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ABSTRACT

Federated learning allows multiple parties to collaboratively train a joint model
without having to share any local data. It enables applications of machine learning
in settings where data is inherently distributed and undisclosable, such as in the
medical domain. Joint training is usually achieved by aggregating local models.
When local datasets are small, locally trained models can vary greatly from a
globally good model. Bad local models can arbitrarily deteriorate the aggregate
model quality, causing federating learning to fail in these settings. We propose a
novel approach that avoids this problem by interleaving model aggregation and
permutation steps. During a permutation step we redistribute local models across
clients through the server, while preserving data privacy, to allow each local model
to train on a daisy chain of local datasets. This enables successful training in
data-sparse domains. Combined with model aggregation, this approach enables
effective learning even if the local datasets are extremely small, while retaining the
privacy benefits of federated learning.

1 INTRODUCTION

How can we learn high quality models when data is inherently distributed across sites and cannot
be shared or pooled? In federated learning, the solution is to iteratively train models locally at each
site and share these models with the server to be aggregated to a global model. As only models
are shared, data usually remains undisclosed. This process, however, requires sufficient data to be
available at each site in order for the locally trained models to achieve a minimum quality—even a
single bad model can render aggregation arbitrarily bad (Shamir and Srebro, 2014). In many relevant
applications this requirement is not met: In healthcare settings we often have as little as a few dozens
of samples (Granlund et al., 2020; Su et al., 2021; Painter et al., 2020). Also in domains where deep
learning is generally regarded as highly successful, such as natural language processing and object
detection, applications often suffer from a lack of data (Liu et al., 2020; Kang et al., 2019).

To tackle this problem, we propose a new building block called daisy-chaining for federated learning
in which models are trained on one local dataset after another, much like a daisy chain. In a nutshell,
at each client a model is trained locally, sent to the server, and then—instead of aggregating local
models—sent to a random other client as is (see Fig. 1). This way, each local model is exposed to a
daisy chain of clients and their local datasets. This allows us to learn from small, distributed datasets
simply by consecutively training the model with the data available at each site. Daisy-chaining alone,
however, violates privacy, since a client can infer from a model upon the data of the client it received
it from (Shokri et al., 2017). Moreover, performing daisy-chaining naively would lead to overfitting
which can cause learning to diverge (Haddadpour and Mahdavi, 2019). In this paper, we propose to
combine daisy-chaining of local datasets with aggregation of models, both orchestrated by the server,
and term this method federated daisy-chaining (FEDDC).
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Figure 1: Federated learning settings. A standard federated learning setting with training of local
models at clients (middle) with aggregation phases where models are communicated to the server,
aggregated, and sent back to each client (left). We propose to add daisy chaining (right), where local
models are sent to the server and then redistributed to a random permutation of clients as is.

We show that our simple, yet effective approach maintains privacy of local datasets, while it prov-
ably converges and guarantees improvement of model quality in convex problems with a suitable
aggregation method. Formally, we show convergence for FEDDC on non-convex problems. We
then show for convex problems that FEDDC succeeds on small datasets where standard federated
learning fails. For that, we analyze FEDDC combined with aggregation via the Radon point from a
PAC-learning perspective. We substantiate this theoretical analysis for convex problems by showing
that FEDDC in practice matches the accuracy of a model trained on the full data of the SUSY binary
classification dataset with only 2 samples per client, outperforming standard federated learning by a
wide margin. For non-convex settings, we provide an extensive empirical evaluation, showing that
FEDDC outperforms naive daisy-chaining, vanilla federated learning FEDAVG (McMahan et al.,
2017), FEDPROX (Li et al., 2020a), FEDADAGRAD, FEDADAM, and FEDYOGI (Reddi et al., 2020)
on low-sample CIFAR10 (Krizhevsky, 2009), including non-iid settings, and, more importantly, on
two real-world medical imaging datasets. Not only does FEDDC provide a wide margin of improve-
ment over existing federated methods, but it comes close to the performance of a gold-standard
(centralized) neural network of the same architecture trained on the pooled data. To achieve that, it
requires a small communication overhead compared to standard federated learning for the additional
daisy-chaining rounds. As often found in healthcare, we consider a cross-SILO scenario where such
small communication overhead is negligible. Moreover we show that with equal communication,
standard federated averaging still underperforms in our considered settings.

In summary, our contributions are (i) FEDDC, a novel approach to federated learning from small
datasets via a combination of model permutations across clients and aggregation, (ii) a formal proof
of convergence for FEDDC, (iii) a theoretical guarantee that FEDDC improves models in terms of
ε, δ-guarantees which standard federated learning can not, (iv) a discussion of the privacy aspects and
mitigations suitable for FEDDC, including an empirical evaluation of differentially private FEDDC,
and (v) an extensive set of experiments showing that FEDDC substantially improves model quality
on small datasets compared to standard federated learning approaches.

2 RELATED WORK

Learning from small datasets is a well studied problem in machine learning. In the literature, we
find both general solutions, such as using simpler models and transfer learning (Torrey and Shavlik,
2010), and more specialized ones, such as data augmentation (Ibrahim et al., 2021) and few-shot
learning (Vinyals et al., 2016; Prabhu et al., 2019). In our scenario overall data is abundant, but the
problem is that data is distributed into small local datasets at each site, which we are not allowed
to pool. Hao et al. (2021) propose local data augmentation for federated learning, but their method
requires a sufficient quality of the local model for augmentation which is the opposite of the scenario
we are considering. Huang et al. (2021) provide generalization bounds for federated averaging via
the NTK-framework, but requires one-layer infinite-width NNs and infinitesimal learning rates.

Federated learning and its variants have been shown to learn from incomplete local data sources, e.g.,
non-iid label distributions (Li et al., 2020a; Wang et al., 2019) and differing feature distributions (Li
et al., 2020b; Reisizadeh et al., 2020a), but fail in case of large gradient diversity (Haddadpour
and Mahdavi, 2019) and strongly dissimilar label distribution (Marfoq et al., 2021). For small
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datasets, local empirical distributions may vary greatly from the global distribution: the difference
of empirical to true distribution decreases exponentially with the sample size (e.g., according to the
Dvoretzky–Kiefer–Wolfowitz inequality), but for small samples the difference can be substantial, in
particular if the distribution differs from a Normal distribution (Kwak and Kim, 2017). Shamir and
Srebro (2014) have shown the adverse effect of bad local models on averaging, proving that even due
to a single bad model averaging can be arbitrarily bad.

A different approach to dealing with biased local data is by learning personalized models at each
client. Such personalized FL (Li et al., 2021) can reduce sample complexity, e.g., by using shared
representations (Collins et al., 2021) for client-specific models, e.g., in the medical domain (Yang
et al., 2021), or by training sample-efficient personalized Bayesian methods (Achituve et al., 2021). It
is not applicable, however, to settings where you are not allowed to learn the biases or batch effects of
local clients, e.g., in many medical applications where this would expose sensitive client information.
Kiss and Horvath (2021) propose a decentralized and communication-efficient variant of federated
learning that migrates models over a decentralized network, storing incoming models locally at each
client until sufficiently many models are collected on each client for an averaging step, similar to
Gossip federated learing (Jelasity et al., 2005). The variant without averaging is similar to simple
daisy-chaining which we compare to in Section 7. FEDDC is compatible with any aggregation
operator, including the Radon machine (Kamp et al., 2017), the geometric median (Pillutla et al.,
2022), or neuron-clustering (Yurochkin et al., 2019), and can be straightforwardly combined with
approaches to improve communication-efficiency, such as dynamic averaging (Kamp et al., 2018),
and model quantization (Reisizadeh et al., 2020b). We combine FEDDC with averaging, the Radon
machine, and FedProx (Li et al., 2020a) in Sec. 7.

3 PRELIMINARIES

We assume iterative learning algorithms (cf. Chp. 2.1.4 Kamp, 2019) A : X × Y × H → H that
update a model h ∈ H using a dataset D ⊂ X × Y from an input space X and output space Y , i.e.,
ht+1 = A(D,ht). Given a set of m ∈ N clients with local datasets D1, . . . , Dm ⊂ X × Y drawn
iid from a data distribution D and a loss function ` : Y × Y → R, the goal is to find a single model
h∗ ∈ H that minimizes the risk ε(h) = E(x,y)∼D[`(h(x), y)]. In centralized learning, datasets are
pooled as D =

⋃
i∈[m]D

i and A is applied to D until convergence. Note that applying A on D can
be the application to any random subset, e.g., as in mini-batch training, and convergence is measured
in terms of low training loss, small gradient, or small deviation from previous iterate. In standard
federated learning (McMahan et al., 2017), A is applied in parallel for b ∈ N rounds on each client
locally to produce local models h1, . . . , hm. These models are then centralized and aggregated using
an aggregation operator agg : Hm → H, i.e., h = agg(h1, . . . , hm). The aggregated model h is then
redistributed to local clients which perform another b rounds of training using h as a starting point.
This is iterated until convergence of h. When aggregating by averaging, this method is known as
federated averaging (FEDAVG). Next, we describe FEDDC.

4 FEDERATED DAISY-CHAINING

We propose federated daisy chaining as an extension to federated learning in a setup with m clients
and one designated sever.1 We provide the pseudocode of our approach as Algorithm 1.

The client: Each client trains its local model in each round on local data (line 4), and sends its model
to the server every b rounds for aggregation, where b is the aggregation period, and every d rounds for
daisy chaining, where d is the daisy-chaining period (line 6). This re-distribution of models results in
each individual model conceptually following a daisy chain of clients, training on each local dataset.
Such a daisy chain is interrupted by each aggregation round.

The server: Upon receiving models, in a daisy-chaining round (line 9) the server draws a random
permutation π of clients (line 10) and re-distributes the model of client i to client π(i) (line 11), while
in an aggregation round (line 12), the server instead aggregates all local models and re-distributes the
aggregate to all clients (line 13-14).

1This star-topology can be extended to hierarchical networks in a straightforward manner. Federated learning
can also be performed in a decentralized network via gossip algorithms (Jelasity et al., 2005).
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Algorithm 1: Federated Daisy-Chaining FEDDC
Input: daisy-chaining period d, aggregation period b, learning algorithm A, aggregation operator

agg, m clients with local datasets D1, . . . , Dm, total number of rounds T
Output: final model aggregate hT

1 initialize local models h10, . . . , h
m
0

2 Locally at client i at time t do
3 sample S from Di

4 hit ← A(S, hit−1)
5 if t mod d = d− 1 or t mod b = b− 1 then
6 send hit to server
7 receive new hit from server // receives either aggregate ht or some hjt
8 At server at time t do
9 if t mod d = d− 1 then // daisy chaining

10 draw permutation π of [1,m] at random
11 for all i ∈ [m] send model hit to client π(i)
12 else if t mod b = b− 1 then // aggregation
13 ht ← agg(h1t , . . . , h

m
t )

14 send ht to all clients

Communication complexity: Note that we consider cross-SILO settings, such as healthcare, were
communication is not a bottleneck and, hence, restrict ourselves to a brief discussion in the interest
of space. Communication between clients and server happens in O(Td + T

b ) many rounds, where T
is the overall number of rounds. Since FEDDC communicates every dth and bth round, the amount of
communication rounds is similar to FEDAVG with averaging period bFedAvg = min{d, b}. That is,
FEDDC increases communication over FEDAVG by a constant factor depending on the setting of b
and d. The amount of communication per communication round is linear in the number of clients
and model size, similar to federated averaging. We investigate the performance of FEDAVG provided
with the same communication capacity as FEDDC in our experiments and in App. A.3.6.

5 THEORETICAL GUARANTEES

In this section, we formally show that FEDDC converges for averaging. We, further, provide
theoretical bounds on the model quality in convex settings, showing that FEDDC has favorable
generalization error in low sample settings compared to standard federated learning. More formally,
we first show that under standard assumptions on the empirical risk, it follows from a result of Yu
et al. (2019) that FEDDC converges when using averaging as aggregation and SGD for learning—a
standard setting in, e.g., federated learning of neural networks. We provide all proofs in the appendix.
Corollary 1. Let the empirical risks E iemp(h) =

∑
(x,y)∈Di `(hi(x), y) at each client i ∈ [m] be

L-smooth with σ2-bounded gradient variance and G2-bounded second moments, then FEDDC with
averaging and SGD has a convergence rate of O(1/

√
mT ), where T is the number of local updates.

Since model quality in terms of generalization error does not necessarily depend on convergence
of training (Haddadpour and Mahdavi, 2019; Kamp et al., 2018), we additionally analyze model
quality in terms of probabilistic worst-case guarantees on the generalization error (Shalev-Shwartz
and Ben-David, 2014). The average of local models can yield as bad a generalization error as the
worst local model, hence, using averaging as aggregation scheme in standard federated learning can
yield arbitrarily bad results (cf. Shamir and Srebro, 2014). As the probability of bad local models
starkly increases with smaller sample sizes, this trivial bound often carries over to our considered
practical settings. The Radon machine (Kamp et al., 2017) is a federated learning approach that
overcomes these issues for a wide range of learning algorithms and allows us to analyze (non-trivial)
quality bounds of aggregated models under the assumption of convexity. Next, we show that FEDDC
can improve model quality for small local datasets where standard federated learning fails to do so.

A Radon point (Radon, 1921) of a set of points S from a space X is—similar to the geometric
median—a point in the convex hull of S with a high centrality (i.e., a Tukey depth (Tukey, 1975;
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(a) FEDDC with Radon point with
d = 1, b = 50.

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

(b) Federated learning with Radon
point with b = 1.
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(c) Federated learning with Radon
point with b = 50.

Figure 2: Results on SUSY. We visualize results in terms of train (green) and test error (orange) for (a)
FEDDC (d = 1, b = 50) and standard federated learning using Radon points for aggregation with (b)
b = 1, i.e., the same amount of communication as FEDDC, and (c) b = 50, i.e., the same aggregation
period as FEDDC. The network has 441 clients with 2 data points per client. The performance of a
central model trained on all data is indicated by the dashed line.

Gilad-Bachrach et al., 2004) of at least 2). For a Radon point to exist, S ⊂ X has to have a minimum
size r ∈ N called the Radon number of X . For X ⊆ Rd the radon number is d + 2. Here, the set
of points S are the local models, or more precisely their parameter vectors. We make the following
standard assumption (Von Luxburg and Schölkopf, 2011) on the local learning algorithm A.
Assumption 2 ((ε, δ)-guarantees). The learning algorithm A applied on a dataset drawn iid from D
of size n ≥ n0 ∈ N produces a model h ∈ H s.t. with probability δ ∈ (0, 1] it holds for ε > 0 that
P (ε(h) > ε) < δ. The sample size n0 is monotonically decreasing in δ and ε (note that typically n0
is a polynomial in ε−1 and log(δ−1)).

Here ε(h) is the risk defined in Sec. 3. Now let r ∈ N be the Radon number ofH, A be a learning
algorithm as in assumption 2, and risk ε be convex. Assume m ≥ rh many clients with h ∈ N. For
ε > 0, δ ∈ (0, 1] assume local datasetsD1, . . . , Dm of size larger than n0(ε, δ) drawn iid fromD, and
h1, . . . , hm be local models trained on them using A. Let rh be the iterated Radon point (Clarkson
et al., 1996) with h iterations computed on the local models (for details, see App. A.2). Then it
follows from Theorem 3 in Kamp et al. (2017) that for all i ∈ [m] it holds that

P (ε(rh) > ε) ≤ (r P (ε(hi) > ε))
2h (1)

where the probability is over the random draws of local datasets. That is, the probability that the
aggregate rh is bad is doubly-exponentially smaller than the probability that a local model is bad.
Note that in PAC-learning, the error bound and the probability of the bound to hold are typically
linked, so that improving one can be translated to improving the other (Von Luxburg and Schölkopf,
2011). Eq. 1 implies that the iterated Radon point only improves the guarantee on the confidence
compared to that for local models if δ < r−1, i.e. P (ε(rh) > ε) ≤ (r P (ε(hi) > ε))

2h
< (rδ)

2h
< 1

only holds for rδ < 1. Consequently, local models need to achieve a minimum quality for the
federated learning system to improve model quality.
Corollary 3. LetH be a model space with Radon number r ∈ N, ε a convex risk, and A a learning
algorithm with sample size n0(ε, δ). Given ε > 0 and any h ∈ N, if local datasets D1, . . . , Dm with
m ≥ rh are smaller than n0(ε, r−1), then federated learning using the Radon point does not improve
model quality in terms of (ε, δ)-guarantees.

In other words, when using aggregation by Radon points alone, an improvement in terms of (ε, δ)-
guarantees is strongly dependent on large enough local datasets. Furthermore, given δ > r−1, the
guarantee can become arbitrarily bad by increasing the number of aggregation rounds.

Federated Daisy-Chaining as given in Alg. 1 permutes local models at random, which is in theory
equivalent to permuting local datasets. Since the permutation is drawn at random, the amount of
permutation rounds T necessary for each model to observe a minimum number of distinct datasets
k with probability 1− ρ can be given with high probability via a variation of the coupon collector
problem as T ≥ d m

ρ
1
m

(Hm − Hm−k), where Hm is the m-th harmonic number—see Lm. 5 in
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App. A.5 for details. It follows that when we perform daisy-chaining with m clients and local datasets
of size n for at least dmρ−

1
m (Hm −Hm−k) rounds, then each local model will with probability at

least 1−ρ be trained on at least kn distinct samples. For an ε, δ-guarantee, we thus need to set b large
enough so that kn ≥ n0(ε,

√
δ) with probability at least 1−

√
δ. This way, the failure probability is

the product of not all clients observing k distinct datasets and the model having a risk larger than ε,
which is

√
δ
√
δ = δ.

Proposition 4. LetH be a model space with Radon number r ∈ N, ε a convex risk , andA a learning
algorithm with sample size n0(ε, δ). Given ε > 0, δ ∈ (0, r−1) and any h ∈ N, and local datasets
D1, . . . , Dm of size n ∈ N with m ≥ rh, then Alg. 1 using the Radon point with aggr. period

b ≥ d m

δ
1

2m

(
Hm −Hm−dn−1n0(ε,

√
δ)e
)

(2)

improves model quality in terms of (ε, δ)-guarantees.

This result implies that if enough daisy-chaining rounds are performed in-between aggregation rounds,
federated learning via the iterated Radon point improves model quality in terms of (ε, δ)-guarantees:
the resulting model has generalization error smaller than ε with probability at least 1− δ. Note that
the aggregation period cannot be arbitrarily increased without harming convergence. To illustrate the
interplay between these variables, we provide a numerical analysis of Prop. 4 in App. A.5.1.

This theoretical result is also evident in practice, as we show in Fig. 2. There, we compare FEDDC
with standard federated learning and equip both with the iterated Radon point on the SUSY binary
classification dataset (Baldi et al., 2014). We train a linear model on 441 clients with only 2 samples
per client. After 500 rounds FEDDC daisy-chaining every round (d = 1) and aggregating every
fifty rounds (b = 50) reached the test accuracy of a gold-standard model that has been trained on
the centralized dataset (ACC=0.77). Standard federated learning with the same communication
complexity using b = 1 is outperformed by a large margin (ACC=0.68). We additionally provide
results of standard federated learning with b = 50 (ACC=0.64), which shows that while the aggregated
models perform reasonable, the standard approach heavily overfits on local datasets if not pulled to a
global average in every round. More details on this experiment can be found in App. A.3.2. In Sec. 7
we show that the empirical results for averaging as aggregation operator are similar to those for the
Radon machine. First, we discuss the privacy-aspects of FEDDC.

6 DATA PRIVACY
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Figure 3: Differential privacy results. Com-
parison of FEDDC (top solid line) to
FEDDC with clipped parameter updates and
Gaussian noise (dashed lines) on CIFAR10
with 250 clients.

A major advantage of federated over centralized learn-
ing is that local data remains undisclosed to anyone but
the local client, only model parameters are exchanged.
This provides a natural benefit to data privacy, which
is the main concern in applications such as healthcare.
However, an attacker can make inferences about lo-
cal data from model parameters (Ma et al., 2020) and
model updates or gradients (Zhu and Han, 2020). In
the daisy-chaining rounds of FEDDC clients receive a
model that was directly trained on the local data of an-
other client, instead of a model aggregate, potentially
facilitating membership inference attacks (Shokri et al.,
2017)—reconstruction attacks (Zhu and Han, 2020)
remain difficult because model updates cannot be in-
ferred since the server randomly permutes the order of
clients in daisy-chaining rounds.

Should a malicious client obtain model updates
through additional attacks, a common defense is applying appropriate clipping and noise before
sending models. This guarantees ε, δ-differential privacy for local data (Wei et al., 2020) at the
cost of a slight-to-moderate loss in model quality. This technique is also proven to defend against
backdoor and poisoning attacks (Sun et al., 2019). Moreover, FEDDC is compatible with standard
defenses against such attacks, such as noisy or robust aggregation (Liu et al., 2022)—FEDDC with
the Radon machine is an example of robust aggregation. We illustrate the effectiveness of FEDDC
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(a) FEDDC with d = 1, b = 200.
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Figure 4: Synthetic data results. Comparison of FEDDC (a), FEDAVG with same communication (b)
and same averaging period (c) for training fully connected NNs on synthetic data. We report mean
and confidence accuracy per client in color and accuracy of central learning as dashed black line.

with differential privacy in the following experiment. We train a small ResNet on 250 clients using
FEDDC with d = 2 and b = 10, postponing the details on the experimental setup to App. A.1.1
and A.1.2. Differential privacy is achieved by clipping local model updates and adding Gaussian
noise as proposed by Geyer et al. (2017). The results as shown in Figure 3 indicate that the standard
trade-off between model quality and privacy holds for FEDDC as well. Moreover, for mild privacy
settings the model quality does not decrease. That is, FEDDC is able to robustly predict even under
differential privacy. We provide an extended discussion on the privacy aspects of FEDDC in App. A.7.

7 EXPERIMENTS ON DEEP LEARNING

Our approach FEDDC, both provably and empirically, improves model quality when using Radon
points as aggregation which, however, require convex problems. For non-convex problems, in
particular deep learning, averaging is the state-of-the-art aggregation operator. We, hence, evaluate
FEDDC with averaging against the state of the art in federated learning on synthetic and real world
data using neural networks. As baselines, we consider federated averaging (FEDAVG) (McMahan
et al., 2017) with optimal communication, FEDAVG with equal communication as FEDDC, and simple
daisy-chaining without aggregation. We further consider the 4 state-of-the-art methods FEDPROX (Li
et al., 2020a), FEDADAGRAD, FEDYOGI, and FEDADAM (Reddi et al., 2020). As datasets we
consider a synthetic classification dataset, image classification in CIFAR10 (Krizhevsky, 2009), and
two real medical datasets: MRI scans for brain tumors,2 and chest X-rays for pneumonia3. We provide
additional results on MNIST in App. A.3.8. Details on the experimental setup are in App. A.1.1,A.1.2,
code is publicly available at https://github.com/kampmichael/FedDC.

Synthetic Data: We first investigate the potential of FEDDC on a synthetic binary classification
dataset generated by the sklearn (Pedregosa et al., 2011) make_classification function with
100 features. On this dataset, we train a simple fully connected neural network with 3 hidden layers
on m = 50 clients with n = 10 samples per client. We compare FEDDC with daisy-chaining period
d = 1 and aggregation period b = 200 to FEDAVG with the same amount of communication b = 1
and the same averaging period b = 200. The results presented in Fig. 4 show that FEDDC achieves
a test accuracy of 0.89. This is comparable to centralized training on all data which achieves a test
accuracy of 0.88. It substantially outperforms both FEDAVG setups, which result in an accuracy of
0.80 and 0.76. Investigating the training of local models between aggreation periods reveals that
the main issue of FEDAVG is overfitting of local clients, where FEDAVG train accuracy reaches 1.0
quickly after each averaging step. With these promising results on vanilla neural networks, we next
turn to real-world image classification problems typically solved with CNNs.

CIFAR10: As a first challenge for image classification, we consider the well-known CIFAR10
image benchmark. We first investigate the effect of the aggregation period b on FEDDC and FEDAVG,
separately optimizing for an optimal period for both methods. We use a setting of 250 clients with

2kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
3kaggle.com/praveengovi/coronahack-chest-xraydataset
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a small version of ResNet, and 64 local samples each, which simulates our small sample setting,
drawn at random without replacement (details in App. A.1.2). We report the results in Figure 5 and
set the period for FEDDC to b = 10, and consider federated averaging with periods of both b = 1
(equivalent communication to FEDDC with d = 1, b = 10) and b = 10 (less communication than
FEDDC by a factor of 10) for all subsequent experiments.
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ac
cu

ra
cy

FEDDC FEDAVG

Figure 5: Averaging periods on CIFAR10. For
150 clients with small ResNets and 64 samples
per client, we visualize the test accuracy (higher
is better) of FEDDC and FEDAVG for different
aggregation periods b.

Next, we consider a subset of 9600 samples
spread across 150 clients (i.e. 64 samples per
client), which corresponds to our small sample
setting. Now, each client is equipped with a
larger, untrained ResNet18.4 Note that the com-
bined amount of examples is only one fifth of
the original training data, hence we cannot ex-
pect typical CIFAR10 performance. To obtain
a gold standard for comparison, we run cen-
tralized learning CENTRAL, separately optimiz-
ing its hyperparameters, yielding an accuracy
of around 0.65. All results are reported in Ta-
ble 1, where we report FEDAVG with b = 1 and
b = 10, as these were the best performing set-
tings and b = 1 corresponds to equal amounts
of communication as FEDDC. We use a daisy chaining period of d = 1 for FEDDC throughout all
experiments for consistency, and provide results for larger daisy chaining periods in App. A.3.5,
which, depending on the data distribution, might be favorable. We observe that FEDDC achieves
substantially higher accuracy over the baseline set by federated averaging. In App. A.3.7 we show
that this holds also for client subsampling. Upon further inspection, we see that FEDAVG drastically
overfits, achieving training accuracies of 0.97 (App. A.3.1), a similar trend as on the synthetic
data before. Daisy-chaining alone, apart from privacy issues, also performs worse than FEDDC.
Intriguingly, also the state of the art shows similar trends. FEDPROX, run with optimal b = 10 and
µ = 0.1, only achieves an accuracy of 0.51 and FEDADAGRAD, FEDYOGI, and FEDADAM show
even worse performance of around 0.22, 0.31, and 0.34, respectively. While applied successfully on
large-scale data, these methods seem to have shortcomings when it comes to small sample regimes.

To model different data distributions across clients that could occur in for example our healthcare
setting, we ran further experiments on simulated non-iid data, gradually increasing the locally
available data, as well as on non-privacy preserving decentralized learning. We investigate the effect
of non-iid data on FEDDC by studying the “pathological non-IID partition of the data” (McMahan
et al., 2017). Here, each client only sees examples from 2 out of the 10 classes of CIFAR10. We
again use a subset of the dataset. The results in Tab. 2 show that FEDDC outperforms FEDAVG by a
wide margin. It also outperforms FEDPROX, a method specialized on heterogeneous datasets in our
considered small sample setting. For a similar training setup as before, we show results for gradually
increasing local datasets in App. A.3.4. Most notably, FEDDC outperforms FEDAVG even with 150
samples locally. Only when the full CIFAR10 dataset is distributed across the clients, FEDAVG is
on par with FEDDC (see App. Fig. 7). We also compare with distributed training through gradient
sharing (App. A.3.3), which discards any privacy concerns, implemented by mini-batch SGD with
parameter settings corresponding to our federated setup as well as a separately optimized version.
The results show that such an approach is outperformed by both FEDAVG as well as FEDDC, which
is in line with previous findings and emphasize the importance of model aggregation.

As a final experiment on CIFAR10, we consider daisy-chaining with different combinations of
aggregation methods, and hence its ability to serve as a building block that can be combined with
other federated learning approaches. In particular, we consider the same setting as before and combine
FEDPROX with daisy chaining. The results, reported in Tab. 2, show that this combination is not only
successful, but also outperforms all others in terms of accuracy.

Medical image data: Finally, we consider two real medical image datasets representing actual
health related machine learning tasks, which are naturally of small sample size. For the brain MRI
scans, we simulate 25 clients (e.g., hospitals) with 8 samples each. Each client is equipped with a CNN

4Due to hardware restrictions we are limited to training 150 ResNets, hence 9600 samples across 150 clients.
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CIFAR10 MRI Pneumonia

FEDDC (ours) 62.9±0.02 78.4±0.61 83.2±0.84
DC (baseline) 58.4 ±0.85 57.7 ±1.57 79.8 ±0.99
FEDAVG (b=1) 55.8 ±0.78 74.1 ±1.68 80.1 ±1.53
FEDAVG (b=10) 48.7 ±0.87 75.6 ±1.18 79.4 ±1.11
FEDPROX 51.1 ±0.80 76.5 ±0.50 80.0 ±0.36
FEDADAGRAD 21.8 ±0.01 45.7 ±1.25 62.5 ±0.01
FEDYOGI 31.4 ±4.37 71.3 ±1.62 77.6 ±0.64
FEDADAM 34.0 ±0.23 73.8 ±1.98 73.5 ±0.36

CENTRAL 65.1 ±1.44 82.1 ±1.00 84.1 ±3.31

Table 1: Results on image data, reported is the average
test accuracy of the final model over three runs (± denotes
maximum deviation from the average).

CIFAR10

FEDDC 62.9 ±0.02
FEDDC +FEDPROX 63.2 ±0.38

Non-IID

FEDDC 34.2 ±0.61
FEDAVG (b=1) 30.2 ±2.11
FEDAVG (b=10) 24.9 ±1.95
FEDPROX 32.8 ±0.00
FEDADAGRAD 11.7 ±0.00
FEDADAM 13.0 ±0.00
FEDYOGI 12.5 ±0.04

Table 2: Combination of FEDDC
with FEDAVG and FEDPROX and
non-iid results on CIFAR10.

(see App. A.1.1). The results for brain tumor prediction evaluated on a test set of 53 of these scans are
reported in Table 1. Overall, FEDDC performs best among the federated learning approaches and is
close to the centralized model. Whereas FEDPROX performed comparably poorly on CIFAR10, it now
outperforms FEDAVG. Similar to before, we observe a considerable margin between all competing
methods and FEDDC. To investigate the effect of skewed distributions of sample sizes across clients,
such as smaller hospitals having less data than larger ones, we provide additional experiments in
App. A.3.5. The key insight is that also in these settings, FEDDC outperforms FEDAVG considerably,
and is close to its performance on the unskewed datasets.

For the pneumonia dataset, we simulate 150 clients training ResNet18 (see App. A.1.1) with 8
samples per client, the hold out test set are 624 images. The results, reported in Table 1, show similar
trends as for the other datasets, with FEDDC outperforming all baselines and the state of the art, and
being within the performance of the centrally trained model. Moreover it highlights that FEDDC
enables us to train a ResNet18 to high accuracy with as little as 8 samples per client.

8 DISCUSSION AND CONCLUSION

We propose to combine daisy-chaining and aggregation to effectively learn high quality models in
a federated setting where only little data is available locally. We formally prove convergence of
our approach FEDDC, and for convex settings provide PAC-like generalization guarantees when
aggregating by iterated Radon points. Empirical results on the SUSY benchmark underline these
theoretical guarantees, with FEDDC matching the performance of centralized learning. Extensive
empirical evaluation shows that the proposed combination of daisy-chaining and aggregation enables
federated learning from small datasets in practice.When using averaging, we improve upon the state
of the art for federated deep learning by a large margin for the considered small sample settings. Last
but not least, we show that daisy-chaining is not restricted to FEDDC, but can be straight-forwardly
included in FEDAVG, Radon machines, and FEDPROX as a building block, too.

FEDDC permits differential privacy mechanisms that introduce noise on model parameters, offering
protection against membership inference, poisoning and backdoor attacks. Through the random
permutations in daisy-chaining rounds, FEDDC is also robust against reconstruction attacks. Through
the daisy-chaining rounds, we see a linear increase in communication. As we are primarily interested
in healthcare applications, where communication is not a bottleneck, such an increase in communi-
cation is negligible. Importantly, FEDDC outperforms FEDAVG in practice also when both use the
same amount of communication. Improving the communication efficiency considering settings where
bandwidth is limited, e.g., model training on mobile devices, would make for engaging future work.

We conclude that daisy-chaining lends itself as a simple, yet effective building block to improve
federated learning, complementing existing work to extend to settings where little data is available per
client. FEDDC, thus, might offer a solution to the open problem of federated learning in healthcare,
where very few, undisclosable samples are available at each site.
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A APPENDIX

A.1 DETAILS ON EXPERIMENTAL SETUP

In this section we provide all details to reproduce the empirical results presented in this paper.
Furthermore, the implementation provided at https://github.com/kampmichael/FedDC
allows to directly reproduce the result. Experiments were conducted on an NVIDIA DGX with six
A6000 GPUs.

A.1.1 NETWORK ARCHITECTURES

Here, we detail network architectures considered in our empirical evaluation.

MLP for Synthetic Data A standard multilayer perceptron (MLP) with ReLU activations and
three linear layers of size 100,50,20.

Averaging round experiment For this set of experiments we use smaller versions of ResNet
architectures with 3 blocks, where the blocks use 16, 32, 64 filters, respectively. In essence, these are
smaller versions of the original ResNet18 to keep training of 250 networks feasible.

CIFAR10 & Pneumonia For CIFAR10, we consider a standard ResNet18 architecture, where
weights are initialized by a Kaiming Normal and biases are zero-initialized. Each client constructs
and initializes a ResNet network separately. For pneumonia, X-ray images are resized to (224, 224).

MRI For the MRI data, we train a small convolutional network of architecture Conv(32)-Batchnorm-
ReLU-MaxPool-Conv(64)-Batchnorm-ReLU-MaxPool-Linear, where Conv(x) are convolutional
layers with x filters of kernel size 3. The pooling layer uses a stride of 2 and kernel size of 2. The
Linear layer is of size 2 matching the number of output classes. All scan images are resized to
(150, 150).

A.1.2 TRAINING SETUP

In this section, we give additional information for the training setup for each individual experiment of
our empirical evaluation.

SUSY experiments SUSY is a binary classification dataset with 18 features. We train linear models
with stochastic gradient descent (learning rate 0.0001, found by grid-search on an independent part
of the dataset) on 441 clients, aggregating every 50 rounds via the iterated Radon point (Kamp et al.,
2017) with h = 2 iterations. FEDDC performs daisy-chaining with period d = 1. The test accuracy
is evaluated on a test set with 1 000 000 samples drawn iid at random.

Synthetic Data The synthetic binary classification dataset is generated by the sklearn (Pedregosa
et al., 2011) make_classification function with 100 features of which 20 are informative, 60
are redundant, and 5 are repeated. We generate 3 clusters per class with a class separation of 1.0, a
shift of 1.0 and a scale of 3.0. Class labels are randomly flipped with probability 0.02.

Averaging rounds parameter optimization To find a suitable number when averaging should be
carried out, we explore b ∈ {1, 10, 20, 50, 100, 200, 500,∞} on CIFAR10 using 250 clients each
equipped with a small ResNet. We assign 64 samples to each client drawn at random (without
replacement) from the CIFAR10 training data and use a batch size of 64. For each parameter, we
train for 10k rounds with SGD using cross entropy loss and initial learning rate of 0.1, multiplying
the rate by a factor of .5 every 2500 rounds.

FedAdam, FedAdagrad, and FedYogi We use the standard values for β1 and β2, i.e., β1 = 0.9,
β2 = 0.999, as suggested in Reddi et al. (2020). We optimized learning rate ηl and global learning
rate η from the set {0.001, 0.01, 0.1, 1.0, 2.0} yielding optimal parameters ηl = 0.1 and η = 1.0.
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CIFAR10 differential privacy and main experiments We keep the same experimental setup as
for hyperparameter tuning, but now use 100 clients each equipped with a ResNet18.

A.2 ITERATED RADON POINTS AND THE RADON MACHINE

The Radon machine (Kamp et al., 2017) aggregates a set S = h1, . . . , hm of local models hi ∈ H
via the iterated Radon point algorithm (Clarkson et al., 1996). For models with d ∈ N parameters,
r = d+ 2 many models are required to compute a single Radon point, where r is called the Radon
number of H. Let m = rh for some h ∈ N, then the iterated Radon point aggregates models in h
iterations. In each iteration, the set S is partitioned into subsets of size r and the Radon point of each
subset is calculated. The final step of each iteration is to replace the set S of models by the set of
Radon points. After h iterations, a single Radon point rh is obtained as the aggregate.

Radon points can be obtained by solving a system of linear equations of size r × r (Kamp et al.,
2017): In his main theorem, Radon (1921) gives the following construction of a Radon point for a set
S = {s1, ..., sr} ⊆ Rd. Find a non-zero solution λ ∈ R|S| for the following linear equations.

r∑
i=1

λisi = (0, . . . , 0) ,

r∑
i=1

λi = 0

Such a solution exists, since |S| > d+ 1 implies that S is linearly dependent. Then, let I, J be index
sets such that for all i ∈ I : λi ≥ 0 and for all j ∈ J : λj < 0. Then a Radon point is defined by

r(λ) =
∑
i∈I

λi
Λ
si =

∑
j∈J

λj
Λ
sj ,

where Λ =
∑
i∈I λi = −

∑
j∈J λj . Any solution to this linear system of equations is a Radon point.

The equation system can be solved in time r3. By setting the first element of λ to one, we obtain a
unique solution of the system of linear equations. Using this solution λ, we define the Radon point of
a set S as r(S) = r(λ) in order to resolve ambiguity.

A.3 ADDITIONAL EMPIRICAL RESULTS

In Sec. 7 we have shown that FEDDC performs well on benchmark and real-world datasets. In
the following we provide additional empirical results, both to investigate the main results more
closely, as well as to further investigate the properties of FEDDC. For the CIFAR10 experiment,
we investigate training accuracy (App. A.3.1) and present results for distributed mini-batch SGD
(App. A.3.3). For the SUSY experiment, we compare to FEDAVG (App. A.3.2). As additional
experiments, we investigate the impact of local dataset size (App. A.3.4) and skewed dataset size
distributions (App. A.3.5), and analyze the communication-efficiency of FEDDC (App. A.3.6).
Finally, we present results on MNIST where FEDDC achieves state-of-the-art accuracy (App. A.3.8).

A.3.1 TRAIN AND TEST ACCURACIES ON CIFAR10:

In Table 3 we provide the accuracies on the entire training set for the final model, together with
test accuracies, on CIFAR10. The high training accuracies of FEDAVG (≈ 0.97)—and to a lesser
degree FEDPROX (0.96)—indicate overfitting on local data sets. The poor training performance of
FEDADAGRAD, FEDYOGI, and FEDADAM hint at insufficient model updates. A possible explanation
is that the adaptive learning rate parameter (which is proportional to the sum of past model updates)
becomes large quickly, essentially stopping the training process. The likely reason is that due to large
differences in local data distributions, model updates after each aggregation round are large.

A.3.2 ADDITIONAL RESULTS ON SUSY

In Sec. 5 we compared FEDDC to federated learning with the iterated Radon point. For completeness,
we compare it to FEDAVG as well, i.e., federated learning using averaging on the same SUSY binary
classification dataset (Baldi et al., 2014). The results shown in Fig. 6 are in line with the findings in
Sec. 5: FEDDC with the iterated Radon point outperforms FEDAVG both with the same amount of
communication (b = 1) and the same aggregation period (b = 50). The results for b = 50 show that
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Test Train

FEDDC (ours) 62.9 ±0.02 94.7 ±0.52
DC (baseline) 58.4 ±0.85 94.1 ±2.31
FEDAVG (b=1) 55.8 ±0.78 97.2 ±0.87
FEDAVG (b=10) 48.7 ±0.87 97.4 ±0.23
FEDPROX 51.1 ±0.80 95.9 ±0.42
FEDADAGRAD 21.8 ±0.01 31.7 ±0.25
FEDYOGI 31.4 ±4.37 72.4 ±0.90
FEDADAM 34.0 ±0.23 73.9 ±0.89

Table 3: Train and test accuracy on CIFAR10 of the final model over three runs (± denotes maximum
deviation from the average).
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Figure 6: Results on SUSY. We visualize results in terms of train (green) and test error (orange) for
FEDDC with the iterated Radon point (a) and FEDAVG with b = 1 (b) as well as FEDAVG with
b = 50 (c). The network has 441 clients with 2 data points per client. The performance of a central
model trained on all data is indicated by the dashed line.

FEDAVG exhibits the same behavior on local training sets that indicates overfitting. Overall, FEDAVG
performs comparably to federated learning with the iterated Radon point. That is, FEDAVG (b = 1
and b = 50) has an accuracy of 0.67, resp. 0.64, compared to 0.68, resp. 0.64 for federated learning
with the iterated Radon point.

A.3.3 COMPARISON WITH DISTRIBUTED MINI-BATCH SGD ON CIFAR10

We compare to distributed mini-batch SGD, i.e., central updates where gradients are computed
distributedly on CIFAR10. We use the same setup as for the other experiments, i.e., m = 150 clients
and a mini-batch size of B = 64, so that the effective mini-batch size for each update is mB = 9600,
the optimal learning rate is λ = 0.01. Here, mini-batch SGD achieves a test accuracy of 19.47± 0.68.
Since a plausible explanation for the poor performance is the large mini-batch size, we compare it to
the setting with B = 1 to achieve the minimum effective mini-batch size of B = 150. The results are
substantially improved to an accuracy of 50.14± 0.63, underlining the negative effect of the large
batch size in line with the theoretical analysis of Shamir and Srebro (2014). Running it 64 times
the number of rounds that FedDC uses improves the accuracy just slightly to 54.3. Thus, even with
optimal B = 1 and a 64-times slower convergence, mini-batch SGD is outperformed by both FedAvg
and FedDC, since it cannot use the more favorable mini-batch size of B = 64 on m = 150 clients.

A.3.4 LOCAL DATASET SIZE

In our experiments, we used dataset sizes common in the medical domain, e.g., for radiological
images. To further investigate the impact of local dataset sizes on the performance of FEDDC wrt.
FEDAVG, we evaluate the performance for local dataset sizes ranging from 2 to 256 (given the size
of CIFAR10, 256 is the maximum without creating overlap between local datasets). The results in
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Fig. 7 show that FEDDC outperforms all baselines for smaller local datasets. Only for as much as
256 examples FEDAVG performs as good as FEDDC.

These results further confirm that FEDDC is capable of handling heterogeneous data: for n < 10 the
clients only see a subset of labels due to the size of their local datasets (with n=2, each client can at
most observe two classes). We find this a more natural non-iid setting. These results indicate that the
shuffle mechanism indeed mitigates data heterogeneity well. A further study of the impact of non-iid
data, a comparison with personalized FL, and potential improvements to the shuffling scheme are
interesting directions for future work

Figure 7: Test accuracy wrt. local dataset size on CIFAR10 with 150 clients (n = 2i for i ∈
{1, . . . , 8}) with linear (left) and logarithmic (right) x-axis.

A.3.5 REALISTIC DATASET SIZE DISTRIBUTION

In medical applications, a common scenario is that some hospitals, e.g., university clinics, hold larger
datasets, while small clinics, or local doctors’ offices only hold very small datasets. To simulate
such a scenario, we draw local dataset sizes for a dataset of size n so that a fraction c of the clients
hold only a minimum number of samples nmin (the local doctor’s offices), and the other clients have
an increasing local dataset size starting from nmin until all data is distributed. That is, for clients
i = [1, . . . ,m− bcmc] the dataset sizes are given by nmin + ai with

a =
2(n− (bcmc)nmin)

b(1− c)mc(b(1− c)mc − 1)

.

We use the MRI brainscan dataset with c = 0.3 and nmin = 2. The results presented in Tab. 4 show
that FEDDC performs well in that setting. FEDDC (d = 4, b = 10) outperforms all other methods
with an accuracy of around 0.81, is similar to FEDDC on equally distributed data (0.79), and is even
close to the centralized gold-standard (0.82).

MRI

FEDDC (d=1, b=10) 74.7 ±0.61
FEDDC (d=2, b=10) 74.4 ±1.15
FEDDC (d=4, b=10) 80.6 ±0.66
FEDDC (d=5, b=10) 77.8 ±1.42
DC (baseline) 53.9 ±0.25
FEDAVG (b=1) 70.1 ±2.59
FEDAVG (b=10) 75.3 ±2.37

central 79.9 ±6.23

Table 4: Results for realistic dataset size distribution on MRI, reported is the average test accuracy of
the final model over three runs (± denotes maximum deviation from the average).
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A.3.6 COMMUNICATION EFFICIENCY OF FEDDC

Although communication is not a concern in cross-silo applications, such as healthcare, the commu-
nication efficiency of FEDDC is important in classical federated learning applications. We therefore
compare FEDDC with varying amounts of communication to FEDAVG on CIFAR10 in Tab. 5. The
results show that FEDDC (d=2) outperforms FEDAVG (b=1), thus outperforming just using half the
amount of communication, and FEDDC (d=5) performs similar to FEDAVG (b=1), thus outperforming
using five times less communication. FEDDC with d = 10 and b = 10 significantly outperforms
FEDAVG (b=10), which corresponds to the same amount of communication in this low-sample setting.

CIFAR10

FEDDC (d=1,b=10) 62.9 ±0.02
FEDDC (d=2,b=10) 60.8 ±0.65
FEDDC (d=5,b=10) 55.4 ±0.11
FEDDC (d=10,b=20) 53.8 ±0.47
FEDAVG (b=1) 55.8 ±0.78
FEDAVG (b=10) 48.7 ±0.87

central 65.1 ±1.44

Table 5: Communication efficiency of FEDDC compared to FEDAVG., where FEDDC (d=1,b=10)
and FEDAVG (b=1), respectively FEDDC (d=10,b=20) and FEDAVG (b=10) have the same amount
of communication.

A.3.7 CLIENT SUBSAMPLING

A widely used technique to improve communication-efficiency in federated learning is to subsample
clients in each communication round. For example, instead of averaging the models of all clients
in vanilla FedAvg, only a subset of clients sends their models and receives the average of this
subset. By randomly sampling this subset, eventually all clients will participate in the process. The
fraction C ∈ (0, 1] of clients sampled is a hyperparameter. In cross-SILO applications, such as
healthcare, communication-efficiency is not relevant and client participation is assumed to beC = 1.0.
Client subsampling can naturally be used in FEDDC by sampling clients both in daisy-chaining and
aggregation rounds. We conducted an experiment on CIFAR10 where we compare FEDDC using
subsampling to FEDAVG (b = 10). The results in Table 6 show that FEDDC indeed works well
with client subsampling and outperforms FEDAVG with C = 0.2, similar to full client participation
(C=1.0). However, due to the restricted flow of information, the training process is slowed. By
prolonging training from 10000 to 30000 rounds, FEDDC with C = 0.2 reaches virtually the same
performance as in full client participation, but with higher variance. The same holds true for FEDAVG.

T = 10 000 T = 30 000
C = 1.0 C = 0.2 C = 0.2

FEDDC (d=1,b=10) 62.9 ±0.02 53.2 ±3.42 61.0 ±1.07
FEDAVG (b=10) 48.7 ±0.87 45.9 ±6.94 49.3 ±5.23

Table 6: Client subsampling of FEDDC compared to FEDAVG on CIFAR10.

A.3.8 ADDITIONAL RESULTS ON MNIST

In order to further demonstrate the efficiency of FEDDC on clients that achieve state-of-the-art
performance we perform experiments on the MNIST (LeCun et al., 1998) dataset. We use a CNN
with two convolutional layers with max-pooling, followed by two linear layers with 1024, resp. 100
neurons. Centralized training on all 60 000 training samples of MNIST achieves a test accuracy of
0.994 which is similar to the state-of-the-art. The results for m = 50 clients in Tab. 7 show that
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FEDDC outperforms FEDAVG both with the same amount of communication, i.e., FEDAVG (b = 1)
and FEDAVG (b = 10). In line with the results on CIFAR10 (cf. Fig. 7), the advantage of FEDDC
shrinks with increasing local dataset size. Using n = 1200, i.e., the full training set distributed over
m = 50 clients, results in virtually the same performance of FEDDC and FEDAVG, both reaching a
test accuracy of around 0.96.

FEDDC (d=1,b=10) FEDAVG (b=1) FEDAVG (b=10)

n = 8 87.6 84.4 84.9
n = 1200 96.7 96.3 96.5

Table 7: Performance of FEDDC and FEDAVG on MNIST for varying local dataset sizes n.

A.4 PROOF OF CONVERGENCE

Corollary. Let the empirical risks E iemp(h) =
∑

(x,y)∈Di `(hi(x), y) at each client be L-smooth
with σ2-bounded gradient variance and G2-bounded second moments, then FEDDC with averaging
and SGD as learning algorithm has a convergence rate of O(1/

√
mT ), where T ∈ N is the number

of local updates.

Proof. We assume that each client i ∈ [m] uses SGD as learning algorithm. In each iteration t ∈ [T ],
a client i computes the gradient Gi

t = ∇`(hit(x), y) with x, y ∈ Di drawn randomly and updates the
local model hit+1 = hit − γGit, where γ > 0 denotes the learning rate. FEDDC with daisy-chaining
period d and averaging period b, run for T local iterations, computes T/b local gradients at each of the
m clients before averaging. Each local gradient is computed on an iid sample from D, independent
of whether local models are permuted. Therefore, FEDDC with averaging and SGD is equivalent
to parallel restarted SGD (PR-SGD) (Yu et al., 2019) with b/d times larger local datasets. Yu et al.
(2019) analyze the convergence of PR-SGD with respect to the average ht of local models in round
t. Since E iemp(h) =

∑
(x,y)∈Di `(hi(x), y) at each client be L-smooth with σ2-bounded gradient

variance and G2-bounded second moments, Theorem 1 in Yu et al. (2019) is applicable. It then
follows from Corollary 1 (Yu et al., 2019) that for γ =

√
m/(L

√
T ) and b ≤ T 1

4 /m
3
4 it holds that

1

T
E
[ T∑
t=1

E(x,y)∼D
[
E iemp

(
ht(x), y

) ]]
≤ 2L√

mT

(
E(x,y)∼D

[
E iemp

(
h0(x), y

) ]
−E(x,y)∼D

[
E iemp

(
h
∗
(x), y

) ])
+

1√
mT

(
4G2 + σ2

)
∈ O

(
1√
mT

)
.

Here, the first expectation is over the draw of local datasets and h
∗

is given by

h
∗

= arg min
h∈H

E(x,y)∼D
[
Eemp(h(x), y)

]
.

Thus, FEDDC with averaging and SGD converges in O(1/
√
mT ).

A.5 PROOF OF MODEL QUALITY IMPROVEMENT BY FEDDC

In order to proof Prop. 4, we first need the following Lemma.
Lemma 5. Given δ ∈ (0, 1], m ∈ N clients, and k ∈ [m], if Algorithm 1 with daisy chaining period
d ∈ N is run for T ∈ N rounds with

T ≥ d m
ρ

1
m

(Hm −Hm−k)

where Hm is the m-th harmonic number, then each local model has seen at least k distinct datasets
with probability 1− ρ.
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Note that Hm ≈ logm+ γ + 1
2 +O

(
1
m

)
where γ ≈ 0.5772156649 denotes the Euler-Mascheroni-

constant.

Proof. For a single local model, it follows from the coupon collector problem (Neal, 2008) that the
expected number of daisy-chaining rounds R required to see at least k out of m clients is at least
m(Hm −Hm−k), where

Hm =

m∑
i=1

1

i

is the m-th harmonic number. To see that, consider that for the first distinct client the chance to pick
it is m

m−1 , for the second m
m−2 and for the k-th it is m

m−k+1 , which sums up to m(Hm −Hm−k).

Applying the Markov inequality yields

P

(
R ≥ 1

ρ
m(Hm −Hm−k)

)
≤ ρ .

The probability for all local models to have seen at least k clients then is at most ρm. Thus, if we
perform at least

R ≥ m

ρ
1
m

m(Hm −Hm−k)

daisy-chaining rounds, then the probability that each local model has not seen at least k distinct
datasets is smaller than ρ. The result follows from the fact that the number of daisy-chaining rules is
R = T/d.

Note that Hk can be approximated as

Hm ≈ logm+ γ +
1

2
+O

(
1

m

)
where γ = limm→∞(Hm − lnm) ≈ 0.5772156649 denotes the Euler-Mascheroni-constant. From
this it follows that

Hm −Hm−k ≈ ln
m

m− k
+O

(
1

m
− 1

m− k

)
With this, we can now proof Prop. 4 that we restate here for convenience.

Proposition. LetH be a model space with Radon number r ∈ N, ε a convex risk, and A a learning
algorithm with sample size n0(ε, δ). Given ε > 0, δ ∈ (0, r−1) and any h ∈ N, and local datasets
D1, . . . , Dm of size n ∈ N with m ≥ rh, then Alg. 1 using the Radon point with aggr. period

b ≥ d m

δ
1

2m

(
Hm −Hm−dn−1n0(ε,

√
δ)e
)

improves model quality in terms of (ε, δ)-guarantees.

Proof. For

b ≥ d m

δ
1

2m

(
Hm −Hm−dn−1n0(ε,

√
δ)e
)

it follows from Lemma 5 with k =
⌈
n−1n0

(
ε,
√
δ
)⌉

that with probability 1−
√
δ all local models

are trained on at least kn = n0

(
ε,
√
δ
)

samples. Thus an (ε,
√
δ)-guarantee holds for each model

with probability 1−
√
δ. It follows from Eq. 1 that the probability that the risk is higher than ε is

P (ε(rh) > ε) <
(
r
√
δ
√
δ
)2h

= (rδ)
2h

.

The result follows from δ < r−1 and Eq. (1).
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A.5.1 NUMERICAL ANALYSIS OF PROPOSITION 4

The lower bound on the aggregation period

b ≥ d m

δ
1

2m

(
Hm −Hm−dn−1n0(ε,

√
δ)e
)

grows linearly with the daisy-chaining period and a factor depending on the number of clients m, the
error probability δ, and the required number of hops

⌈
n−1n0

(
ε,
√
δ
)⌉

. Applying the bound to the
experiment using the Radon point on SUSY in Sec. 5 with m = 441 clients, daisy-chaining period
d = 1, and local dataset size of n = 2 for local learners achieving an (ε = 0.05, δ = 0.01)-guarantee
requires b ≥ 49.9 to improve model quality according to Prop. 4. For b = 50 like in our experiments,
Prop. 4 thus predicts that model quality is improved, under the assumption that

n0(ε, δ) =
1

ε
log

1

δ
.

Even though, the experiments on CIFAR10 in Section 7 are non-convex, and thus Prop. 4 does
not apply, we can still evaluate the predicted required aggregation period: with m = 150 clients,
daisy-chaining period d = 1, local dataset size of n = 64, and local learners achieving an (ε =
0.01, δ = 0.01)-guarantee requires b ≥ 8.81.

We now analyze the scaling behavior with the error probability δ for various local dataset sizes in
Fig. 8a. The lower the error probability, the larger the required aggregation period b, in particular
for small local datasets. If local datasets are sufficiently large, the aggregation period can be chosen
very small. In Fig. 8b we investigate the required aggregation period b for local learners achieving
an (ε = 0.01, δ = 0.01)-guarantee in relation to the local dataset size n. Indeed, the smaller the
local dataset size, the larger the required aggregation period. We also see that for smaller numbers of
clients, more aggregation rounds are required, since the chance of a model visiting the same client
multiple times is larger.
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A.6 NOTE ON COMMUNICATION COMPLEXITY

In our analysis of the communication complexity, we assume the total amount of communication to
be linear in the number of communication rounds. For some communication systems the aggregated
model can be broadcasted to individual clients which is not possible in daisy-chaining rounds,
reducing the communication complexity in FedAvg. In most scenarios, fiber or GSM networks are
used where each model has to be sent individually, so there is no substantial difference between
broadcasting a model to all clients and sending an individual model to each client. Therefore, also in
this case the amount of communication rounds determines the overall amount of communication.
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A.7 EXTENDED DISCUSSION ON PRIVACY

Federated learning only exchanges model parameters, and no local data. It is, however, possible
to infer upon local data given the model parameters, model updates or gradients (Ma et al., 2020).
In classical federated learning there are two types of attacks that would allow such inference: (i)
an attacker intercepting the communication of a client with the server, obtaining models and model
updates to infer upon the clients data, and (ii) a malicious server obtaining models to infer upon the
data of each client. A malicious client cannot learn about a specific other client’s data, since it only
obtains the average of all local models. In federated daisy-chaining there is a third possible attack:
(iii) a malicious client obtaining model updates from another client to infer upon its data.

In the following, we discuss potential defenses against these three types of attacks in more detail.
Note that we limit the discussion on attacks that aim at inferring upon local data, thus breaching data
privacy. Poisoning (Bhagoji et al., 2019) and backdoor (Sun et al., 2019) attacks are an additional
threat in federated learning, but are of less importance for our main setting in healthcare: there is no
obvious incentive for a hospital to poison a prediction. It is possible that FEDDC presents a novel
risk surface for those attacks, but such attack strategies are non-obvious. Robust aggregation, such as
the Radon point, are suitable defenses against such attacks (Liu et al., 2022). Moreover, the standard
mechanisms that guarantee differential privacy also defend against backdoor and poising attacks (Sun
et al., 2019).

A general and wide-spread approach to tackle all three possible attack types is to add noise to
the model parameters before sending. Using appropriate clipping and noise, this guarantees ε, δ-
differential privacy for local data (Wei et al., 2020) at the cost of a slight-to-moderate loss in model
quality. We empirically demonstrated that FEDDC performs well under such noise in Sec. 6.

Another approach to tackle an attack on communication (i) is to use encrypted communication. One
can furthermore protect against a malicious server (ii) by using homomorphic encryption that allows
the server to average models without decrypting them (Zhang et al., 2020). This, however, only
works for particular aggregation operators and does not allow to perform daisy-chaining. Secure
daisy-chaining in the presence of a malicious server (ii) can, however, be performed using asymmetric
encryption. Assume each client creates a public-private key pair and shares the public key with the
server. To avoid the malicious server to send clients its own public key and act as a man in the middle,
public keys have to be announced (e.g., by broadcast). While this allows sending clients to identify
the recipient of their model, no receiving client can identify the sender. Thus, inference on the origin
of a model remains impossible. For a daisy-chaining round the server sends the public key of the
receiving client to the sending client, the sending client checks the validity of the key and sends an
encrypted model to the server which forwards it to the receiving client. Since only the receiving client
can decrypt the model, the communication is secure.

In standard federated learning, a malicious client cannot infer specifically upon the data of another
client from model updates, since it only receives the aggregate of all local models. In federated
daisy-chaining, it receives the model from a random, unknown client in each daisy-chaining round.
Now, the malicious client can infer upon the membership of a particular data point in the local dataset
of the client the model originated from, i.e., through a membership inference attack (Shokri et al.,
2017). Similarly, the malicious client can infer upon the presence of data points with certain attributes
in the dataset (Ateniese et al., 2015). The malicious client, however, does not know the client the
model was trained on, i.e., it does not know the origin of the dataset. Using a random scheduling
of daisy-chaining and aggregation rounds at the server, the malicious client cannot even distinguish
between a model from another client or the average of all models. Nonetheless, daisy-chaining opens
up new potential attack vectors (e.g., clustering received models to potentially determine their origins).
These potential attack vectors can be tackled in the same way as in standard federated learning, i.e.,
by adding noise to model parameters as discussed above, since “[d]ifferentially private models are,
by construction, secure against membership inference attacks” (Shokri et al., 2017).
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