
A Related Work490

A.1 ANNs and MIPS491

ANNS achieves highly efficient vector search by allowing a small number of errors. Generally,492

there are two kinds of ANNS algorithms: non-exhaustive ANNS methods [37, 34, 36, 28] and vector493

compression methods [12, 29, 3, 18]. Specifically, Non-exhaustive ANNS methods do not compress494

the index. They reduce the number of candidates for each query to speed up the retrieval process.495

Popular algorithms include tree search [37, 11] and graph search [34, 36, 28]. Vector compression496

methods mainly aim to compress the index to accelerate retrieval. Popular algorithms include hashing497

[12, 38, 41] and quantization [29, 3, 18, 17].498

Under the constraints of storage, compressed methods are widely investigated by researchers. Prod-499

uct quantization [22, 6] decomposes the vector representation space into the Cartesian product of500

subspaces. Optimized product quantization (OPQ) [16] jointly learns space decomposition and501

subspace quantization. Multi-scale Quantization [46] includes a multi-scale framework so that it can502

learn a separate scalar quantizer. Composite Quantization [50] and Additive Quantization [3] do not503

decompose space but directly learn multiple codebooks. There are also some algorithms that take504

query information into account. NEQ [10] decomposes the quantization error into norm error and505

direction error and improves existing VQ techniques for MIPS. ScaNN [18] computes the weight for506

each pair of vectors. Different from NEQ and ScaNN, KDindex utilizes query and corresponding507

top-k candidates. BLISS [19] regards ground truth as labels. However, the ground truth is difficult to508

obtain in huge quantities of databases. Interested readers could refer to the surveys [43, 31].509

A.2 Knowledge Distillation510

Knowledge Distilling (KD) was first proposed in [20], in which a complex neural network was firstly511

trained and then transferred to a small model. Following this, DarkRank [7] proposed a method512

combining deep metric learning and Learning to rank technique with KD to solve image retrieval513

and image clustering tasks. In addition, a few recent methods [30, 39] have adopted knowledge514

distillation to RS. RD [42] firstly proposes a KD method that makes the student give high scores on515

the top-ranked items of the teacher’s recommendation list. Similarly, CD [30] makes the student516

imitate the teacher’s prediction scores with particular emphasis on the items ranked highly by the517

teacher. The most recent work, RRD [26], formulates the distillation process as a relaxed ranking518

matching problem between the ranking list of the teacher and that of the student. However, there are519

limited works focusing on index building under knowledge distillation.520

In the context of quantization problems under distillation, the most relevant work is Distill-VQ [47],521

which uses knowledge distillation for ranking candidates in web search tasks. This method applies522

the sampling technique to rank a sample of the document from all data each time. But this technique523

is not applicable to training a ranking model when documents and queries are represented with no524

content information. In this case, the labeled model training cannot be easily generalized to all525

documents and queries. In contrast, KDindex relaxes the requirement on labeled data and can be526

trained purely with unlabeled data.527

B More Details of Experimental Settings528

B.1 Dataset Statistics529

Table 5: Statistics of the datasets.

Datasets #Database #Train #Test Dim

SIFT1M 1,000,000 100,000 10,000 128
GIST1M 1,000,000 500,000 1,000 960

MS MARCO Doc 3,213,833 367,013 5,193 768
MS MARCO Passage 8,841,823 808,731 101,093 768
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B.2 Baselines530

The two groups of baseline ANNS models are compared to KDindex.531

The first group is Non-quantization-based ANNS methods, which accelerate the search by reducing the532

number of candidates. BLISS [19] adopts the learning-to-index framework to learn the hashing-based533

compressed functions. ScaNN [18] quantizes with anisotropic quantization loss functions which534

greatly penalizes the parallel component of a datapoint’s residual relative to its orthogonal component.535

HNSW [35] builds a hierarchical set of proximity graphs.536

The second is Quantization-based ANNS methods, which compress the embeddings by hashing537

or quantization functions. PQ [22] decomposes the vector representation space into the Cartesian538

product of subspaces. OPQ [16] jointly learns space decomposition and subspace quantization.539

AQ [3] represents each vector as a sum of several components each coming from a separate codebook.540

The baselines are implemented based on the Faiss ANNS library [25]. The parameters B and W541

are set to be the same as KDindex. DiffPQ [5], differentiable product quantization, a generic and542

end-to-end learnable compression framework. DeepPQ [15], deep progressive quantization, end-to-543

end learns the quantization codes sequentially. PQ-VAE [45], an unsupervised model for learning544

discrete representations by combining product quantization and auto-encoders. The CNN blocks are545

replaced with MLP because the image datasets have been extracted as 512-dimension features. GCD546

[23] learns rotation matrix via a family of block Givens coordinate descent algorithms. RepCONC547

[49] requires data points to be uniformly clustered around the quantization centroids.548

B.3 Implemental details549

Table 6: Details of teacher model (HNSW).

Teacher (HNSW) SIFT1M GIST1M MS MARCO Doc MS MARCO Passage
M 32 32 32 32

efConstruction 40 40 100 100
efSearch 100 512 1024 1024

Search Time (s) 0.5862 1.3082 1.4805 4.7689
Building Time (s) 20.1s 2m25.4s 17m52s 98m17.2s

Recall@10 0.9865 0.9859 0.9292 0.9182

Teacher model is instantiated as HNSW. The details are described as Tab. 6, where M denotes550

the number of neighbors each node, efConstruction denotes expansion factor at construction time551

and efSearch denotes expansion factor at search time. To obtain good recall performance, M,552

efConstruction and efSearch are tuned.553

B.4 Complexity Analysis554

For simplicity, we discuss the complexity of each codebook with W centroids. Posting List Balance555

requires O(MWD) to calculate the similarities between the M document vectors and the centroids556

and the space complexity is O(D2). Besides, the query encoder brings an extra time cost of O(D2)557

and space cost of O(WD). Overall, the time complexity and space complexity of KDindex is558

O(D2 +MWD) and O(D2 +WD), respectively, which is acceptable since W and D are small559

constants. As for the iterative initialization, the index assignment of documents only needs to be560

updated after several epochs of centroids optimization. For the differentiable training, both the index561

assignment and centroids are updated every mini batch.562

C Varying Distillation Loss563

C.1 Distillation Losses564

Knowledge distillation was first proposed for classification tasks, where the probabilities of each class565

attained from the large-scale teacher network are considered as soft labels to supervise the learning566

of the small-size student network. The cross-entropy loss is commonly used as the distillation loss to567

minimize the difference between the teacher and student networks. Here, the teacher search model568
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provides the top-k relevant candidates rather than the continuous value of probabilities. Thus, three569

ranking-oriented losses are designed to distill knowledge from the more accurate indexes to guide the570

student indexes to return the same nearest results.571

Lambdarank loss: The pair-wise ranking-based loss is widely used to learn the ranking list by572

leading the high-ranked candidate to have higher similarity scores. Lambdarank [4] further introduces573

the change of the indicators, e.g., NDCG, to put more attention on more important candidates that574

have not been well ranked. The loss follows as:575

L(q,DT
K ;C) =

∑
i,j∈DT

K

log (1 + exp(pi − pj)) |∆NDCG@10ij | (4)

where DT
K denotes the top-k results retrieved from the teacher model and pi = S(q, Q(di)) is the576

similarity score between the query vector and the quantized vector of the candidate i. Q is the577

quantizer function related to the codebooks C. ∆NDCG@10ij denotes the change with respect to578

NDCG@10 if changing the i-th ranked and j-th ranked candidate.579

Weighted KL loss: Similar to the class distribution in classification tasks, the similarity distribution580

over the top-k retrieved candidates can also be obtained. One is based on the ground-truth vectors and581

the other one is based on the quantized vectors. In order to ensure the ranking orders correspond to the582

top-k list, the rank information is also considered where the high-ranked items are more concerned.583

Finally, the loss function follows as:584

L(q,DT
K ;C) = −

∑
i∈DT

K

p̃gi log
p̃gi
p̃i

(5)

where p̃i denotes the normalized ranked similarity score with the quantized vector and p̃gi with the585

ground-truth vector. Specifically,586

pi = wi · S (q, Q(di)) , pgi = wi · S(q,di),

p̃i and p̃gi are the normalized values over the top-k retrieved candidates depending on the softmax587

function. wi =
1

rank(i) denotes the ranking weight according to the ranking orders among the top-k588

results from the teacher model. The weighted KL loss attempts to minimize the distance between the589

ground-truth vector and the quantized vector for the top-k relevant candidates to learn better centroids.590

The introduced rank-oriented weight further guides the student index to return the same ranking list.591

Distributed-based loss: Instead of being oriented by the score between query and candidates as592

above, we attempt to minimize the distance between the queries and top-k neighbors by calculating593

the similarity scores with all the centroids. Thus, we could obtain more information from centroids594

and focus on the top-K nearest neighbors. The distributed-based loss function follows as:595

L(q,DT
K ;C) = −

∑
i∈DT

K

B∑
b=1

W∑
k=1

p̃qbk log(p̃
di

bk · wi) (6)

where B denotes the number of codebooks and W is the number of codewords in each codebook.596

wi =
1

rank(i) corresponds to the top-k list given from the teacher model. pqbk denotes the similarity597

score between the query q and the codeword cbk, i.e., pqbk = S(q, cbk), and pdi

bk denotes the similarity598

score between the candidate di and the codeword cbk, i.e., pdi

bk = S(di, c
b
k). The normalized value599

p̃qbk and p̃di

bk are calculated over the W codewords for each codebook through the softmax function.600

This loss requires the enumeration of all the centroids, while the Weighted KL loss only includes601

parts of the centroids corresponding to the quantized function. It also aligns with the goal of nearest602

searching for the query with the learnable centroids as the bridge.603

C.2 Experimental Performances604

We compare the effectiveness of the three different distillation losses, i.e., Weighted KL loss,605

Distributed-based loss, and Lambdarank loss as reported in Table 7.606

Findings. Overall, the Distributed-based loss leads to comparatively better performances than607

Weighted KL loss and Lambdarank loss. Compared with Weighted KL Loss and Lambdarank608
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Figure 4: Curves for recall during training warmed up by initialization.

Loss, Distributed-based Loss gains the 2.03% and 3.54% improvements of Recall@10, 0.38%, and609

0.70% of NDCG@10, respectively. The Lambdarank Loss concerns more about the relationships610

between the pair of items, while the other two care about the whole ranking order of the list. The611

weighted KL loss actually optimizes parts of the centroids, depending on which query vectors and612

candidate vectors are quantized, to match the ranking list, while all of the centroids are updated in the613

Distributed-based loss since the probabilities are calculated over all the centroids. Furthermore, the614

Distributed-based loss requires the similarity calculation between the original input vectors and the615

centroids, which eliminates the error caused by the compressed functions. The last observation is that616

Distributed-based Loss works better on inner product metric datasets, since it obtains the average617

improvements of 2.24% and 3.33% of Recall@10 on L2 distance and inner product, respectively,618

wherein the overall improvements for inner-product similarities.619

Table 7: The results of KDindex under different distillation loss functions.

Loss Function SIFT1M GIST1M MS MARCO Doc MS MARCO Passage
Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 MRR@10 Recall@10 MRR@10

Lambdarank Loss 36.32 79.18 20.69 62.06 17.60 40.01 11.10 34.86
Weighted KL Loss 36.68 79.33 21.02 62.75 18.24 40.93 11.06 34.63

Distributed-based Loss 37.30 80.01 21.33 63.17 18.93 41.69 11.19 35.23

D Performance of Differentiable Training620

It is extremely difficult for the model to learn the codebooks as well as the index at the same time621

during the initialization phase in a differentiable training manner. Thus, we perform experiments by622

warming up the codebooks by Initialization and we get the following results in terms of Recall@10623

on four datasets as Fig. 4. We adopt the early stop strategy to get the best model.624

Initialization. We obtain the pre-trained codebooks by iterative training manners and continue differ-625

entiable training when the index assignment is approaching being balanced (max|Pi| −min|Pj | <626
N
W , i, j ∈ W ) where |Pi| denotes the length of the i-th posting list. To accelerate the iterative training,627

codebooks are warmed by original quantization methods such as PQ, OPQ, and AQ.628

Findings. KDIndex converges to a better solution through the differential training manner. Within629

the dozens of epochs, the index assignment of iterative training becomes balanced, which warms630

up the centroids for later easier learning and thus relatively reduces the learning difficulty for both631

codebooks and indexes. Starting from this point, KDIndex with differentiable training consecutively632

outperforms that with iterative training, which achieves a relative improvement of 1.63% in terms of633

Recall@10 on both datasets, demonstrating the effectiveness of synchronizing updates for codebooks634

and indexes. As for the different quantization functions, the improvements of Recall@10 among635

different student models (PQ, OPQ, and AQ) are 1.49%, 1.46%, and 1.94%, respectively. The better636

performance of KDindex(AQ) may be attributed to its better expressiveness with more parameters.637

Finally, the improvement of Recall@10 on MS MARCO Doc by KDindex(PQ) is 0.40%, which638

is smaller than the other model since the express ability of PQ is limited. The improvement of639
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Recall@10 on SIFT1M by KDindex(AQ) is 0.39% since the express ability of AQ is strong on the640

L2 distance dataset and no more improvements can be obtained easily.641

E Limitations and Future Works642

In this paper, we propose a novel knowledge distillation framework for high dimension index, which643

reduce storage obviously and can learn neighbor information from the teacher model. Especially,644

KDindex is independent to label (such as interaction information in the recommendation system or645

ground-truth neighbors in ANNS), which makes it flexible to be applied in more label-free scenarios.646

In the future, we will try more student models such as lattice quantization, whose codes already647

imply neighbors relationship. And we will take labels into account to improve retrieval performance648

progressively. We will further improve our work to benefit the broad community.649
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