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ABSTRACT
The Text to Audible-Video Generation (TAVG) task involves gener-
ating videos with accompanying audio based on text descriptions.
Achieving this requires skillful alignment of both audio and video
elements. To support research in this field, we have developed
a comprehensive Text to Audible-Video Generation Benchmark
(TAVGBench), which contains over 1.7 million clips with a total
duration of 11.8 thousand hours. We propose an automatic annota-
tion pipeline to ensure each audible video has detailed descriptions
for both its audio and video contents. We also introduce the Audio-
Visual Harmoni score (AVHScore) to provide a quantitative measure
of the alignment between the generated audio and video modal-
ities. Additionally, we present a baseline model for TAVG called
TAVDiffusion, which uses a two-stream latent diffusion model to
provide a fundamental starting point for further research in this
area. We achieve the alignment of audio and video by employing
cross-attention and contrastive learning. Through extensive ex-
periments and evaluations on TAVGBench, we demonstrate the
effectiveness of our proposed model under both conventional met-
rics and our proposed metrics.

CCS CONCEPTS
• Computing methodologies → Image and video acquisition.

KEYWORDS
Text to Audible-Video Generation Benchmark (TAVGBench), Text
to Audible-Video Diffusion (TAVDiffusion)

1 INTRODUCTION
The text to video generation task [2, 10, 13, 39, 47, 51] has been
boosted through the integration of computer vision and natural
language processing. This task translates textual descriptions into
visual representations, enriching multimedia experiences, and im-
proving accessibility for individuals with visual impairments. How-
ever, we observe that although existing methods excel in converting
textual descriptions into visual content, the endeavor to integrate
synchronized audio into these videos remains largely unexplored.
This gap underscores a fundamental necessity within the realm of
multimodal generation—the imperative to generate video content
with auditory components guided solely by textual descriptions.

In this paper, considering the clear gap in current research, we in-
troduce a new task: Text to Audible-Video Generation (TAVG). This
task marks a significant change, requiring models to move beyond
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just generating visual content and also creating audio alongside it.
Unlike typical text to video tasks that only focus on unimodal video
generation, TAVG requires generating both audio and video at the
same time, guided by written descriptions. By taking on this task,
we aim to push the boundaries of multimodal generation, making
it possible to create immersive audio-visual experiences using only
text prompts. The task definition is shown in Fig. 1.

To successfully achieve TAVG, a comprehensive dataset with
well-aligned audio and video components is essential. However,
we find no mature benchmark available for this task to support
training and testing, primarily attributable to the absence of such a
large-scale dataset. Building upon the foundation of TAVG, we pro-
pose establishing a Text to Audible-Video Generation Benchmark
(TAVGBench), which allows the model to be trained in a supervised
manner. At the core of TAVGBench lies a carefully selected dataset,
comprising diverse textual descriptions and their corresponding
audio-visual pairs. This dataset facilitates comprehensive evalua-
tion and comparison of various methods. Our dataset consists of
over 1.7 million audio-visual pairs sourced from YouTube videos.
We design a coarse-to-fine pipeline to automatically achieve text
annotation for audio-visual pairs in the dataset. Specifically, we
utilize BLIP2 [23] andWavCaps [27] to describe the video and audio
components, respectively. Additionally, we employ ChatGPT [29]
to rephrase and integrate annotations from both modalities, which
enables our annotation pipeline to excel in understanding context
and producing human-like text descriptions. To evaluate the align-
ment degree between the generated audio and video, we introduce
a new metric for the TAVG task to measure the harmony of the gen-
erated results, called the Audio-Visual Harmoni score (AVHScore).
This metric quantifies the alignment between video and audio in a
multi-modal, high-dimensional semantic space.

Utilizing our proposed TAVGBench, we present a Text to Audible-
Video Diffusion (TAVDiffusion) model as the baseline method. This
method is based on the latent diffusion model [34], representing
an initial attempt to generate audio and video from text. Given the
requirement of multimodal alignment, we propose two strategies
to achieve the alignment of multimodal latent variables from the
perspective of feature interaction and feature constraints. We exten-
sively evaluate the baselinemodel against the proposed TAVGBench
using both the conventional metrics and our proposed metrics and
demonstrate the effectiveness of our method in the task of TAVG.

As follows, we summarize our main contributions as:
• We introduce the TAVG task, extending multimodal genera-
tion by integrating synchronized audio with visual content,
addressing a crucial research gap.

• We present TAVGBench, a large-scale benchmark dataset
with an automatic text description annotation pipeline and a
novel Audio-Visual Harmoni score (AVHScore), significantly
facilitating the TAVG task.

• We propose the Text to Audible-Video Diffusion (TAVDif-
fusion) model as a baseline method built upon the latent
diffusion model.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In the background, music is playing.

A baby is sitting on top of a table and looking

down at something on the floor. The baby

appears to be curious and is observing

whatever is capturing its attention below.

Generate 

video only

Generate 

audio only

Generate 

audible video 

jointly

In the background, music is playing as a

baby sits on top of a table, peering down at

something on the floor with a curious

expression. The scene is tranquil as the baby

remains focused and engaged in whatever

has captivated its interest below.

Figure 1: Comparison of the proposed TAVG task with existing generation tasks. (a) Text to video generation (TVG) generates
the corresponding videos through text descriptions. (b) Text to audio generation (TAG) generates the corresponding audio
through text descriptions. (c) The proposed TAVG task generates audio-visual content based on text descriptions of both audio
and video elements.

2 RELATEDWORK
Text to video generation. Text to video generation [2, 10, 13,
18, 39, 47, 49, 51] presents a challenging and extensively studied
task. Previous studies utilize various generative models, such as
GANs [24], and Autoregressive models [15, 55]. In recent years, the
emergence of diffusion models [14] in content generation (i.e. text-
to-image generation) catalyzes substantial advancements in text-to-
video generation research. Imagen-Video [13], Make-A-Video [39],
and show-1 [56] propose a deep cascade of temporal and spatial up-
samplers for video generation, training their models jointly on both
image and video datasets. The majority of subsequent works are
grounded in the latent diffusion model [34], leveraging pre-trained
UNet weights on 2D images. VideoLDM [2] adopts a latent diffu-
sion model, where a pre-trained latent image generator and decoder
are fine-tuned to ensure temporal coherence in generated videos.
LAVIE [47] integrates Rotary Positional Encoding (RoPE) [42] into
the network to capture temporal relationships among video frames.
AnimateDiff [10] employs a strategy of freezing a pre-trained latent
image generator while exclusively training a newly inserted mo-
tion modeling module. SimDA [51] proposes an efficient temporal
adapter to help a trained 2D diffusion model extract temporal in-
formation. These advancements lay the foundation for an efficient
multimodal diffusion pipeline.
Text to audio generation. Similar to video generation, the task
of text to audio generation also evolves from GANs [28, 37] and
Autoregressive models [20] to diffusion models. DiffSound [53]
proposes a VQVAEmodel and amask-based text generation strategy
to address scarce audio-text paired data, albeit with potentially
limited performance due to the lack of detailed text information.
AudioGen [20] employs an autoregressive framework utilizing a
Transformer-based decoder to generate tokens directly from the
waveform. It applies data augmentation and simplifies language
descriptions into labels, sacrificing detailed temporal and spatial
information. AudioLDM [25] transfers the latent diffusion model
from the domain of visual generation to text-to-audio generation. It

encodes text information through CLAP embedding [6] to achieve
guidance. Tango [8] follows the LDM pipeline and replaces the
CLAP to T5 [33] for more expressive text embedding.
Audio video mutual/joint generation. In addition to text-guided
content generation, the mutual or joint generation of audio and
video gradually become the focus of research in recent years. Typi-
cally, audio and video modalities serve as conditional signals for
each other to achieve mutual generation, namely generating audio
from video or video from audio. For the former, SpecVQGAN [16],
CondFoleyGen [5], and Diff-Foley [26] implement audio genera-
tion from video using VQGAN, autoregressive transformer, and
diffusion model, respectively. Regarding the latter, soundini [22]
utilizes audio as a control signal to guide the video diffusion model
for video editing purposes. Sung et al. [43] constrain the generated
video content from audio to align more closely with the original
audio using contrastive learning. TempoTokens [54] introduces an
AudioMapper that employs a token encoded by a pre-trained au-
dio encoder as a condition for enabling audio-to-video generation
within a diffusion framework.

Based on the mutual generation of the two modalities, several
studies explore the joint generation of audible video content. MM-
diffusion [36] employs a diffusion UNet that takes inputs and out-
puts from both modalities, enabling the joint generation of two
modalities for the first time. Zhu et al. [58] employ a video diffusion
architecture to generate video and then retrieve audio, presenting
an alternative approach to joint generation. Xing et al. [50] pro-
pose augmenting the existing diffusion model with optimization
operations during the inference process to achieve audio-video
generation while maintaining alignment.
Uniqueness of our benchmark.Despite the extensive exploration
of multimodal generation tasks, there currently lacks a comprehen-
sive benchmark and large-scale dataset specifically for the text to
audible-video generation task. Addressing this gap, our solution
offers a dataset for both training and evaluation, alongside metrics
for assessing multimodal alignment. Additionally, we provide a
straightforward baseline method.
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Table 1: Statistics of TAVGBench and other existing video generation datasets. The terms “audio” and “video” represent the
modality described by the description in the dataset. The terms “Sentence” and “Word” represent the average number of
sentences and words per video annotation, respectively.

Dataset Sample Description

Clip DUR. (h) Audio Video Method Sentence Word

AudioCaps [19] 46K 5.3 ✔ ✘ Human-written 1.0 9.03
MSR-VTT [52] 10K 41.2 ✘ ✔ Human-written 20.0 185.7
WebVid [1] 10M 53K ✘ ✔ Automatic caption 1.0 12.0

FAVDBench [38] 11.4K 24.4 ✔ ✔ Human-written 12.6 218.9
TAVGBench 1.7M 11.8K ✔ ✔ Automatic caption 2.32 49.98

3 THE TAVGBENCH
3.1 Dataset statistics
The TAVG task entails the generation of audible videos guided by
input text prompts. To support this task, we introduce a benchmark
named TAVGBench. Our dataset is sourced from AudioSet [7], com-
prising 2 million aligned audio-video pairs obtained from YouTube.
After excluding invalid videos, we obtained 1.7 million pieces of
original data. Each video sample has a duration of 10 seconds, con-
tributing to a total video duration of 11.8K hours in the dataset. To
provide a comprehensive understanding of the scale and character-
istics of our dataset, we compare it with the datasets from other
related tasks. Table 1 presents a comparative analysis of TAVG-
Bench against these datasets in terms of size, source, and other
relevant attributes.

It can be observed from Table 1 that the AudioCaps [19], MSR-
VTT [52], and WebVid [1] only describe the content of a single
modality (only audio or video modality). Although FAVDBench
describes two modalities, the scale of the dataset is limited. The
TAVGBench that we propose takes into account descriptions of
both audio and video modalities while ensuring a sufficiently large
dataset scale. In addition, the videos in WebVid have watermarks,
which greatly restrict their application in actual scenarios. This com-
parison highlights the scale and unique characteristics of the TAVG-
Bench dataset, emphasizing its potential for advancing research
in audible-video generation. Additionally, TAVGBench exhibits a
balanced distribution of textual descriptions, with an average of
2.32 sentences and 49.98 words per video annotation, providing
substantial contextual information for each clip. These compara-
tive statistics underscore TAVGBench’s extensive scale, multimodal
nature, and linguistic richness, positioning it as a valuable resource
for advancing research in our TAVG task.

3.2 Annotation details
Given the absence of detailed text annotations in AudioSet [7]
for both its video and audio content, we implement a coarse-to-
fine pipeline to automate the generation of text descriptions. The
complete pipeline is shown in Fig. 2. Initially, we employ two so-
phisticated methods, namely BLIP2 [23] for video description and
WavCaps [27] for audio description, to annotate the video and audio
components, respectively.

However, despite the effectiveness of these methods in capturing
the essence of video and audio content, the generated annotations
often lacked coherence and context. To address this limitation and

improve the overall quality of the annotations, we introduced a
refinement step using ChatGPT [29], a powerful language model
capable of paraphrasing and enriching textual input.

During the refinement phase, we utilize ChatGPT to rephrase
and enhance the annotations generated by BLIP2 and WavCaps. By
feeding the initial annotations into the ChatGPT model, we obtain
revised annotations that exhibit enhanced coherence, contextual rel-
evance, and linguistic refinement. Initially, we individually rephrase
the video and audio descriptions to rectify grammatical errors and
enhance descriptive content. Subsequently, we employ ChatGPT to
amalgamate the descriptions from both modalities into a unified,
coherent sentence. This iterative process not only enhances the
readability of the annotations but also ensures consistency and
accuracy throughout the entire annotation corpus.

Incorporating ChatGPT into our pipeline has significantly en-
hanced the ability to detect subtle nuances and semantic complexi-
ties within the video and audio content. As a result, our annotation
pipeline excels in understanding context and producing human-like
text descriptions, thus facilitating the creation of annotations that
more precisely capture the essence of the underlying content.

3.3 Evaluation metric
Existing metrics for video (FVD, KVD [45]) and audio (FAD [36])
generation primarily focus on the quality of each modality sepa-
rately. However, for The TAVG task, we not only need to generate
high-quality audio and video but also need to ensure that these
two modalities are accurately synchronized. To address the neces-
sity for evaluating the alignment degree between generated audio
and video, we propose a novel metric called the Audio-Visual Har-
mony Score (AVHScore). This metric quantifies the alignment of
audio-video pairs by calculating the product of the extracted audio-
visual features. We use a robust feature extractor (ImageBind [9]) to
project the video frames and the audio into a unified feature space.
Formally, the we define the AVHScore 𝑆AVH as follows:

𝑆AVH =
1
𝑛

𝑁∑︁
𝑖=1

cos(𝐸𝑣 (𝑉𝑖 ), 𝐸𝑎 (𝐴)) (1)

where cos denotes cosine similarity. 𝐸𝑣 and 𝐸𝑎 represent the vision
encoder and audio encoder, respectively, in the ImageBind model.
𝑁 signifies the number of video frames, and we compute the simi-
larity between each video frame and the corresponding audio input,
averaging the results across all frames.
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BLIP2

WavCaps

Original video description

A man sitting in front of a 

microphone in front of a 

computer screen

Original audio description

A man is speaking and 

breathing with background 

noise

Rephased video description

A man is seated in front of 

a microphone, facing a 

computer screen.

Rephased audio description

A man is audibly speaking 

and taking breaths with 

background noise.

ChatGPT

Final audible video description

The man is audibly speaking and taking breaths, with background noise 

audible. Seated in front of a microphone and facing a computer screen, 

he appears to be engaged in recording or broadcasting activities

Text Description Generation 

and Enhancement

Video

Audio

Figure 2: Overview of the annotation pipeline. We employ BLIP2 for video descriptions and WavCaps for audio descriptions.
The descriptions are further refined using ChatGPT, resulting in the final detailed audible video description.

The man in a suit is standing in front of a wall and 
delivering a speech, using hand movements to emphasize 
his points. The audience appears to be engaged and 
listening attentively to the man's words, as seen in the 
audio followed by applause. 

T

The video shows a truck driving on a street, with smoke 
visibly coming out of its tires as it moves. The sound of 
a car revving its engine loudly and screeching its tires 
can be heard as it accelerates, creating a powerful audio-
visual experience.

T

Figure 3: Data samples. The video (we give three frames for
each video clip), audio, and the corresponding generated
captions. We highlight the video caption in black and the
audio caption in blue.

4 A BASELINE
We propose a new baseline method for the text to audible-video gen-
eration (TAVG) task as shown in Fig. 4, named TAVDiffusion. The
entire network structure is based on the latent diffusion model [34].

4.1 Preliminary: Latent diffusion model
The latent diffusion model follows the standard formulation out-
lined in DDPM [14], which comprises a forward diffusion process
and a backward reverse denoising process. Initially, a data sample
x ∼ 𝑝 (x) undergoes processing by an autoencoder, consisting of
an encoder E and a decoder D. The autoencoder projects x into
a latent variable z via z = E(x). Subsequently, the diffusion and

denoising process takes place within the latent space. The denoised
latent variable is recovered to the input space by x̂ = D(ẑ0).

Inspired by non-equilibrium thermodynamics, diffusion mod-
els [14, 40] are a class of latent variable (𝑧1, ..., 𝑧𝑇 ) models of the
form 𝑝𝜃 (𝑧0) =

∫
𝑝𝜃 (𝑧0:𝑇 )𝑑𝑧1:𝑇 , where the latent variables are of

the same dimensionality as the input data 𝑧0. The joint distribution
𝑝𝜃 (𝑧0:𝑇 ) is also called the reverse process:

𝑝𝜃 (𝑧0:𝑇 ) = 𝑝𝜃 (𝑧𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ), (2)

where
𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) = N(𝑧𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡), Σ𝜃 (𝑧𝑡 , 𝑡)) . (3)

Here, 𝜇𝜃 and Σ𝜃 are determined through a denoiser network 𝜖𝜃 (𝑧𝑡 , 𝑡),
typically structured as a UNet [35].

The approximate posterior 𝑞(𝑧1:𝑇 |𝑧0) is called the forward pro-
cess, which is fixed to a Markov chain that gradually adds noise
according to a predefined noise scheduler 𝛽1:𝑇 :

𝑞(𝑧1:𝑇 |𝑧0) =
𝑇∏
𝑡=1

𝑞(𝑧𝑡 |𝑧𝑡−1), (4)

where
𝑞(𝑧𝑡 |𝑧𝑡−1) = N(𝑧𝑡 ;

√︁
1 − 𝛽𝑡𝑧𝑡−1, 𝛽𝑡 I) . (5)

The training is performed by minimizing a variational bound on
negative log-likelihood:

E𝑞 [− log𝑝𝜃 (𝑧0)] ≤ E𝑞 [− log 𝑝𝜃 (𝑧0:𝑇 )
𝑞 (𝑧1:𝑇 |𝑧0 ) ]

= E𝑞 [𝐷𝐾𝐿 (𝑞(𝑧𝑇 |𝑧0)∥𝑝 (𝑧𝑇 ))
+∑

𝑡>1 𝐷𝐾𝐿 (𝑞(𝑧𝑡−1 |𝑧𝑡 , 𝑧0)∥𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ))
− log𝑝𝜃 (𝑧0 |𝑧1)] .

(6)

Hence, the final training objective of 𝜃 is a noise estimation loss,
with a conditional variable c, it can be formulated as:

Ldiffusion (𝜃 ) := Ez,c,𝜖∼N(0,I),𝑡
[
∥𝜖 − 𝜖𝜃 (z𝑡 , c, 𝑡)∥2

]
. (7)
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Figure 4: Overview of the TAVDiffusion training (left) and inference (right) stages. We develop a two-stream architecture.
During the training phase, we randomly select a timestep 𝑡 and employ diffusion loss to guide the single-step denoising. In the
inference phase, iterative denoising is conducted to finally produce an audible video.

4.2 TAVDiffusion
With the forward and reverse process in the latent diffusion model
defined in Sec. 4.1, we further present the baseline two-stream
diffusion pipeline for joint text to audible-video diffusion.
Multimodal Latent encoders.We employ two independent latent
autoencoders for our multimodal input to conduct latent space
encoding and decoding. This process can be formulated as:

Encoder: z𝑎 = E𝑎 (x𝑎), z𝑣 = E𝑣 (x𝑣),
Decoder: x̂𝑎 = D𝑎 (ẑ𝑎,0), x̂𝑣 = D𝑣 (ẑ𝑣,0),

(8)

where the subscripts 𝑎 and 𝑣 represent audio and video modality,
respectively. Specifically, for 𝐷𝑣 , we utilize the pre-trained autoen-
coder in stable diffusion [34] along with its weights. Given an
original video with dimensions 𝑇 × 3 × 𝐻𝑣 ×𝑊𝑣 , the size of the
latent variable becomes 𝑇 × 4 × 𝐻𝑣

8 × 𝑊𝑣

8 . As for 𝐷𝑎 , we employ
the pre-trained autoencoder from AudioLDM [25] to encode the
audio mel spectrogram into the latent space. For the dimensions
1 × 𝐻𝑎 ×𝑊𝑎 of the input mel spectrogram, the size of the latent
variable becomes 8 × 𝐻𝑎

8 × 𝑊𝑎

8 .
Multimodal diffusion process. For the input of audio and video
modalities, we use a two-stream structure to perform the forward
and reverse diffusion process for the latent variables z𝑎, z𝑣 , as shown
in Fig. 4. Unlike vanilla diffusion where a single modality is gener-
ated, we aim to simultaneously recover two consistent modalities
(i.e. audio and video) within a single diffusion process.

We consider that the reverse and forward processes of each
modality are independent because they have distinct distributions.
Taking the audio latent variable z𝑎 as an illustration, its reverse
process at timestep 𝑡 is defined as:

𝑝𝜃𝑎 (𝑧𝑎,𝑡−1 |𝑧𝑡 ) = N(𝑧𝑎,𝑡−1; 𝜇𝜃𝑎 (𝑧𝑎,𝑡 , 𝑡), Σ𝜃𝑎 (𝑧𝑎,𝑡 , 𝑡)) . (9)

The forward process at timestep 𝑡 is defined as follows:

𝑞(𝑧𝑎,𝑡 |𝑧𝑎,𝑡−1) = N(𝑧𝑎,𝑡 ;
√︁
1 − 𝛽𝑡𝑧𝑡−1, 𝛽𝑡 I) . (10)

For brevity, we omit the reverse and forward process for video
z𝑣 via 𝜃𝑣 , as it shares a similar formulation. It is important to note
that we empirically set a shared schedule for hyper-parameters 𝛽
across audio and video to streamline the process definition.

Summarizing the formulations above, the final definition of the
multimodal diffusion loss is:
Ldiffusion (𝜃𝑎, 𝜃𝑣) = Ldiffusion𝑎 (𝜃𝑎) + Ldiffusion𝑣 (𝜃𝑣)

:= Ez𝑎,c,𝜖𝑎∼N(0,I),𝑡
[

𝜖𝑎 − 𝜖𝜃𝑎

(
z𝑎,𝑡 , c, 𝑡

)

2]
+ Ez𝑣 ,c,𝜖𝑣∼N(0,I),𝑡

[

𝜖𝑣 − 𝜖𝜃𝑣

(
z𝑣,𝑡 , c, 𝑡

)

2] . (11)

In our task, the conditional variable c denotes the text embedding of
the input, and we use the CLIP [32] text encoder with its tokenizer
to obtain the text embedding.
Diffusion UNet architecture. For 𝜃𝑎 and 𝜃𝑣 , we employ two par-
allel UNet branches to perform denoising for audio and video latent
variables, respectively. For the audio UNet 𝜃𝑎 , we directly utilize
the UNet architecture from stable diffusion [34] and adjust the num-
ber of channels in its input layer from 4 to 8. Regarding the video
UNet 𝜃𝑣 , akin to AnimateDiff [10], we adapt the 2D convolution
in the 2D UNet of stable diffusion1 to a pseudo-3D convolution,
which comprises a 1D convolution followed by a 2D convolution.
Additionally, we incorporate the Temporal Transformer layer [46]
into the network. These changes allow the network to accept video
as input and keep its temporal details.

4.3 Multimodal interaction
In this section, we introduce a methodology for aligning the in-
termediate features 𝑓𝑎, 𝑓𝑣 , associated with 𝜃𝑎, 𝜃𝑣 respectively, by

1We use stable diffusion version 1.5 and its pre-trained weights as partial initialization.
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employing a cross-attention mechanism [46]. Our approach aims
to enhance the performance of joint generation tasks involving
video and audio by synchronizing the information flow between
the two modalities during the diffusion process. Given 𝑓𝑎 and 𝑓𝑣 ,
we represent the process of cross-attention as follows and utilize
the resulting 𝑓𝑎 and 𝑓𝑣 as the input of the diffusion UNet decoder.

𝑓𝑎 = CrossAtten(𝑓𝑎, 𝑓𝑣), 𝑓𝑣 = CrossAtten(𝑓𝑣, 𝑓𝑎). (12)

4.4 Multimodal alignment
The feature interaction mechanism does not explicitly enforce the
alignment of multimodal features. Hence, it is crucial to integrate a
loss function that guarantees alignment between the feature repre-
sentations of audio and visual modalities. To tackle this issue, we
propose an Explicit audio-visual Alignment Strategy (EAS) based
on contrastive learning [11].

In a multimodal scenario, where we have feature vectors (𝑓𝑎, 𝑓𝑣)
representing two modalities, contrastive learning is employed to
model the alignment between these modalities. The underlying
assumption is that features that align well with each other should
be brought closer together, whereas those that contradict each
other should be pushed apart.We define alignment as a bidirectional
process, leading to the formulation of the contrastive loss as follows:

LEAS (𝑓𝑎, 𝑓𝑣) = − log
exp(s(𝑓𝑎, 𝑓 𝑝𝑎 )/𝜏)∑
𝑓𝑣
exp(s(𝑓𝑎, 𝑓𝑣)/𝜏)

− log
exp(s(𝑓𝑣, 𝑓 𝑝𝑣 )/𝜏)∑
𝑓𝑎
exp(s(𝑓𝑣, 𝑓𝑎)/𝜏)

,

(13)

where 𝜏 = 0.1 is the temperature scalar, 𝑓 𝑝𝑎 (𝑓 𝑝𝑣 ) is the positive
sample corresponding to 𝑓𝑎 (𝑓𝑣 ) from the other modality. The func-
tion s(·, ·) computes the cosine similarity. We generate positive
and negative samples based on the feature representations of two
modalities. Specifically, we define embeddings of the two modalities
with the same index (paired data) as positive samples, while those
with different indexes are considered negative samples (unpaired
data).

The bottleneck of contrastive learning lies in designing the posi-
tive/negative pairs with effective similarity measure, i.e. s(·, ·) in
our case. We use a linear projection with softmax activation 𝑙𝛽 (·) to
calculate similarity weight based on the input of a specific modal-
ity [4] different information contained in different tokens. Given
two modalities (𝑎, 𝑣), a weighted similarity function s(·, ·) is:

s(𝑓𝑎, 𝑓𝑣) =
∑︁
𝑓𝑎

𝑙𝛽𝑎 (𝑓𝑎)cos(𝑓𝑎, 𝑓𝑣) +
∑︁
𝑓𝑣

𝑙𝛽𝑣 (𝑓𝑣)cos(𝑓𝑣, 𝑓𝑎) . (14)

4.5 Objective Function
The objective functions are divided into task loss (Ldiffusion) and
feature alignment loss (LEAS). The total loss is a weighted sum of
the above terms:

L = Ldiffusion + 𝜆LEAS, (15)

where 𝜆 represents the balanced weights during training. Empiri-
cally, the loss weight is set as 𝜆 = 0.1.

5 EXPERIMENTAL RESULTS
5.1 Implementation details
Datasets.We train our model on the TAVGBench dataset that we
introduced. For the evaluation phase, we select 3,000 samples from
the TAVGBench evaluation subset. Additionally, we evaluate the
performance of our model on the test subset of FAVDBench [38],
which comprises 1,000 samples. The FAVDBench provides more
fine-grained audible video descriptions, enabling the generation of
more detailed videos. Importantly, because the data of FAVDBench
is not utilized in the training phase, we could assess the zero-shot
capabilities of our model based on its performance on FAVDBench.
Training Details.We implement TAVDiffusion using PyTorch [30].
We adopt a video training resolution of 256 × 320 × 20 to balance
training efficiency and motion quality. We convert the audio into
a mel spectrogram and perform training and inference on it. We
use the MelGAN Vocoder [21] to convert the denoised audio mel
spectrogram into the audio waveform. We use a learning rate of
1×10−4 and train themodel with 64 NVIDIAA100 GPUs for 1.0×105
steps. At inference time, we apply the DDIM scheduler [41] and
only sample 50 timesteps.
Evaluation Metrics. We begin by separately measuring the qual-
ity of the generated audio and video. To evaluate the video, we
adopt the Frechet Video Distance (FVD) [45], Kernel Video Distance
(KVD) [44], and CLIPSIM [12, 48] metrics. FVD and KVD employ
the I3D [3] classifier pre-trained on the Kinetics-400 dataset [17].
For audio evaluation, we employ FAD [36] to gauge the distance
between the features of the generated audio and the reference au-
dio. We also use our proposed AVHScore to measure the alignment
degree of the generated results. For all evaluations, we generate a
random sample for each text without any automatic ranking.

5.2 Main results
Comparison methods setting. To the best of our knowledge,
there are no existing usable methods directly relevant to our pro-
posed task for comparison. Therefore, we combine existing related
models and design two-stage methods for comparison.
(1) AnimateDiff [10]+AudioLDM [25]: Input text and utilize these

two models to generate audio and video respectively.
(2) AnimateDiff [10]+Diff-Foley [26]: Input text, employ Animate-

Diff to generate video, and subsequently utilize Diff-Foley to
generate audio based on the video.

(3) AudioLDM [25]+TempoToken [54]: Input text, use AudioLDM
to generate audio, and then employ TempoToken to generate
video based on the audio.

Quantitative comparison. We present the quantitative results of
our method alongside comparison methods for the TAVGBench and
FAVDBench datasets in Table 2. The results demonstrate that our
TAVDiffusion model outperforms all comparisons in terms of video
and audio quality metrics. Specifically, the scores for FVD and KVD
are 776.25 and 65.53, respectively, while the FAD score is 1.46. This
demonstrates significant consistency between the audible video we
generated and the original content and is of higher quality. These
results underscore a significant consistency between the videos
generated by ourmodel and the original content, indicating superior
quality. Additionally, our model achieves a notable CLIPSIM score
(24.18), reinforcing the semantic coherence between the generated
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Table 2: Quantitative comparison. The numbers in the left column of the table represent the comparison methods we described
in the previous section.

Methods TAVGBench FAVDBench [38]

FVD ↓ KVD ↓ CLIPSIM ↑ FAD ↓ AVHScore ↑ FVD ↓ KVD ↓ CLIPSIM ↑ FAD ↓ AVHScore ↑
(1) 777.54 70.04 22.49 1.62 10.17 867.58 115.81 22.11 1.67 12.13
(2) 777.54 70.04 22.49 1.81 12.28 867.58 115.81 22.11 1.89 15.07
(3) 1624.81 88.61 14.87 2.12 6.38 2640.96 591.43 15.16 2.29 6.12
Ours 516.56 45.76 25.44 1.38 23.35 776.25 104.26 24.18 1.46 29.06

Animatediff

AudioLDM

Diff-Foley

TAVDiffusion

(ours)

Prompt

Animatediff

AudioLDM

Diff-Foley

TAVDiffusion

(ours)

Prompt

birds chirping

A pristine sky with a few white clouds, white snow-capped 
mountains in the distance and the sound of birds chirping in the 
background.

music, cheers

As music plays in the background, a group of people can be 
seen chatting and applauding in the video, which captures 
various scenes and attractions from Disneyland. Visitors are 
shown enjoying rides, meeting characters, and exploring 
different themed lands throughout the park.

guitar sound, singing whistle

A handsome man wearing a blue coat is playing the guitar in the 
house, showcasing his skill and rhythm control. He seemed to 
be attracted by the singing and seemed very intoxicated.

The white ambulance is traveling quickly. buildings and parked 
automobiles line the road. alongside the road are lush trees. 
sound of an ambulance siren.

Figure 5: Qualitative comparison. We compare our TAVDiffusion model with methods (1) and (2). Given the inferior visual
quality of method (3) in our task (see Table 2), we exclude it from the qualitative comparison. Best viewed on screen.
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Table 3: Ablation studies. “C.A.” represents cross-attention mechanism, and LEAS represents our proposed explicit audio-visual
alignment strategy.

TAVGBench FAVDBench [38]

C.A. LEAS FVD ↓ KVD ↓ CLIPSIM ↑ FAD ↓ AVHScore ↑ FVD ↓ KVD ↓ CLIPSIM ↑ FAD ↓ AVHScore ↑
✗ ✗ 687.23 66.21 23.02 1.58 14.59 843.19 112.07 22.58 1.62 14.67
✗ ✓ 614.28 59.23 23.89 1.46 18.69 819.54 109.21 22.64 1.54 19.76
✓ ✗ 589.71 51.44 24.68 1.51 19.88 791.57 106.95 23.98 1.51 20.59
✓ ✓ 516.56 45.76 25.44 1.38 23.35 776.25 104.26 24.18 1.46 29.06

Prompt

Screaming in the air a wolf with a white head and a yellowish-
brown body lay on the ground. A golden leaf that has fallen to 
the ground is covered in snow. The wolf kept barking and it was 
really loud.

 C.A. 

 

 C.A. 

 

Figure 6: Qualitative comparison for the ablation studies.
Best viewed on screen.

videos and their associated prompts. Significantly, our model attains
an AVHScore of 29.06, further evidencing its ability to generate
videos with closely aligned audio and visual components. Note that
neither our model nor the comparison models were exposed to the
FAVDBench data during the training phase, thereby the results on
this dataset further underscore our zero-shot capabilities.
Qualitative comparison. In Fig. 5, we present qualitative results
comparing our method to the compared generators. The figure
illustrates that TAVDiffusion outperforms the comparison models
in terms of visual fidelity and the alignment of text, video, and au-
dio. In the first example, the “performer” created by TAVDiffusion
displays significantly enhanced realism, especially in facial expres-
sions and hand movements. The generated audio also follows the
two elements “guitar sound” and “singing voice” in the prompt. In
the second example, TAVDiffusion showcases its ability to produce
complex real-life scenes, maintaining the precise shapes of essential
objects. It skillfully navigates the dynamics between the foreground
object (e.g. the car) and the background scene, complemented by
realistic audio. We also showcase our model’s performance in two
distinct scenarios: environments with significant background noise
and notably quieter environments. For the former, our model gen-
erates various types of audio, such as music and human cheers,
as directed by the prompt. For the latter, our model uniquely and
accurately produces the sound of “birds chirping”. This comparison
shows the versatility of the model, demonstrating its effectiveness
across a broad spectrum of audio-visual scenes. By evaluating the

model in such contrasting settings, we highlight its universal appli-
cability and robustness in processing diverse auditory and visual
inputs. We sincerely hope the readers find more examples of audible
videos in the supplementary materials.

5.3 Ablation studies
To demonstrate the effectiveness of our proposed modules, we
conduct ablation studies from both quantitative metrics (see Table 3)
and qualitative visualizations (see Fig. 6). In Table 3, it is evident
that the two strategies we proposed, multimodal cross-attention
and multimodal alignment, enhance both the quality of video and
audio generation and the alignment score. In Fig. 6, we can obverse
that the “wolf” produced by our final model appears more realistic
than that of the comparisons, with its mouth movements accurately
reflecting the “kept barking” prompt and the generated audio. Please
refer to the supplementary material for more samples.

5.4 Potential applications
Our TAVGBench and baseline model TAVDiffusion have a wide
range of multimedia application fields. Our dataset, which includes
large-scale video, audio, and corresponding text descriptions, is
well-suited for a diverse range of multimodal tasks. It allows for
the simultaneous use of text and audio as prompts to generate
videos. Additionally, TAVGBench can be used to train audible video
captioning models [38, 57] can substantially reduce the impact of
insufficient audio-video-text data pairs as mentioned in [38].

6 CONCLUSION
We explored the challenge of creating videos with matching au-
dio from text descriptions, a task known as Text to Audible-Video
Generation (TAVG). To aid in this research, we introduced a new
benchmark called TAVGBench, filled with over 1.7 million video
clips. This resource is designed to help improve and evaluate TAVG
models. We developed a method to automatically describe each
audio-visual element, ensuring detailed and useful annotations for
researchers. A newmetric called Audio-Visual Harmoni score (AVH-
Score) was designed to evaluate the alignment of generated audible
video. We introduced TAVDiffusion, a baseline model leveraging
latent diffusion. This model incorporates cross-attention and con-
trastive learning mechanisms to achieve audio-visual alignment
within the diffusion UNet framework. Extensive experimental re-
sults verified the effectiveness of our proposed framework, thus
opening new avenues for multimedia content creation. In the fu-
ture, we aim to explore a multimodal diffusion transformer [31] to
facilitate audible video generation through a unified architecture.
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