variables through representation learning. Methods within both variational autoen-
coders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014; Higgins et al., 2017; Zhao et al.,
2019; Kim & Mnih, 2018) and generative adversarial networks (GANs) (Jeon et al., 2021; Karras
et al., 2020; Abdal et al., 2019; 2020; Chen et al., 2016) have been proposed; however, VAEs suffer
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from low sample quality, limiting their practical deployment in real-world scenarios. Conversely,
GANs are known for their ability to produce high-quality samples with fast sampling speeds but
face challenges in accessing latent variables due to their intractable model structure. This leads
to computationally expensive inference methods like GAN inversion (Xia et al., 2022; Voynov &
Babenko, 2020; Zhu et al., 2016; Karras et al., 2020; Abdal et al., 2019). Additionally, the adversarial
training objective of GANs introduces instability during the training.

In contrast, recent research has delved into representation learning within diffusion probabilistic
models (DPMs), which offer stable training and high sample quality. In early studies, the diffusion
endpoint xT was introduced as a latent variable (Song et al., 2021a;c) with an invertible path defined
by an ordinary differential equation (ODE). However, xT is difficult to consider as a semantically
meaningful encoding. Additionally, the dimension of xT matches that of the original data x0, limiting
the ability to learn condensed feature representation for downstream tasks (e.g., downstream inference,
attribute manipulation with linear classifier). The inference of latent variables also relies on solving
ODE, rendering inference intractable. This intractability not only hinders the desired regularization
(e.g. disentanglment (Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018)) of the latent
variable but also slows down the downstream applications.

Diffusion AutoEncoder (DiffAE) (Preechakul et al., 2022) introduces a new framework for learning
tractable latent variables in DPMs. DiffAE learns representation in the latent variable z through
an auxiliary encoder, with a z-conditional score network (Ronneberger et al., 2015). The encoder-
generated latent variable z can learn a semantic representation with a flexible dimensionality. Pre-
trained DPM AutoEncoding (PDAE) (Zhang et al., 2022) proposes a method to learn unsupervised
representation from pre-trained unconditional DPMs. PDAE also employs an auxiliary encoder
to define z and introduces a decoder to represent ∇xt

log p(z|xt). PDAE can parameterize the
z-conditional model score combined with a pre-trained unconditional score network, utilizing the
idea of classifier guidance (Dhariwal & Nichol, 2021). PDAE can use the pre-trained checkpoint
from publicly available sources, but its complex decoder architecture slows down the sampling speed.

Subsequent studies have imposed additional assumptions or constraints on the encoder based on
specific objectives. DiTi (Yue et al., 2024) introduces a time-dependent latent variable on the top of
PDAE to enable feature learning that depends on diffusion time. InfoDiffusion (Wang et al., 2023)
regularizes the latent space of DiffAE to foster an informative and disentangled representation of
z. It should be noted that such proposed regularization in (Wang et al., 2023) is also applicable
with DBAE, and Section 5.3 demonstrates that the tradeoff between disentanglement and sample
quality is better managed in DBAE than in DiffAE. FDAE (Wu & Zheng, 2024) learns disentangled
latent representation by masking image pixel content with DiffAE. DisDiff (Yang et al., 2023) learns
disentangled latent variable z by minimizing mutual information between each latent variable from
different dimensions atop PDAE. LCG-DM (Kim et al., 2022b) adopts a pre-trained disentangled
encoder and trains DiffAE structure with fixed encoder parameters to enable unsupervised controllable
generation. SODA (Hudson et al., 2023) improves the network architectures of DiffAE and training
for novel image reconstruction.

All the frameworks (Preechakul et al., 2022; Zhang et al., 2022) and applications (Yue et al., 2024;
Wang et al., 2023; Wu & Zheng, 2024; Yang et al., 2023; Hudson et al., 2023) utilize the encoder
and do not consider the diffusion endpoint xT , leading to an information split problem. In contrast,
DBAE constructs an z-dependent endpoint xT inference with feed-forward architecture to induce
z as an information bottleneck. Our framework makes z more informative, which is orthogonal to
advancements in downstream applications (Kim et al., 2022b; Yue et al., 2024; Wang et al., 2023;
Wu & Zheng, 2024; Yang et al., 2023; Hudson et al., 2023), as exemplified in Section 5.3.

B.2 PARAMETRIZED FORWARD DIFFUSION

The forward diffusion process with learnable parameters is a key technique in DBAE to resolve
information split problem. We summarize several other methods that proposed a learnable forward
process. Note that DBAE has clear technical differences from those methods.

Schödinger bridge problem (SBP) (De Bortoli et al., 2021; Chen et al., 2022) learns the pair of SDEs
that have forward and reverse dynamics relationships. SBP identifies the joint distribution in the
form of a diffusion path between two given marginal distributions. The optimization is reduced
to entropy-regularized optimal transport (Schrödinger, 1932; Genevay et al., 2018), which is often
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solved by Iterative Proportional Fitting (Ruschendorf, 1995). For this optimization, samples are
required at any given time t from the forward SDE; however, these samples are not from a Gaussian
kernel like Eq. (1) or Eq. (5), resulting in longer training times needed to solve the SDE numerically
with intermediate particles. The formulation is also not suitable for our case, as we learn the given
joint distribution through an encoder-decoder framework.

Diffusion normalizing flow (DiffFlow) (Zhang & Chen, 2021) parameterizes the drift term in Eq. (1)
using a normalizing flow, making the endpoint of DiffFlow learnable. However, both training and
endpoint inference are intractable because the parametrized forward SDE does not provide a Gaussian
kernel similar to that in SBP. Implicit nonlinear diffusion model (INDM) (Kim et al., 2022a) learns a
diffusion model that is defined in the latent space of a normalizing flow, implicitly parameterizing
both the drift and volatility terms in Eq. (1). A unique benefit is its tractable training, allowing
direct sampling from any diffusion time t. However, INDM merely progresses the existing diffusion
process in the flow latent space, making it unsuitable for encoding due to technical issues such as
dimensionality. The inference also requires solving the ODE for encoding.

Unlike other studies, we parameterize the endpoint xT rather than the drift or volatility terms. The
forward process is naturally influenced by the endpoint determined from Doob’s h-transform. Unlike
other parameterized diffusions, our approach ensures tractable learning and xT inference, making it
particularly advantageous for encoding tasks.

C IMPLEMENTATION DETAILS

C.1 TRAINING CONFIGURATION

Model Architecture We use the score network (θ) backbone U-Net (Ronneberger et al., 2015),
which are modified for diffusion models (Dhariwal & Nichol, 2021) with time-embedding. Dif-
fAE (Preechakul et al., 2022), PDAE (Zhang et al., 2022), and DiTi (Yue et al., 2024) also utilize the
same score network architecture. The only difference for DBAE is the endpoint xT conditioning.
We follow DDBM (Zhou et al., 2024) which concatenate xt and xT for the inputs as described
in Figure 7b. This modification only increases the input channels, so the complexity increase is
marginal. While the endpoint xT contains all the information from z, we design a score network also
conditioning on z for implementation to effectively utilize the latent information in the generative
process. For the encoder (ϕ), we utilize the same structure from DiffAE (Preechakul et al., 2022).
For the decoder (ψ), we adopt the upsampling structure from the generator of FastGAN (Liu et al.,
2021), while removing the intermediate stochastic element. For the generative prior (ω), we utilize
latent ddim from (Preechakul et al., 2022). Tables 5 and 6 explains the network configurations for the
aforementioned structures.

Optimization We follow the optimization argument from DDBM (Zhou et al., 2024) with Variance
Preserving (VP) SDE. We utilize the preconditioning and time-weighting proposed in DDBM,
with the pred-x parameterization (Karras et al., 2022). Table 5 shows the remaining optimization
hyperparameters. While DDBM does not include the encoder (ϕ) and the decoder (ψ), we optimize
jointly the parameters ϕ, ψ, and θ to minimize LAE.

C.2 EVALUATION CONFIGURATION AND METRIC

Downstream Inference In Table 1, we use Average Precision (AP), Pearson Correlation Coefficient
(Pearson’s r), and Mean Squared Error (MSE) as metrics for comparison. For AP measurement, we
train a linear classifier (Rl → [0, 1]40) to classify 40 binary attribute labels from the CelebA (Liu
et al., 2015) training dataset. The output of the encoder, Encϕ(x0) = z, serves as the input for a
linear classifier. We examine the CelebA test dataset. Precision and recall for each attribute label are
calculated by computing true positives (TP), false positives (FP), and false negatives (FN) for each
threshold interval divided by predicted values. The area under the precision-recall curve is obtained
as AP. For Pearson’s r and MSE, we train a linear regressor (Rl → R73) using LFW (Huang et al.,
2007; Kumar et al., 2009) dataset. The regressor predicts the value of 73 attributes based on the latent
variable z. Pearson’s r is evaluated by calculating the variance and covariance between the ground
truth and predicted values for each attribute, while MSE is assessed by measuring the differences
between two values. We borrow the baseline results from the DiTi (Yue et al., 2024) paper and adhere
to the evaluation protocol found at https://github.com/yue-zhongqi/diti.
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(a) The encoder (ϕ) structure in the left, and decoder (ψ) structure in the right.

(b) The score network (θ) structure. While the model output is not directly one-step denoised sample xt, the
output is equivalent to xt−1 with time-dependent constant operation with accessible information.

Figure 7: The architecture overview of Diffusion Bridge AutoEncoder.

Table 5: Network architecture and training configuration of DBAE.

Parameter CelebA 64 FFHQ 128 Horse 128 Bedroom 128
Base channels 64 128 128 128
Channel multipliers [1,2,4,8] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4]
Attention resolution [16] [16] [16] [16]

Encoder base ch 64 128 128 128
Enc. attn. resolution [16] [16] [16] [16]
Encoder ch. mult. [1,2,4,8,8] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4]
latent variable z dimension 32, 256, 512 512 512 512

Vanilla forward SDE VP VP VP VP
Images trained 72M, 130M 130M 130M 130M
Batch size 128 128 128 128
Learning rate 1e-4 1e-4 1e-4 1e-4
Optimizer RAdam RAdam RAdam RAdam
Weight decay 0.0 0.0 0.0 0.0
EMA rate 0.9999 0.9999 0.9999 0.9999
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Table 6: Network architecture and training configuration of latent diffusion models pω(z) for an
unconditional generation, following (Preechakul et al., 2022).

Parameter CelebA 64 FFHQ 128
Batch size 512 256
z trained 600M 600M
MLP layers (N) 10, 15 10
MLP hidden size 2048
latent variable z dimension 512
SDE VP
β scheduler Constant 0.008
Learning rate 1e-4
Optimizer AdamW (weight decay = 0.01)
Train Diff T 1000
Diffusion loss L1, L2

Reconstruction We quantify reconstruction error in Table 2 though the Structural Similarity Index
Measure (SSIM) (Wang et al., 2003), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) and Mean Squared Error (MSE). This metric measures the distance between original
images in CelebA-HQ and their reconstructions across all 30K samples and averages them. SSIM
compares the luminance, contrast, and structure between images to measure the differences on a
scale from 0 to 1, like human visual perception. LPIPS measures the distance in the feature space
of a neural network that learns the similarity between two images. We borrow the baseline results
from DiffAE (Preechakul et al., 2022) and PDAE (Zhang et al., 2022). We use Heun’s ODE sampler
(99 NFE) to evaluate SSIM and MSE and use a stochastic sampler (Zhou et al., 2024) (998 NFE) to
evaluate LPIPS for Table 2. We also present performance metrics for various NFE values in Tables 12
and 13.

Disentanglment The metric Total AUROC Difference (TAD) (Yeats et al., 2022) measures how
effectively the latent space is disentangled, utilizing a dataset with multiple binary ground truth
labels. It calculates the correlation between attributes based on the proportion of entropy reduction
given any other single attribute. Attributes that show an entropy reduction greater than 0.2 when
conditioned on another attribute are considered highly correlated and therefore entangled. For
each remaining attribute that is not considered entangled, we calculate the AUROC score for each
dimension of the latent variable z. To calculate the AUROC score, first determine the dimension-
wise minimum and maximum values of z. We increment the threshold from the minimum to the
maximum for each dimension, converting z to a one-hot vector by comparing each dimension’s
value against the threshold. This one-hot vector is then compared to the true labels to compute
the AUROC score. An attribute is considered disentangled if at least one dimension of z can
detect it with an AUROC score of 0.75 or higher. The sub-metric ATTRS denotes the number
of such captured attributes. The TAD score is calculated as the sum of the differences between
the two highest AUROC scores for each captured attribute. We randomly selected 1000 samples
from the CelebA training, validation, and test sets to perform the measurement following (Yeats
et al., 2022). We borrow the baseline results expect DisDiff from the InfoDiffusion (Wang et al.,
2023), and we follow their setting that the dim(z) = 32. DisDiff (Yang et al., 2023) utilizes the
dim(z) = 192 and we borrow its performance from the original paper. We use evaluation code from
https://github.com/ericyeats/nashae-beamsynthesis.

Unconditional Generation To measure unconditional generative modeling, we quantify Precision,
Recall (Kynkäänniemi et al., 2019), Inception Score (IS) (Salimans et al., 2016) and the Fréchet
Inception Distance (FID) (Heusel et al., 2017). Precision and Recall are measured by 10k real
images and 10k generated images following (Dhariwal & Nichol, 2021). Precision is the ratio of
generated images belonging to real images’ manifold. Recall is the ratio of real images belonging
to the generated images’ manifold. The manifold is constructed in a pre-trained feature space
using the nearest neighborhoods. Precision quantifies sample fidelity, and Recall quantifies sample
diversity. Both IS and FID are influenced by fidelity and diversity. IS is calculated using an Inception
Network (Szegedy et al., 2016) pre-trained on ImageNet (Russakovsky et al., 2015), and it computes
the logits for generated samples. If an instance is predicted with high confidence for a specific class,
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and predictions are made for multiple classes across all samples, then the IS will be high. On the
other hand, for samples generated from FFHQ or CelebA, predictions cannot be made for multiple
classes, which does not allow for diversity to be reflected. Therefore, a good Inception Score (IS)
can only result from high-confidence predictions based solely on sample fidelity. We measure IS
for 10k generated samples. FID approximates the generated and real samples as Gaussians in the
feature space of an Inception Network and measures the Wasserstein distance between them. Since it
measures the distance between distributions, it emphasizes the importance of sample diversity and
sample fidelity. For Table 4 we measure FID between 50k random samples from the FFHQ dataset and
50k randomly generated samples. For ‘AE’, we measure the FID between 50k random samples from
the FFHQ dataset and generate samples that reconstruct the other 50k random samples from FFHQ.
In Table 3, we measure the FID between 10k random samples from the CelebA and 10k randomly
generated samples. We utilize https://github.com/openai/guided-diffusion to
measure Precision, Recall and IS. We utilize https://github.com/GaParmar/clean-fid
to measure FID. In Table 4, we loaded checkpoints for all baselines (except the generative prior of
PDAE, we train it to fill performance) and conducted evaluations in the same NFEs. Table 14 shows
the performance under various NFEs. For CelebA training, we use a dim(z) = 256 following (Wang
et al., 2023), while FFHQ training employs a dim(z) = 512 following (Preechakul et al., 2022;
Zhang et al., 2022).

C.3 ALGORITHM

This section presents the training and utilization algorithms of DBAE. Algorithm 1 outlines the
procedure for minimizing the autoencoding objective, LAE. Algorithm 2 explains the method for
reconstruction using the trained DBAE. Algorithm 3 describes the steps for training the generative
prior, pω . Algorithm 4 explains the procedure for unconditional generation using the trained DBAE
and generative prior.

Algorithm 3: Latent DPM Training Algorithm
Input: Encϕ, data distribution qdata(x0), drift term f , volatility term g
Output: Latent DPM score network sω
while not converges do

Sample time t from [0, T ]
x0 ∼ qdata(x0)
z = Encϕ(x0)
zt ∼ q̃t(zt|z0)
L ← g2(t)||sω(zt, t)−∇zt log pt(zt|z)||22
Update ω by L using the gradient descent method

end

Algorithm 4: Unconditional Generation Algorithm

Input: Decψ , latent score network sω , score network sθ , latent discretized time steps {t∗j}Nz
j=0, discretized

time steps {ti}Ni=0

zT ∼ N (0, I)
for j = Nz, ..., 1 do

Update ztj using Eq. (3)

xT = Decψ(z0)
for i = N, ..., 1 do

Update xti using Eq. (12)
Output: Unconditioned sample x0

C.4 COMPUTATIONAL COST

This section presents a computational cost comparison among diffusion-based representation learn-
ing baselines. Table 7 compares DDIM (Song et al., 2021a), DiffAE (Preechakul et al., 2022),
PDAE (Zhang et al., 2022), and DBAE in terms of parameter size, training time, and testing time.
DDIM requires only a score network (99M), resulting in minimal parameter size. DiffAE involves
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Table 7: Computational cost comparison for FFHQ128. Training time is measured in milliseconds
per image per NVIDIA A100 (ms/img/A100), and testing time is reported in milliseconds per one
sampling step per NVIDIA A100 (ms/one sampling step/A100).

Parameter Size Training Testing
DDIM (Song et al., 2021a) 99M 9.687 0.997
DiffAE (Preechakul et al., 2022) 129M 12.088 1.059
PDAE (Zhang et al., 2022) 280M 12.163 1.375
DBAE 161M 13.190 1.024

Table 8: Computing costs for xT inference.

NFE (↓) Total
time (↓)

(ms)Method Encϕ Decψ sθ

PDAE 1 500 500 688
DiffAE 1 - 250 265
DBAE 1 1 0 0.31

a z-conditional score network (105M) and an encoder (24M), leading to an increase in parameter
size. PDAE incorporates both a heavy decoder and an encoder, further increasing the parameter size.
Conversely, although DBAE also includes a decoder, it is less complex (32M), resulting in a smaller
relative increase in parameter size compared to PDAE. From a training time perspective, DiffAE,
PDAE, and DBAE all require longer durations compared to DDIM due to their increased model sizes.
DBAE’s training time is 9% longer than that of DiffAE because of the decoder module. However,
the decoder does not repeatedly affect the sampling time, making it similar to DiffAE’s. In contrast,
PDAE, which utilizes a decoder at every sampling step, has a longer sampling time.

D ADDITIONAL EXPERIMENTS

D.1 DOWNSTREAM INFERENCE

Figure 8 shows the attribute-wise Average Precision (AP) gap between PDAE (Zhang et al., 2022)
and DBAE. As discussed in Section 5.1, PDAE suffers from an information split problem that xT

contains facial or hair details. The resulting attribute-wise gain aligns with that analysis with Figure 3.
Figure 9d shows the absolute attribute-wise AP of DBAE performance across the training setting
varies on the encoder (deterministic/stochastic) and training datasets (CelebA training set / FFHQ).
The attribute-wise performance is similar across the training configurations. Table 9 shows the
comparsion to the other baseline DiffuseVAE (Pandey et al., 2022). From the two-stage paradigm of
DiffuseVAE, its latent quality is only from the latent representation capability of the VAE module.
This is an aligned result from the poor performance of β-TCVAE in Table 1. Note that the image
crop for CelebA in DiffuseVAE is not exactly the same as our setting.

Table 9: Linear-probe attribute prediction quality comparison for models trained on CelebA and
CIFAR-10 with dim(z) = 512. The best and second-best results are highlighted in bold. We evaluate
5 times and report the average.

CelebA CIFAR-10
Method AP (↑) Pearson’s r (↑) MSE (↓) AUROC (↑)

DiffuseVAE (Pandey et al., 2022) 0.395 0.325 0.618 0.736
DBAE 0.655 0.643 0.369 0.836
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Figure 8: Attribute-wise AP gap between PDAE and DBAE-d trained on CelebA. DBAE-d performs
better for all 40 attributes.

(a) DBAE-d trained on CelebA (b) DBAE trained on CelebA

(c) DBAE-d trained on FFHQ (d) DBAE trained on FFHQ

Figure 9: Attribute-wise Average Precision across the training configuration of DBAE.
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Figure 10: Reconstruction statistics with inferred z. We quantify the mean and standard deviation
of the reconstruction in the pixel space. The number in parentheses represents the dimension-wise
averaged standard deviation in the pixel space.

D.2 RECONSTRUCTION

The sampling step is important for practical applications (Lu et al., 2022; Zheng et al., 2024).
We compare the reconstruction results across various sampling steps among the baselines. Ta-
bles 12 and 13 shows the results. The proposed model performs the best results among all
NFEs in (10, 20, 50, 100). We borrow the performance of DDIM, DiffAE from (Preechakul et al.,
2022). We manually measure for PDAE (Zhang et al., 2022) using an official checkpoint in
https://github.com/ckczzj/PDAE. Figure 10 shows the reconstruction statistics for a
single image with inferred z. Due to the information split on xT , DiffAE shows substantial variations
even when utilizing ODE sampling. When DBAE also performs stochastic sampling, information
is split across the sampling path, but it has less variation compared to DiffAE (9.99 vs 6.52), and
DBAE induce information can be stored solely at xT through the ODE path. Table 10 shows that the
reconstruction quality compare to DiffuseVAE (Pandey et al., 2022). Since DiffuseVAE also requires
to sample random xT for the generation, this framework also suffers from information split problem.
That is the reason for poor reconstruction quality. Table 11 shows the reconstruction quality for Horse
and Bedroom datasets, which surpasses the DiffAE.

Table 10: Autoencoding reconstruction quality comparison with DiffuseVAE with 512-dimensional
latent variable, the one yielding the best performance is highlighted in bold.

CelebA
Method SSIM (↑) LPIPS (↓) MSE (↓)

DiffuseVAE (Pandey et al., 2022) 0.836 0.134 0.018
DBAE 0.990 0.014 4.86e-4

Table 11: More results on autoencoding reconstruction quality comparison with DiffAE with 512-
dimensional latent variable, the one yielding the best performance is highlighted in bold.

Horse Bedroom
Method SSIM (↑) MSE (↓) SSIM (↑) MSE (↓)

DiffAE (Preechakul et al., 2022) 0.857 0.025 0.910 0.017
DBAE 0.902 0.012 0.948 0.007

D.3 UNCONDITIONAL GENERATION

The sampling step is also important for unconditional generation (Lu et al., 2022; Zheng et al.,
2024). We reduce the NFE=1000 in Table 4 to NFE=500 and NFE=250 in Table 14. As the number
of function evaluations (NFE) decreased, DDPM (Ho et al., 2020) showed a significant drop in
performance, while DBAE and the other baselines maintained a similar performance trend.

Although DBAE improves sample fidelity which is crucial for practical uses, sample diversity remains
an important virtue depending on the specific application scenarios (Kim et al., 2024; Sadat et al.,
2024). In the area of generative models, there is a trade-off between fidelity and diversity (Dhariwal
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Table 12: Autoencoding reconstruction quality comparison. All the methods are trained on the FFHQ
dataset and evaluated on the 30K CelebA-HQ dataset. Among tractable and compact 512-dimensional
latent variable models, the one yielding the best performance was highlighted in bold, followed by an
underline for the next best performer. All the metric is SSIM.

Method Tractability Latent dim (↓) NFE=10 NFE=20 NFE=50 NFE=100

DDIM (Inferred xT ) (Song et al., 2021a) ✗ 49,152 0.600 0.760 0.878 0.917
DiffAE (Inferred xT ) (Preechakul et al., 2022) ✗ 49,664 0.827 0.927 0.978 0.991
PDAE (Inferred xT ) (Zhang et al., 2022) ✗ 49,664 0.822 0.901 0.966 0.987

DiffAE (Random xT ) (Preechakul et al., 2022) ✓ 512 0.707 0.695 0.683 0.677
PDAE (Random xT ) (Zhang et al., 2022) ✓ 512 0.728 0.713 0.697 0.689
DBAE ✓ 512 0.904 0.909 0.916 0.920
DBAE-d ✓ 512 0.884 0.920 0.945 0.954

Table 13: Autoencoding reconstruction quality comparison. All the methods are trained on the FFHQ
dataset and evaluated on the 30K CelebA-HQ dataset. Among tractable and compact 512-dimensional
latent variable models, the one yielding the best performance was highlighted in bold, followed by an
underline for the next best performer. All the metric is MSE.

Method Tractability Latent dim (↓) NFE=10 NFE=20 NFE=50 NFE=100

DDIM (Inferred xT ) (Song et al., 2021a) ✗ 49,152 0.019 0.008 0.003 0.002
DiffAE (Inferred xT ) (Preechakul et al., 2022) ✗ 49,664 0.001 0.001 0.000 0.000
PDAE (Inferred xT ) (Zhang et al., 2022) ✗ 49,664 0.001 0.001 0.000 0.000

DiffAE (Random xT ) (Preechakul et al., 2022) ✓ 512 0.006 0.007 0.007 0.007
PDAE (Random xT ) (Zhang et al., 2022) ✓ 512 0.004 0.005 0.005 0.005
DBAE ✓ 512 0.005 0.005 0.005 0.005
DBAE-d ✓ 512 0.006 0.003 0.002 0.002

& Nichol, 2021). Therefore, providing a balance between these two virtues is important. We offer
an option based on DBAE. The h-transformed forward SDE we designed in Eq. (10) is governed
by the determination of the endpoint distribution. If we set endpoint distribution as Eq. (124), we
can achieve smooth transitions between DiffAE and DBAE in terms of xT distribution. Modeling
qϕ,ψ(xT |x0) as a Gaussian distribution (with learnable mean and covariance) with a certain variance
or higher can also be considered as an indirect approach.

xT ∼ λ× qϕ,ψ(xT |x0) + (1− λ)×N (0, I) (124)

Table 14: Unconditional generation with reduced NFE ∈ {250, 500} on FFHQ. ‘+AE’ indicates the
use of the inferred distribution qϕ(z) instead of pω(z)

NFE = 500 NFE = 250

Method Prec (↑) IS (↑) FID 50k (↓) Rec (↑) Prec (↑) IS (↑) FID 50k (↓) Rec (↑)

DDIM (Song et al., 2021a) 0.705 3.16 11.33 0.439 0.706 3.16 11.48 0.453
DDPM (Ho et al., 2020) 0.589 2.92 22.10 0.251 0.390 2.76 39.55 0.093
DiffAE (Preechakul et al., 2022) 0.755 2.98 9.71 0.451 0.755 3.04 10.24 0.443
PDAE (Zhang et al., 2022) 0.687 2.24 46.67 0.175 0.709 2.25 44.82 0.189
DBAE 0.774 3.91 11.71 0.391 0.758 3.90 13.88 0.381

DiffAE+AE 0.750 3.61 3.21 0.689 0.750 3.61 3.87 0.666
PDAE+AE 0.710 3.53 7.11 0.598 0.721 3.54 6.58 0.608
DBAE+AE 0.748 3.57 1.99 0.702 0.731 3.58 3.36 0.694
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D.4 RESULTS WITH INTEL GAUDI V2 HARDWARE.

We conducted evaluations across various infrastructures to assess experimental reproducibility.
The performance of the trained model (DBAE-d) was evaluated on both the Nvidia A100 and
Intel Gaudi v2 chips. The reconstruction results for both chips are presented in Table 15. Re-
construction performance on each chip was assessed using various metrics, revealing negligi-
ble errors across all metrics. To facilitate reproducibility, we provide the code at https:
//github.com/NAVER-INTEL-Co-Lab/gaudi-dbae for reproducing our experiments on
Intel Gaudi v2 chips.

Table 15: Regenerated results of Table 2 across multiple hardwares.

Hardware SSIM (↑) LPIPS (↓) MSE (↓)

Nvidia A100 0.953 0.072 2.49e-3
Intel Gaudi v2 0.956 0.073 2.47e-3

D.5 ADDITIONAL SAMPLES

Interpolation Figures 11 and 12 shows the interpolation results of DBAE trained on FFHQ, Horse,
and Bedroom. The two paired rows indicate the endpoints xT and generated image x0 each. Figure 13
compares the interpolation results with PDAE (Zhang et al., 2022) and DiffAE (Preechakul et al.,
2022) under tractable inference condition. PDAE and DiffAE result in unnatural interpolations
without inferring xT , compared to DBAE.

Attribute Manipulation Figure 15 shows additional manipulation results using a linear classifier,
including multiple attributes editing on a single image. Figure 14 provides the variations in the
manipulation method within DBAE. The top row utilizes the manipulated xT both for the starting
point of the generative process and score network condition input. The bottom row utilizes the
manipulated xT only for the score network condition input, while the starting point remains the
original image’s xT . Using manipulated xT both for starting and conditioning results in more
dramatic editing, and we expect to be able to adjust this according to the user’s desires.

Generation Trajectory Figure 16 shows the sampling trajectory of DBAE from xT to x0 with
stochastic sampling for FFHQ, Horse, and Bedroom.

Unconditional Generation Figures 17 and 18 show the randomly generated uncurated samples from
DBAE for FFHQ and CelebA.
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Figure 11: FFHQ interpolations results with corresponding endpoints xT . The leftmost and rightmost
images are real images.
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Figure 12: Horse and Bedroom interpolations results with corresponding endpoints xT . The leftmost
and rightmost images are real images.
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Figure 13: FFHQ interpolation comparison: PDAE (Zhang et al., 2022) (top), DiffAE (Preechakul
et al., 2022) (middle) and DBAE (bottom).

Figure 14: Attribute manipulation on FFHQ using a linear classifier and corresponding endpoints xT .
The top results utilize the manipulated xT both as the starting point of the sampling trajectory and
as a condition input to the score network. The bottom results use the manipulated xT solely as the
condition input and maintain the original xT as the starting point of the sampling trajectory. All the
middle images are the original images.
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(a) Smooth traversals in the direction of attribute manipulation. All the middle images are the original images.

(b) Multiple attribute manipulation on a single image.

Figure 15: Attribute manipulation using a linear classifier on FFHQ and CelebA-HQ.
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(a) Sampling trajectory of DBAE trained on FFHQ.

(b) Sampling trajectory of DBAE trained on Horse.

(c) Sampling trajectory of DBAE trained on Bedroom.

Figure 16: Stochastic sampling trajectory of DBAE trained on various datasets.
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(a) Generated endpoints xT

(b) Generated images x0

Figure 17: Uncurated generated samples with corresponding endpoints from DBAE trained on FFHQ
with unconditional generation.
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(a) Generated endpoints xT

(b) Generated images x0

Figure 18: Uncurated generated samples with corresponding endpoints from DBAE trained on
CelebA with unconditional generation.
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