
A A Detailed Revisit to Vision Transformer

Vision transformer (ViT) [5] derived from Transformer [16] is designed for computer vision tasks.
It consists of an embedding module, a sequence of stacked transformer blocks, and an MLP head.
Specifically, given an RGB image I , ViT first crops and reshapes it into a series of image patches
{ap ∈ R3×P×P }Np=1 (P is the patch size), and then projects them into C-dimensional embeddings:

xp = Embed(ap), p = 1, 2, . . . , N. (1)

We denote the collection of embeddings as X = {xp}Np=1.

In each transformer block Bl, the layer inputs are processed by a Multiheaded Self-Attention (MSA)
module and a multilayer perceptron (MLP) module with extra residual connections. More concretely,
given a sequence of input tokens X ∈ RN×C , a self-attention layer corresponds to three matrices:
queries Q = XWQ, keys K = XWK and values V = XWV , where WQ,WK ∈ RC×dk , and
WV ∈ RC×dv are projection weights. With Q,K and V, self-attention can be formulated as follows:

Attention(Q,K,V) = Softmax(
QK⊤
√
dk

)V. (2)

MSA is constructed based on Attention by split the channels of Q,K and V into h groups with
each group a part of queries, keys, and values Qi,Ki ∈ RN× dk

h ,Vi ∈ RN× dv
h . Therefore, MSA

concatenates the attentions results of each group by:

MSA(Q,K,V) = [head1, head2, · · · , headh]WO, (3)

where headi = Attention(Qi,Ki,Vi), and [·, ·] is the concatenate operation. WO ∈ Rdv×C is the
projection weights for layer outputs.

With the MSA module and MLP module (a two-layer MLP), the ViT can be formulated as:
X0 = [xcls,Ximg] +Epos, (4)

X′
l = MSA(LN(Xl−1)) +Xl−1, l = 1, 2, . . . , L, (5)

Xl = MLP(LN(X′
l)) +X′

l, l = 1, 2, . . . , L, (6)

y = MLP_Head(LN(X0
L)), (7)

where Epos ∈ R(N+1)×C is the position embedding and LN is the layer normalization [2].
MLP_Head is a linear classifier and X0

L is the deep state of the class token xcls. We note that
Eqn. (5) and Eqn. (6) comprise the transformer block Bl.

B Details for Prompt Generation

As illustrated in Section 3.3.2 in the manuscript, we generate a set of prompts from each support
image, including a foreground prompt and multiple local background prompts. Generating these
local background prompts requires partitioning the background into several local parts. Moreover, we
use an augmentation method and derive multiple prompt tokens from each generated prompt. The
augmented prompt tokens are then concatenated with the patch tokens and are fed into the transformer
blocks. Here we provide some important details for the prompt generation procedure in the proposed
FPTrans, i.e., the Voronoi-Based Background partition, and the prompt augmentation.

B.1 Voronoi-Based Background Partition

FPTrans adopts a Voronoi-based method [1] to partition the background into multiple regions. The
partition method consists of three steps:

Step 1: We collect all the background positions into a position set B = {t = (i, j)|Ys,t = 0, i =
1, 2, . . . ,W, j = 1, 2, . . . ,H}, where Ys is the support mask, and H and W are the height and width,
respectively. An empty point list T is initialized.

Step 2: We select S dispersed points from the position set B. Specifically, a seed t1 is first randomly
sampled from B and appended into T . Then, we select from B the next seed point t2 satisfying:

t2 = argmax
t∈B

min
t′∈T
∥t− t′∥22, (8)

1



which is the farthest point to all the points in T . t2 is appended into T . Repeating Eqn. (8), we can
finally select S points dispersed in the background.

Step 3: Given these S dispersed points T = {t1, t2, . . . , tS} as the seeds, we assign the neighboring
pixels of each seed into the same part according to the Voronoi diagram and correspondingly derive
S local parts. Concretely, for each background pixel t ∈ B, we assign a label mt as follows:

mt = argmin
n∈{1,2,...,S}

∥t− tn∥22. (9)

Therefore, the background is divided into S regions formulated as Bn = {t ∈ B|mt = n}, n =
1, 2, . . . , S. The point sets Bn are further transferred into binary masks as Bn = {0, 1}H×W for the
subsequent masked average pooling as stated in the Section 3.3.2 of the main manuscript.

B.2 Prompt Augmentation

With the downsampled support foreground mask Ỹs and background partitions Bn, n = 1, 2, . . . , S,
we calculate the foreground and multiple background mean features by masked average pooling:

u∗
f =

1

|Ỹs|

H×W∑
i=1

F∗
s,iỸs,i, u∗

n =
1

|Bn|

H×W∑
i=1

F∗
s,iBs,i, n = 1, 2, . . . , S, (10)

where F∗
s is the support features extracted by a pretrained ViT. Inspired by the multiple-object

tracking within a single framework [21], in which different objects are represented by various
identifications (i.e., learnable vectors) for simultaneously tracking, we add extra learnable tokens
to the mean features for more discriminative prompts. Specifically, we first expand C-dimensional
mean features (uf and un) into a corresponding token E(uf ), E(un) ∈ RG×C (by repeating each
mean feature G times). Then, a group of learnable tokens is added to obtain the final prompts:

pf = E(u∗
f ) + zf , pn = E(u∗

n) + zn, n = 1, 2, . . . , S. (11)

We note that in different episodes, u∗
f and u∗

n represent diverse foreground and background classes,
which implies that zf and zn should not be bound to specific classes. To this end, we initialize a
learnable token poolW = {z|z ∈ RG×C} with size |W| = D. In each episode, S + 1 learnable
tokens are randomly sampled {zf , z1, z2, . . . , zS} ⊂ W and used for constructing prompts using
Eqn. (11). In this way, these tokens are optimized (by gradient back-propagation from foreground
and background prompts) to be diverse from each other, which in turn enhances the discrimination of
prompts.

C Details for K-Shot Setting

FPTrans can be naturally extended to the K-shot setting when K > 1.

Specifically, for the prompt generation (the process of feature-based proxy extraction is similar),
we calculate a foreground mean feature and S background mean features for each support sample by:

u
(k)
f =

1

|Ỹ (k)
s |

HW∑
i=1

F
(k)
s,i Ỹ

(k)
s,i , k = 1, . . . ,K (12)

u(k)
n =

1

|B(k)
n |

HW∑
i=1

F
(k)
s,i B

(k)
n,i , k = 1, . . . ,K, n = 1, . . . , S, (13)

where F
(k)
s is the support feature, Ỹ (k)

s ∈ {0, 1}H×W is the down-sampled foreground mask, and
{B(k)

n }Sn=1 are background partitions. The final foreground mean feature (or proxy) is calculated by
taking the average on {u(k)

f }Kk=1 following prior methods [14, 23]:

uf =
1

K

K∑
k=1

u
(k)
f . (14)

The K × S background mean features (or proxies) are kept because the backgrounds among support
images are also likely to be inhomogeneous, which gives un, n = 1, 2, . . . ,KS.
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For the feature extraction, K support samples are individually processed and the prompt synchro-
nization is applied to the K + 1 prompts, which is formulated by:

[Xl
q,P

l
q] = Bl([X

l−1
q ,Pl−1]), (15)

[Xl,(k)
s ,Pl,(k)

s ] = Bl([X
l−1,(k)
s ,Pl−1]), k = 1, 2, . . . ,K (16)

Pl =
1

K + 1

(
Pl

q +

K∑
k=1

Pl,(k)
s

)
, (17)

where l = 1, 2, · · · , L enumerates all the transformer blocks.

D Detailed Experimeantal Settings

D.1 Datasets

PASCAL-5i is built from PASCAL VOC 2012 [6] (See the website for details.) and SBD [7](See
the website for details.). We make the dataset splits following [14], as shown in Table 1.

Table 1: Detailed splits of PASCAL-5i

Split Test classes

PASCAL-50 aeroplane, bicycle, bird, boat, bottle
PASCAL-51 bus, car, cat, chair, cow
PASCAL-52 diningtable, dog, horse, motorbike, person
PASCAL-53 potted plant, sheep, sofa, train, tv/monitor

COCO-20i is built from COCO 2014 [9] (Licenses of all the images are contained in the annotation
file. See the website for details.). We make the dataset splits following [14], as shown in Table 2.

Table 2: Detailed splits of COCO-20i

Split Test classes

COCO-200
Person, Airplane, Boat, Park meter, Dog, Elephant, Backpack, Suitcase,
Sports ball, Skateboard, W. glass, Spoon, Sandwich, Hot dog, Chair,
D. table, Mouse, Microwave, Fridge, Scissors

COCO-201
Bicycle, Bus, T.light, Bench, Horse, Bear, Umbrella,
Frisbee, Kite, Surfboard, Cup, Bowl, Orange, Pizza,
Couch, Toilet, Remote, Oven, Book, Teddy

COCO-202
Car, Train, Fire H., Bird, Sheep, Zebra, Handbag,
Skis, B. bat, T. racket, Fork, Banana, Broccoli, Donut,
P. plant, TV, Keyboard, Toaster, Clock, Hairdrier

COCO-203
Motorcycle, Truck, Stop, Cat, Cow, Giraffe, Tie,
Snowboard, B. glove, Bottle, Knife, Apple, Carrot, Cake,
Bed, Laptop, Cellphone, Sink, Vase, Toothbrush

COCO-20i → PASCAL-5i For the domain shift setting, we make the dataset splits following [3],
as shown in Table 3.

The construction method of PASCAL-5i and COCO-20i follows previous work [14]. We do not find
personally identifiable information or offensive content in the two datasets.

D.2 Implementation Details

We implement FPTrans on vision transformer backbones (i.e., ViT [5], DeiT [15]) and a proxy-based
classification head. Our experiments are based on ViT-B/16 and DeiT-B/16 (both are pretrained
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Table 3: Detailed splits of COCO-20i → PASCAL-5i

Split PASCAL-5i Test classes

COCO-200 Airplane, Boat, Chair, D. table, Dog, Person

COCO-201 Horse, Sofa, Bicycle, Bus

COCO-202 Bird, Car, P.plant, Sheep, Train, TV

COCO-203 Bottle, Cat, Cow, Motorcycle

on ImageNet-1K [4] with size 224 and finetuned with size 384). We also report the results of two
smaller variants, DeiT-S/16 and DeiT-T/16 (pretrained with size 224) in Fig. 1. To enlarge the size of
feature maps, we append a residual upsampling layer after the backbone in the baseline and FPTrans.
Specifically, given the output of the final transformer block, we reshape it back to 2D feature maps
XL ∈ RC×H×W , and upsample the feature maps by:

X′
L = Resize(XL) + g(XL), (18)

where Resize is a linear interpolation operation, and g(·) is a bottleneck layer implemented by
“Conv-ReLU-DeConv-ReLU-Conv”, where “Conv” is the 1× 1 convolutional layer and “DeConv” is
the 2× 2 deconvolutional layer. The hidden channels are set as 256 by default. We observe that a
strong pairwise loss (i.e., a large λ) leads to over-penalization. Therefore, we experimentally set λ to
2e-2 for PASCAL-5i and smaller 1e-4 for a larger dataset COCO-20i.

D.3 Algorithm

The pseudo-code of FPTrans is presented as below. The PyTorch [13] and PaddlePaddle1 implemen-
tation will be publicly available.

E More Experimental Results

E.1 Detailed Main Results

See Table 7 and Table 8.

E.2 Ablation Studies

Ablations on the transformer blocks. Previous methods [18, 22, 14] use mid-level features
because high-level features are prone to lack of details. We inspect different feature levels on various
transformer backbones as shown in Fig. 1. We observe that FPTrans prefers mid-level features to
top-level features, which is consistent with that of CNN-based methods [22, 14]. For example, ViT-
B/16 achieves the best results with 10 transformer blocks, while the three DeiT variants (DeiT-B/16,
DeiT-S/16, and DeiT-T/16) achieve the best results with 11 blocks. Moreover, The smaller DeiT-S/16
backbone even outperforms the ViT-B/16 backbone, and the smallest DeiT-T/16 backbone with 11
blocks achieves 59.70% mIoU on par with some ResNet-101 methods, e.g., RePRI [3] (59.4%) and
PFENet (60.1%). For COCO-20i, we find that DeiT-B/16 with 12 transformer blocks gives the best
performance.

Ablations on prompt augmentation. The ablation studies of prompts are listed in Table 4. From
the results in the table, we have two observations.

• #2 (using only the learnable prompts) and #3 (using only the extracted prompts) actually
decreases and increases the accuracy over #1 (baseline), respectively.

• Comparing #4 against #3, we observe that adding the learnable prompts brings further
improvement.

Therefore, in our manuscript, we consider the learnable prompts as a prompt augmentation approach
(which should not be used alone).

1https://github.com/PaddlePaddle/Paddle
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Algorithm 1 Algorithm of FPTrans (Single training step, 1-shot setting)
Require: A training episodes (Is, Ys, Iq, Yq)

1: {aq,p}Np=1, {as,p}Np=1 ← Iq, Is ▷ Reshape images into image patches
2: Xq ← Embed({aq,p}Np=1),Xs ← Embed({as,p}Np=1) ▷ Project image patches into embedding
3: [xcls,Xq]← Xq , [xcls,Xs]← Xs ▷ Concatenate the class token
4: [x0,X0

q]← [xcls,Xq] +Epos, [x0,X0
s]← [xcls,Xs] +Epos ▷ Add the positional embedding

5: P0 ← PROMPTGENERATION([xcls,Xs]) ▷ Prompt generation
6: l = 1
7: while l ≤ L do
8: [xl

q,X
l
q,P

l
q]← Bl([x

l−1,Xl−1
q ,Pl−1])

9: [xl
s,X

l
s,P

l
s]← Bl([x

l−1,Xl−1
s ,Pl−1])

10: xl ← (xl
q + xl

s)/2

11: Pl ← (Pl
q +Pl

s)/2
12: l← l + 1
13: end while
14: Fq ← Resize(XL

q ) + g(XL
q ),Fs ← Resize(XL

s ) + g(XL
s ) ▷ Upsample features

15: [pL
f , {pL

n}Sn=1]← PL + g(PL) ▷ Project prompt states into the feature space
16: u := [uf , {un}Sn=1]← PROXYGENERATION(Fs, Ys) ▷ Feature-based proxy generation
17: v := [vf , {vn}Sn=1]← [ 1G

∑G
j=1 p

L
f,j , { 1

G

∑G
j=1 p

L
n,j}Sn=1] ▷ Prompt-based proxy generation

18: P(Fq,i,u)← exp(sim(Fq,i,uf )/τ)
exp (sim(Fq,i,uf )/τ)+maxn(exp (sim(Fq,i,un/τ)))

▷ Compute probability

19: Lce ← −
∑H×W

i=1 (Yq,i logP(Fq,i,u) + (1− Yq,i) log(1− P(Fq,i,u)))
▷ Feature-proxy based classification loss

20: L′
ce ← −

∑H×W
i=1 (Yq,i logP(Fq,i,v) + (1− Yq,i) log(1− P(Fq,i,v)))

▷ Prompt-proxy based Classification loss

21: Lpair = 1
Z

∑
(Yq,i+Ys,j)≥1 BCE(σ(sim(Fq,i,Fs,j)/τ),1[Yq,i = Ys,j ]), ▷ Pairwise loss

22: L ← Lce + L′
ce + λLpair
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Figure 1: Results with different levels of feature and various backbones on the 1-shot setting.
Experiments are conducted on PASCAL-5i.
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Table 4: Ablation studies of the prompting strategy. "Extracted prompts" indicate the foreground and
background mean vectors extracted in the prompt generation step. "Learned prompts" indicate the
extra added learnable vectors. We conduct experiments with ViT-B/16 on the 1-shot setting.

# Extracted prompts Learnable prompts PASCAL-5i COCO-20i

1 64.0 40.3
2 ✓ 63.5 39.2
3 ✓ 64.3 41.4
4 ✓ ✓ 64.7 42.0

Ablations on the pairwise loss. We recall that the pairwise loss for training FPTrans does NOT
pull close background features. The motivation for this design is that we consider the background
is not homogeneous. We conduct experiments to show that enforcing within-class compactness on
background features actually compromises FPTrans, as shown in Table 5. It is observed that adding
the pulling-close to the background features decreases the segmentation accuracy (-0.7% IoU with
50% background pairs, and -0.9% mIoU with all the background pairs).

Table 5: Results of using the background-background pairs in the pairwise loss. We conduct
experiments with ViT-B/16 on the 1-shot setting, and report results on PASCAL-5i.

Using background-background pairs (percent) Mean IoU

100% 63.8
50% 64.0
0% 64.7

E.3 Qualitative Results

As presented in Fig. 2, we display some qualitative comparisons of FPTrans with the baseline and
two previous methods PFENet [14] and BAM [8].

F Analysis on Computational Cost

Although FPTrans achieves promising results with a simple framework, it relies on a pretrained model
for generating prompts, which consumes extra computational resources. However, the computational
cost for generating the prompts is comparable compared with previous methods.

We add the comparison of the parameter size and FLOPs in Table 6. For a fair comparison, we fix
the input size as 480× 480. We observe that the proposed FPTrans is actually relatively efficient,
considering its superiority in FSS accuracy. For example, FPTrans with the DeiT-S/16 backbone has
41 Mb parameters and only 80.7 GFLOPs. It is faster than all the competing CNN methods and yet
achieves competitive accuracy. Moreover, FPTrans with DeiT-B/16 backbone is superior to the SOTA
method BAM w.r.t. both the accuracy (mIoU) and speed (FLOPs).

Moreover, the computational cost for generating the prompts has the potential to be reduced, because
we find that FPTrans is robust to the model for extracting the prompts to some extent. Specifically,
when replacing the pretrained ViT with the trained backbone of FPTrans (on PASCAL-5i), the
generated prompts can still produce almost the same results. In this way, we only need to save a copy
of FPTrans, instead of saving both the pretrained ViT and FPTrans for inference. In future works, we
will seek more lightweight prompt-generating models to further reduce the computational cost. Since
FPTrans only consists of a transformer backbone and a linear classification head, the quantitative
computational cost of FPTrans can be directly referred to as vision transformer [5, 15].
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Table 6: Comparison of FPTrans with SOTA methods on the number of parameters and computation
cost. ∗ denotes that the mean IoU is from our experiments.

Backbone Method Params (M) GFLOPs Mean-IoU (%)

ResNet-50

PFENet [14] 34 231.2 60.8
CyCTR [23] 37 244.7 64.2
HSNet [11] 28 95.9 64.0
BAM [8] 52 302.2 67.8

ResNet-101

PFENet [14] 53 367.9 60.1
CyCTR [23] 59 381.1 64.3
HSNet [11] 47 145.0 66.2

BAM* 71 438.9 67.5

ViT-B/16

FPTrans

145 247.2 64.7
DeiT-T/16 11 26.7 59.7
DeiT-S/16 41 80.7 65.3
DeiT-B/16 159 271.8 68.8
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Support Query PFENetBaseline BAM FPTrans

Figure 2: Qualitative comparisons of FPTrans with the baseline and previous methods, PFENet [14]
and BAM [8].
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