
SAPA: Similarity-Aware Point Affiliation for
Feature Upsampling

Supplementary Materials

Hao Lu Wenze Liu Zixuan Ye Hongtao Fu Yuliang Liu Zhiguo Cao∗
School of Artificial Intelligence and Automation
Huazhong University of Science and Technology

Wuhan 430074, China
{hlu,zgcao}@hust.edu.cn

We provide the following contents in this supplementary:

- Output visualizations of different upsampling operators on some reported tasks for qualitative
comparison;

- Additional visualizations of the intermediate process of SAPA;

- Implementation details of reported experiments;

- CUDA implementation for SAPA.

S1 Output visualizations of different upsampling operators on reported tasks

We first visualize the qualitative results of different upsampling operators. Note that we do not
provide visualizations for object detection here, because we do not observe significant differences
between difference upsampling operators. For semantic segmentation, we visualize the segmentation
masks of SegFormer. It involves 6 upsampling stages in all and thus can reveal the differences of
upsampling operators more clearly.

Semantic segmentation visualizations are shown in Fig. S1, image matting ones are shown in Fig. S2,
and visualizations of monocular depth estimation are shown in Fig. S3.

S2 Additional visualizations of the intermediate process of SAPA

To better understand how SAPA works, we supplement additional visualizations on the encoder
features, decoder features, upsampling kernels, and upsampled features of SAPA. As shown in
Fig. S4, for the upsampling kernels, we choose every top-left weight of the upsampling kernel for
visualization, therefore the kernel map is of the same size with the upsampled feature. From the
kernel map we can see that the top-left kernel weights mainly response to top and left edges, which
explains the affiliation of the top-left point among the upsampled four. Additionally, we use bilinear
interpolation to upsample the same decoder feature for a visual comparison, and the results are shown
at the rightmost column. We can see that bilinear interpolation generates more blurry feature maps
than SAPA. This vague is more harmful to features of low resolution. Therefore, by replacing the
upsampling operator in every upsampling stage, SAPA can manifest stronger semantic preservation
and boundary delineation than other competitors.

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Image Ground Truth IndexNet A2U CARAFE SAPA

Figure S1: Visualizations of different upsampling operators on semantic segmentation with SegNet-
B1 as the baseline.

Image IndexNet A2U CARAFEGround Truth SAPA

Figure S2: Visualizations of different upsampling operators on image matting with A2U as the
baseline.

S3 Implementation details

Intermediate visualization with SegNet on SUN RGBD SegNet is a relatively simple baseline
such that we can focus on the effect of upsampling with less disturbance. Therefore we select SegNet
as the baseline model and replace all 5 upsampling operators to investigate the working mechanism
of SAPA. We use the SUNRGBD dataset and adopt random scaling, random cropping and random
flipping in data augmentation. The backbone VGG-16 is pretrained on ImageNet. The batch size is
set to 8. We use the cross entropy loss and the SGD optimizer with a 0.9 momentum. The model is
trained for 200 epochs with a constant learning rate of 0.01.

2



Image Ground Truth IndexNet A2U CARAFE SAPA

Figure S3: Visualizations of different upsampling operators on depth estimation with BTS as the
baseline.

Semantic Segmentation on ADE20K We use the codes released by the authors. We keep all
other settings unchanged while only modify the upsampling stages. For SegFormer2, we use the
B1 baseline. In SegFormer, the feature maps of 3 different scales are finally concatenated, and we
apply ×2 upsampling for 3 + 2 + 1 = 6 times. For MaskFormer3 and Mask2Former4 with the FPN
architecture, we use Swin-Base model pretrained on ImageNet-22K as the backbone, and they have 3
and 1 upsampling stages, respectively.

Object Detection on MS COCO We use the Faster R-CNN model implemented by mmdetection5.
We keep all settings unchanged and only modify the upsampling stages in FPN.

Monocular Depth Estimation on NYU Depth V2 We use the code provided by BTS6 and set the
batch size as 4. Considering that the last upsampling stage does not have a guided high-resolutin
encoder feature map, we only modify the other stages when comparing different upsampling operators.
In this model the encoder and decoder feature dimensions are different, so SAPA-I is not supported.

Image Matting on Adobe Composition-1K We use the code provided by A2U matting7. Max-
pooling with kernel size 2 and stride 2 is used at all downsampling stages. And then we modify only
the upsampling stages.

S4 CUDA Implementation for SAPA

Since there is no standard library in PyTorch that supports our operations. If PyTorch is used, the
unfold function must be involved, which can bring much memory cost. Therefore, we provide a
CUDA-based implementation, which can be found at https://github.com/poppinace/sapa.
We also provide the equivalent PyTorch code for reference, but all our experiments are conducted
based on the CUDA implementation.

2https://github.com/NVlabs/SegFormer
3https://github.com/facebookresearch/MaskFormer
4https://github.com/facebookresearch/Mask2Former
5https://github.com/open-mmlab/mmdetection
6https://github.com/cleinc/bts
7https://github.com/dongdong93/a2u_matting

3

https://github.com/poppinace/sapa


Encoder feature Decoder feature Upsampling kernel SAPA-upsampled feature Bilinearly upsampled feature

Figure S4: Visualizations of intermediate processes of SAPA.

4


	Output visualizations of different upsampling operators on reported tasks
	Additional visualizations of the intermediate process of SAPA
	Implementation details
	CUDA Implementation for SAPA

