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A Access to Our Dataset1

Our datasets can be accessed at https://github.com/rsCPSyEu/OSOD-III.git.2

B Details of the Datasets3

We used three datasets in our experiments, i.e., Open Images dataset [10], Caltech-UCSD Birds-4

200-2011 (CUB200) [16], and Mapillary Traffic Sign Dataset (MTSD) [3]. Tables 4, 5, and 65

show their splits, based on which known/unknown classes are selected, and also those of train-6

ing/validation/testing images. Tables 7, 8, and 9 provide lists of the classes for each split. Please7

check Sec 4.1.1 in the main paper as well.8

Table 4: Details of the employed class splits for Open Images dataset. We treat one of the four
as a known set and the union of the other three as an unknown set. Thus, there are four cases of
known/unknown splits, for each of which we report the detection performance in Table 10.

Animal Vehicle
Split1 Split2 Split3 Split4 Split1 Split2 Split3 Split4

num of known categories 24 24 24 24 6 6 6 6

train images 44, 379 38, 914 39, 039 18, 478 43, 270 26, 860 3, 900 6, 300

validation images 1, 104 2, 353 1, 248 849 1, 370 503 178 322

test images 15, 609 6, 991

Table 5: Details of the employed class splits for Caltech-UCSD Birds-200-2011 (CUB200) dataset.
We treat the union of three of the four as known classes and the rest as unknown classes. Each split
corresponds to the results shown in Table 11.

Split1 Split2 Split3 Split4
num of unknown classes 50 50 50 50

train images 4, 109 4, 116 4, 120 4, 120

validation images 500 500 500 500

test images 5, 794
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Table 6: Details of the employed class splits for Mapillary Traffic Sign Dataset (MTSD). Each split
corresponds to the results shown in Table 12.

Unknown1 Unknown2 Unknown1+2
num of classes 55 115 170

train images 13, 157

validation images 1, 000

test images 3, 896

Table 7: Classes contained in the employed splits for Open Images [10] with the super-classes
“Animal” (first column) and “Vehicle” (second column), respectively.

Animal Vehicle

Split1
(24/6)

Starfish / Deer / Tick / Lynx /
Monkey / Squirrel / Koala / Fox /

Spider / Scorpion / Rabbit / Hamster /
Woodpecker / Snail / Brown bear / Polar bear /

Lion / Bull / Shrimp / Panda /
Chicken / Sparrow / Cattle / Lobster

Bicycle / Golf cart /
Van / Taxi /

Airplane / Motorcycle

Split2
(24/6)

Sea lion / Mule / Lizard / Raccoon /
Butterfly / Hippopotamus / Kangaroo / Frog /

Harbor seal / Red panda / Antelope / Ant /
Sheep / Dog / Magpie / Teddy bear /

Oyster / Otter / Seahorse / Caterpillar /
Worm / Zebra / Jaguar (Animal) / Rays and skates

Train / Truck /
Barge / Gondola /

Rocket / Bus

Split3
(24/6)

Tortoise / Skunk / Blue jay / Rhinoceros /
Turkey / Falcon / Dinosaur / Bat (Animal) /

Squid / Giraffe / Owl / Armadillo /
Swan / Duck / Goose / Camel /
Horse / Tiger / Goldfish / Cat /
Shark / Parrot / Leopard / Goat

Submarine / Jet ski /
Unicycle / Snowmobile /

Cart / Tank

Split4
(24/6)

Dragonfly / Ladybug / Raven / Penguin /
Hedgehog / Mouse / Snake / Jellyfish /

Porcupine / Ostrich / Elephant / Dolphin /
Alpaca / Crab / Eagle / Isopod /

Cheetah / Sea turtle / Whale / Bee /
Canary / Pig / Crocodile / Centipede

Canoe / Helicopter /
Wheelchair / Ambulance /

Segway / Limousine
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Table 8: Classes contained in the employed splits for CUB200 [16].

Split1

(50)

Black footed Albatross / Laysan Albatross / Least Auklet / Red winged Blackbird / Yellow headed Blackbird /

Indigo Bunting / Spotted Catbird / Brandt Cormorant / Red faced Cormorant / Shiny Cowbird /

Brown Creeper / Yellow billed Cuckoo / Purple Finch / Acadian Flycatcher / Scissor tailed Flycatcher /

Vermilion Flycatcher / Western Grebe / Ivory Gull / Ruby throated Hummingbird / Rufous Hummingbird /

Green Jay / Belted Kingfisher / Pied Kingfisher / Pacific Loon / Mallard /

Western Meadowlark / Orchard Oriole / Scott Oriole / Whip poor Will / Loggerhead Shrike /

Great Grey Shrike / Brewer Sparrow / Grasshopper Sparrow / Henslow Sparrow / Le Conte Sparrow /

Cape Glossy Starling / Bank Swallow / Tree Swallow / Common Tern / Least Tern /

Philadelphia Vireo / Wilson Warbler / Pileated Woodpecker / Red bellied Woodpecker / Red cockaded Woodpecker /

Bewick Wren / Marsh Wren / Rock Wren / Winter Wren / Common Yellowthroat

Split2

(50)

Groove billed Ani / Crested Auklet / Parakeet Auklet / Bobolink / Lazuli Bunting /

Gray Catbird / Fish Crow / Gray crowned Rosy Finch / Least Flycatcher / Gadwall /

Blue Grosbeak / Heermann Gull / Ring billed Gull / Slaty backed Gull / Green Violetear /

Pomarine Jaeger / Red breasted Merganser / Mockingbird / White breasted Nuthatch / Baltimore Oriole /

Western Wood Pewee / American Pipit / Geococcyx / Baird Sparrow / House Sparrow /

Field Sparrow / Seaside Sparrow / Vesper Sparrow / White throated Sparrow / Cliff Swallow /

Scarlet Tanager / Summer Tanager / Elegant Tern / Forsters Tern / Green tailed Towhee /

Brown Thrasher / Blue headed Vireo / White eyed Vireo / Bay breasted Warbler / Black and white Warbler /

Golden winged Warbler / Nashville Warbler / Orange crowned Warbler / Palm Warbler / Pine Warbler /

Swainson Warbler / Tennessee Warbler / Bohemian Waxwing / American Three toed Woodpecker / Carolina Wren

Split3

(50)

Sooty Albatross / Rhinoceros Auklet / Brewer Blackbird / Rusty Blackbird / Painted Bunting /

Cardinal / Chuck will Widow / Pelagic Cormorant / Bronzed Cowbird / American Crow /

Mangrove Cuckoo / Yellow bellied Flycatcher / Northern Fulmar / European Goldfinch / Boat tailed Grackle /

Horned Grebe / Evening Grosbeak / Pigeon Guillemot / Herring Gull / Western Gull /

Anna Hummingbird / Long tailed Jaeger / Gray Kingbird / Green Kingfisher / Horned Lark /

Clark Nutcracker / Brown Pelican / Sayornis / Common Raven / White necked Raven /

Black throated Sparrow / Chipping Sparrow / Clay colored Sparrow / Fox Sparrow / Savannah Sparrow /

White crowned Sparrow / Barn Swallow / Black Tern / Caspian Tern / Sage Thrasher /

Red eyed Vireo / Cape May Warbler / Chestnut sided Warbler / Kentucky Warbler / Mourning Warbler /

Prairie Warbler / Yellow Warbler / Louisiana Waterthrush / Red headed Woodpecker / Cactus Wren

Split4

(50)

Yellow breasted Chat / Eastern Towhee / Black billed Cuckoo / Northern Flicker / Great Crested Flycatcher /

Olive sided Flycatcher / Frigatebird / American Goldfinch / Eared Grebe / Pied billed Grebe /

Pine Grosbeak / Rose breasted Grosbeak / California Gull / Glaucous winged Gull / Blue Jay /

Florida Jay / Dark eyed Junco / Tropical Kingbird / Ringed Kingfisher / White breasted Kingfisher /

Red legged Kittiwake / Hooded Merganser / Nighthawk / Hooded Oriole / Ovenbird /

White Pelican / Horned Puffin / American Redstart / Harris Sparrow / Lincoln Sparrow /

Nelson Sharp tailed Sparrow / Song Sparrow / Tree Sparrow / Artic Tern / Black capped Vireo /

Warbling Vireo / Yellow throated Vireo / Black throated Blue Warbler / Blue winged Warbler / Canada Warbler /

Cerulean Warbler / Hooded Warbler / Magnolia Warbler / Myrtle Warbler / Prothonotary Warbler /

Worm eating Warbler / Northern Waterthrush / Cedar Waxwing / Downy Woodpecker / House Wren
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Table 9: Classes contained in the Unknown1 and Unkonwn2 splits of MTSD [3]. The rest are treated
as known classes.

Unknown1

(55)

complementary–chevron-left–g1 / complementary–chevron-right–g1 /

complementary–maximum-speed-limit-20–g1 / complementary–maximum-speed-limit-25–g1 /

complementary–maximum-speed-limit-30–g1 / complementary–maximum-speed-limit-35–g1 /

complementary–maximum-speed-limit-40–g1 / complementary–maximum-speed-limit-45–g1 /

complementary–maximum-speed-limit-50–g1 / complementary–maximum-speed-limit-55–g1 /

complementary–maximum-speed-limit-70–g1 / complementary–maximum-speed-limit-75–g1 /

information–highway-exit–g1 / information–safety-area–g2 /

regulatory–detour-left–g1 / regulatory–keep-right–g6 /

regulatory–no-overtaking–g5 / regulatory–weight-limit-with-trucks–g1 /

warning–accidental-area-unsure–g2 / warning–bus-stop-ahead–g3 /

warning–curve-left–g2 / warning–curve-right–g2 /

warning–domestic-animals–g3 / warning–double-curve-first-left–g2 /

warning–double-curve-first-right–g2 / warning–double-turn-first-right–g1 /

warning–falling-rocks-or-debris-right–g2 / warning–falling-rocks-or-debris-right–g4 /

warning–hairpin-curve-left–g1 / warning–hairpin-curve-right–g1 /

warning–hairpin-curve-right–g4 / warning–horizontal-alignment-left–g1 /

warning–horizontal-alignment-right–g1 / warning–horizontal-alignment-right–g3 /

warning–junction-with-a-side-road-acute-right–g1 / warning–junction-with-a-side-road-perpendicular-left–g3 /

warning–junction-with-a-side-road-perpendicular-right–g3 / warning–kangaloo-crossing–g1 /

warning–loop-270-degree–g1 / warning–narrow-bridge–g1 /

warning–offset-roads–g3 / warning–railroad-crossing-with-barriers–g2 /

warning–railroad-intersection–g4 / warning–road-widens–g1 /

warning–road-widens-right–g1 / warning–slippery-motorcycles–g1 /

warning–slippery-road-surface–g2 / warning–steep-ascent–g7 /

warning–trucks-crossing–g1 / warning–turn-left–g1 /

warning–turn-right–g1 / warning–winding-road-first-left–g1 /

warning–winding-road-first-right–g1 / warning–wombat-crossing–g1 / warning–y-roads–g1 /

Unknown2

(115)

complementary–both-directions–g1 / complementary–chevron-right–g3 / complementary–go-left–g1 /

complementary–go-right–g1 / complementary–go-right–g2 / complementary–keep-left–g1 /

complementary–keep-right–g1 / complementary–maximum-speed-limit-15–g1 / complementary–one-direction-left–g1 /

complementary–one-direction-right–g1 / complementary–turn-left–g2 / complementary–turn-right–g2 /

information–airport–g2 / information–bike-route–g1 / information–camp–g1 /

information–gas-station–g1 / information–highway-interstate-route–g2 / information–hospital–g1 /

information–interstate-route–g1 / information–lodging–g1 / information–parking–g3 /

information–parking–g6 / information–trailer-camping–g1 / regulatory–bicycles-only–g2 /

regulatory–bicycles-only–g3 / regulatory–do-not-block-intersection–g1 / regulatory–do-not-stop-on-tracks–g1 /

regulatory–dual-lanes-go-straight-on-left–g1 / regulatory–dual-lanes-go-straight-on-right–g1 / regulatory–dual-lanes-turn-left-no-u-turn–g1 /

regulatory–dual-lanes-turn-left-or-straight–g1 / regulatory–dual-lanes-turn-right-or-straight–g1 / regulatory–go-straight–g3 /

regulatory–go-straight-or-turn-left–g2 / regulatory–go-straight-or-turn-left–g3 / regulatory–go-straight-or-turn-right–g3 /

regulatory–keep-right–g4 / regulatory–lane-control–g1 / regulatory–left-turn-yield-on-green–g1 /

regulatory–maximum-speed-limit-100–g3 / regulatory–maximum-speed-limit-25–g2 / regulatory–maximum-speed-limit-30–g3 /

regulatory–maximum-speed-limit-35–g2 / regulatory–maximum-speed-limit-40–g3 / regulatory–maximum-speed-limit-40–g6 /

regulatory–maximum-speed-limit-45–g3 / regulatory–maximum-speed-limit-50–g6 / regulatory–maximum-speed-limit-55–g2 /

regulatory–maximum-speed-limit-65–g2 / regulatory–no-left-turn–g1 / regulatory–no-parking–g2 /

regulatory–no-parking-or-no-stopping–g1 / regulatory–no-parking-or-no-stopping–g2 / regulatory–no-parking-or-no-stopping–g3 /

regulatory–no-right-turn–g1 / regulatory–no-stopping–g2 / regulatory–no-stopping–g4 /

regulatory–no-straight-through–g1 / regulatory–no-turn-on-red–g1 / regulatory–no-turn-on-red–g2 /

regulatory–no-turn-on-red–g3 / regulatory–no-turns–g1 / regulatory–no-u-turn–g1 /

regulatory–one-way-left–g2 / regulatory–one-way-left–g3 / regulatory–one-way-right–g2 /

regulatory–one-way-right–g3 / regulatory–parking-restrictions–g2 / regulatory–pass-on-either-side–g2 /

regulatory–passing-lane-ahead–g1 / regulatory–reversible-lanes–g2 / regulatory–road-closed–g2 /

regulatory–roundabout–g2 / regulatory–stop–g1 / regulatory–stop-here-on-red-or-flashing-light–g1 /

regulatory–stop-here-on-red-or-flashing-light–g2 / regulatory–text-four-lines–g1 / regulatory–triple-lanes-turn-left-center-lane–g1 /

regulatory–truck-speed-limit-60–g1 / regulatory–turn-left–g2 / regulatory–turn-right–g3 /

regulatory–turning-vehicles-yield-to-pedestrians–g1 / regulatory–wrong-way–g1 / warning–added-lane-right–g1 /

warning–bicycles-crossing–g2 / warning–bicycles-crossing–g3 / warning–divided-highway-ends–g2 /

warning–double-reverse-curve-right–g1 / warning–dual-lanes-right-turn-or-go-straight–g1 / warning–emergency-vehicles–g1 /

warning–equestrians-crossing–g2 / warning–flaggers-in-road–g1 / warning–height-restriction–g2 /

warning–junction-with-a-side-road-perpendicular-left–g4 / warning–pass-left-or-right–g2 / warning–pedestrians-crossing–g4 /

warning–pedestrians-crossing–g9 / warning–playground–g1 / warning–playground–g3 /

warning–railroad-crossing–g1 / warning–railroad-intersection–g3 / warning–road-narrows-left–g2 /

warning–road-narrows-right–g2 / warning–roundabout–g25 / warning–school-zone–g2 /

warning–shared-lane-motorcycles-bicycles–g1 / warning–stop-ahead–g9 / warning–texts–g1 /

warning–texts–g2 / warning–texts–g3 / warning–traffic-merges-right–g1 /

warning–traffic-signals–g3 / warning–trail-crossing–g2 / warning–two-way-traffic–g2 /
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C More Details of Experimental Settings9

We provide a comprehensive description of the experimental configurations utilized in the evaluation10

of our main paper.11

C.1 Training12

We train the models using the SGD optimizer with the batch size of 16 on 8 A100 GPUs. The number13

of epochs is 12, 80, and 60 for OpenImages, CUB200, and MTSD, respectively. We use the initial14

learning rate of 2.0 × 10−2 with momentum = 0.9 and weight decay = 1.0 × 10−4. We drop a15

learning rate by a factor of 10 at 2/3 and 11/12 epoch. For Open Images and CUB200, we follow16

a common multi-scale training and resize the input images such that their shorter side is between17

480 and 800, while the longer side is 1333 or less. At the inference time, we set the shorter side of18

input images to 800 and the longer side to less or equal to 1333. For MTSD, we apply similar scaling19

strategies to Open Images and CUB200 (i.e., multi-scale training and single-scale testing) but the20

scaling scheme; namely, the input size is doubled, e.g., the shorter side is between 960 and 1600 at21

training time. This aims to improve detection accuracy for the small-sized objects that frequently22

appear in MTSD.23

We used the publicly available source code for the implementation of ORE1 [9], Dropout Sampling24

(DS)2 [12], VOS3 [2], and OpenDet4 [7]. We used mmdetection5 [1] for FCOS [15] and detectron2625

for Faster RCNN [14] to implement the baseline methods, respectively.26

C.2 Experimental Configurations for Compared Methods27

As mentioned in Sec 4.2 of the main paper, our experiments involve four OSOD methods. Although28

these methods were originally developed for OSOD-II, they can be applied to OSOD-III without any29

modification. We provide a summary of their methods and present the corresponding configurations.30

ORE (Open World Object Detector) [9] is initially designed for OWOD; it is capable not only of31

detecting unknown objects but also of incremental learning. We omit the latter capability and use the32

former as an open-set object detector. It employs an energy-based method to classify known/unknown;33

using the validation set, including unknown object annotations, it models the energy distributions for34

known and unknown objects. To compute AP for unknown objects, we use a detection score that35

ORE provides. Following the original paper [9], we employ Faster RCNN [14] with a ResNet5036

backbone [8] for the base detector.37

DS (Dropout Sampling) [12] uses the entropy of class scores to discriminate known and unknown38

categories. Specifically, during the inference phase, it employs a dropout layer [5] right before39

computing class logits and performs inference n iterations. If the entropy of the average class logits40

over these iterations exceeds a threshold, the detected instance is assigned to the unknown category.41

The top-1 class score, calculated from the averaged class logits, is employed as the unknown score42

for computing unknown AP. Our base detector is Faster RCNN with ResNet50-FPN backbone [11].43

Following the implementation of [7], we set the number of inference iterations n to 30, the entropy44

threshold γds to 0.25, and the dropout layer parameter p to 0.5, respectively.45

VOS (Virtual Outlier Synthesis) [2] detects unknown objects by treating them as out-of-distribution46

(OOD) based on an energy-based method. Specifically, it estimates an energy value for each detected47

instance and judges whether it is known or unknown by comparing the energy with a threshold.48

1https://github.com/JosephKJ/OWOD.git
2https://github.com/csuhan/opendet2.git
3https://github.com/deeplearning-wisc/vos.git
4https://github.com/csuhan/opendet2.git
5https://github.com/open-mmlab/mmdetection.git
6https://github.com/facebookresearch/detectron2
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Table 10: Detection accuracy of known (APknown) and unknown objects (APunk) of different
methods for Open Images dataset, “Animal” and “Vehicle” super-classes. “Split-n” indicates that the
classes of Split-n are treated as known classes. “mean” is their average that is also shown in Table 3
in the main paper.

Animal
Split1 Split2 Split3 Split4 mean

APknown APunk APknown APunk APknown APunk APknown APunk APknown APunk

ORE [9] 40.4 17.4 34.8 13.0 40.4 19.1 34.8 13.0 37.6± 2.8 15.6± 2.7

DS [12] 44.0 19.0 36.8 12.3 43.3 14.0 40.2 14.6 41.1± 2.9 15.0± 2.5

VOS [2] 39.5 17.5 37.5 13.9 43.1 14.7 37.9 18.1 39.5± 2.2 16.0± 1.8

OpenDet [7] 42.4 34.9 23.2 25.8 43.0 37.9 39.0 33.5 36.9± 8.1 33.0± 4.5

FCOS [15] 35.0 44.4 30.8 35.6 32.6 43.7 22.6 43.6 30.3± 4.7 41.8± 3.6

Faster RCNN [14] 41.8 36.9 34.0 29.5 39.7 37.7 35.5 37.0 37.8± 3.1 35.3± 3.9

Vehicle
Split1 Split2 Split3 Split4 mean

APknown APunk APknown APunk APknown APunk APknown APunk APknown APunk

ORE [9] 46.9 0.5 35.0 0.1 25.0 0.2 27.7 0.3 33.7± 8.5 0.3± 0.1

DS [12] 52.6 0.5 40.7 2.3 31.9 6.5 35.1 1.4 40.1± 7.9 2.7± 2.3

VOS [2] 53.2 7.4 41.9 7.1 32.8 9.4 35.7 12.6 40.9± 7.8 9.1± 2.2

OpenDet [7] 50.6 10.2 40.4 12.5 30.2 15.9 33.6 19.0 38.7± 7.8 14.4± 3.3

FCOS [15] 49.6 14.2 32.7 14.6 19.2 24.7 21.4 21.3 30.7± 12.0 18.7± 4.5

Faster RCNN [14] 51.0 10.5 42.0 15.2 31.0 22.1 35.7 20.2 39.9± 8.7 17.0± 5.2

Table 11: Detection accuracy for CUB200 [16]. See Table 10 for notations.

Split1 Split2 Split3 Split4 mean
APknown APunk APknown APunk APknown APunk APknown APunk APknown APunk

ORE [9] 51.3 18.1 53.6 21.8 54.4 17.7 53.6 21.6 53.2± 1.3 19.8± 2.2

DS [12] 61.7 19.6 61.2 22.2 62.8 22.2 60.4 21.8 61.5± 0.9 21.5± 1.1

VOS [2] 59.7 8.1 59.5 9.1 60.5 8.1 57.7 9.5 59.4± 1.0 8.7± 0.6

OpenDet [7] 63.9 23.1 63.6 30.0 63.9 26.3 61.6 28.6 63.3± 1.1 27.0± 3.0

FCOS [15] 55.0 23.0 55.2 26.1 50.6 25.0 53.0 24.6 53.5± 2.1 24.7± 1.3

Faster RCNN [14] 62.0 21.6 62.7 26.2 63.2 24.0 60.8 24.8 62.2± 1.0 24.2± 1.9

We use the energy value to compute unknown AP. We choose Faster RCNN with ResNet50-FPN49

backbone [11], following the paper.50

OpenDet (Open-set Detector) [7] is the current state-of-the-art on the popular benchmark test51

designed using PASCAL VOC/COCO shown in Table 2, although the methods’ performance is52

evaluated with inappropriate metrics of A-OSE and WI. OpenDet provides a detection score for53

unknown objects, which we utilize to compute AP. We use the authors’ implementation, which54

employs Faster RCNN based on ResNet50-FPN for the base detector.55

D Additional Experimental Results56

D.1 Detection Accuracy for Individual Splits57

Tables 10, 11, and 12 show detection accuracy of known APknown and unknown APunk for each58

split and their averages. The classes denoted as “Split-n” and “Unknown-n” in the results correspond59

to the class sets specified in Tables 7, 8, and 9.60

D.2 Results of H-score61

To facilitate easier comparisons of detection accuracy, we report H-score [4] as a comprehensive62

evaluation metric. H-score was originally designed in open-set recognition (OSR) task as a harmonic63

mean of known and unknown categories. We adopt this metric to object detection, calculating a64

harmonic mean of average precision (AP) for these two distinct categories. Tables 13, 14, and 1565

show the results for each split and their averages with the standard deviations.66

From the results, we notice similar trends as those deduced from separated APknown and APunk67

evaluations. Yet, these trends become more distinct, offering a clearer understanding. Our baselines68
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Table 12: Detection accuracy for MTSD [3]. K, U1, and U2 stand for the splits of Known, Unknown1,
and Unknown2, respectively.

K U1 U2 U1+2 mean
APknown APunk

ORE [9] 41.2 0.4 0.2 0.7 0.4± 0.3

DS [14] 50.4 4.5 3.4 7.5 5.1± 1.7

VOS [2] 49.1 4.6 2.9 6.5 4.7± 1.5

OpenDet [7] 51.8 8.7 6.7 14.2 9.9± 3.9

FCOS [15] 41.7 3.8 3.3 6.2 4.4± 1.6

Faster RCNN [14] 50.0 2.5 2.3 4.4 3.1± 1.2

Table 13: H-scores for for Open Images dataset [10], “Animal” and “Vehicle” super-classes. See
Table 10 for notations.

Animal
Split1 Split2 Split3 Split4 mean

ORE [9] 24.3 18.9 25.9 18.9 22.0± 3.2

DS [12] 26.5 18.4 21.2 21.4 21.9± 2.9

VOS [2] 24.3 20.3 21.9 24.5 22.7± 1.7

OpenDet [7] 38.3 24.4 40.3 36.0 34.8± 6.2

FCOS [15] 39.1 33.0 37.3 29.8 34.8± 3.7

Faster RCNN [14] 39.2 31.6 38.7 36.2 36.4± 3.0

Vehicle
Split1 Split2 Split3 Split4 mean

ORE [9] 1.0 0.2 0.4 0.6 0.5± 0.3

DS [12] 1.0 4.4 10.8 2.7 4.7± 3.7

VOS [2] 13.0 12.1 14.6 18.6 14.6± 2.5

OpenDet [7] 17.0 19.1 20.8 24.3 20.3± 2.7

FCOS [15] 22.1 20.2 21.6 21.3 21.3± 0.7

Faster RCNN [14] 17.4 22.3 25.8 25.8 22.8± 3.4

and OpenDet attain comparably better performances than other methods. Nonetheless, the resulting69

H-scores do not reach notably high values. This is attributed to the inferior performances of APunk,70

largely deteriorate the harmonic mean of the known and unknown APs.71

D.3 Results of A-OSE and WI72

In this study, we use the average precision for unknown object detection, denoted by APunk, as a73

primary metric to evaluate OSOD methods, as reported in Table 3 in the main paper. For the readers’74

information, we report here absolute open-set error (A-OSE) and wilderness impact (WI), the metrics75

widely used in previous studies. Tables 16, 17, and 18 show those for the compared methods on the76

same test data. Recall that i) A-OSE and WI measure only detectors’ performance of known object77

detection; and ii) they evaluate detectors’ performance at a single operating point. Tables 16, 17,78

and 18 show the results at the operating points chosen in the previous studies, i.e., confidence score79

> 0.05 for A-OSE and the recall (of known object detection) = 0.8 for WI, respectively.80

The results show that OpenDet and Faster RCNN achieve comparable performance on both metrics.81

FCOS performs worse, but this is not necessarily true at different operating points, as shown in Fig. 382

of the main paper. We can also see from the results a clear inconsistency between the A-OSE/WI and83

APs. For instance, as shown in Table 17, Faster RCNN is inferior to ORE in both the A-OSE and WI84

metrics (i.e., 6, 382± 206 vs. 4, 849± 206 on A-OSE), whereas it achieves much better APknown85

and APunk than ORE, as shown in Table 11. Such inconsistency demonstrates that A-OSE and WI86

are unsuitable performance measures for OSOD-II/III.87
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Table 14: H-scores for CUB200 [16]. See Table 11 for notations.

Split1 Split2 Split3 Split4 mean
ORE [9] 26.8 31.0 26.7 30.8 28.8± 2.1

DS [12] 29.7 32.6 32.8 32.0 31.8± 1.2

VOS [2] 14.3 15.8 14.3 16.3 15.2± 0.9

OpenDet [7] 33.9 40.8 37.3 39.1 37.8± 2.5

FCOS [15] 32.4 35.4 33.5 33.6 33.7± 1.1

Faster RCNN [14] 32.0 37.0 34.8 35.2 34.8± 1.8

Table 15: H-scores for MTSD [3]. See Table 12 for notations.

U1 U2 U1+2 mean
ORE [9] 0.8 0.4 1.4 0.9± 0.4

DS [12] 8.3 6.4 13.1 9.2± 2.8

VOS [2] 8.4 5.5 111.5 8.5± 2.5

OpenDet [7] 14.9 11.9 22.3 16.4± 4.4

FCOS [15] 7.0 6.1 10.8 8.0± 2.0

Faster RCNN [14] 4.8 4.4 8.1 5.7± 1.7

Table 16: A-OSE and WI of the compared methods in the experiment of Open Images. The same
experimental setting as Table 10 is used.

Animal
Split1 Split2 Split3 Split4 mean

A-OSE WI A-OSE WI A-OSE WI A-OSE WI A-OSE WI
ORE[9] 23, 334 35.9 17, 835 30.8 22, 219 45.3 25, 682 47.0 22, 268± 2, 848 39.7± 6.7

DS[12] 44, 377 44.6 28, 483 38.6 39, 592 53.6 42, 654 63.6 38, 776± 6, 185 50.1± 9.4

VOS [2] 12, 124 34.8 21, 622 36.6 30, 988 50.9 23, 360 62.1 22, 024± 6, 714 46.1± 11.2

OpenDet[7] 26, 426 34.9 22, 736 27.7 25, 075 45.6 26, 770 56.1 25, 252± 1, 585 41.1± 10.7

FCOS [15] 38, 858 35.5 34, 677 37.6 52, 234 59.4 30, 895 49.5 39, 166± 8, 053 45.5± 9.6

Faster RCNN [14] 14, 625 30.9 11, 121 27.0 15, 745 46.8 16, 260 56.7 14, 438± 2, 314 40.4± 13.8

Vehicle
Split1 Split2 Split3 Split4 mean

A-OSE WI A-OSE WI A-OSE WI A-OSE WI A-OSE WI
ORE [9] 3, 143 17.6 3, 775 21.5 4, 483 33.7 6, 654 26.5 4, 514± 1, 323 24.9± 6.0

DS [12] 4, 809 22.7 10, 617 37.3 16, 568 53.6 12, 107 34.7 11, 025± 4, 204 37.1± 11.0

VOS [2] 1, 460 12.0 1, 985 23.9 1, 796 38.3 3, 090 20.9 2, 083± 611 23.8± 9.5

OpenDet [7] 3, 857 19.8 5, 640 25.5 10, 131 52.1 8, 893 30.4 7, 130± 2, 502 31.9± 12.2

FCOS [15] 7, 700 26.4 10, 888 33.7 15, 395 55.7 22, 502 34.8 14, 121± 5, 558 37.6± 10.9

Faster RCNN [14] 3, 487 20.7 4, 291 25.4 6, 138 57.1 7, 760 31.7 5, 444± 1, 956 33.7± 16.2

Table 17: A-OSE and WI of the compared methods in the experiment of CUB200. The same
experimental setting as Table 11 is used.

Split1 Split2 Split3 Split4 mean
A-OSE WI A-OSE WI A-OSE WI A-OSE WI A-OSE WI

ORE[9] 5, 001 22.6 4, 836 22.4 4, 562 24.1 4, 998 19.3 4, 849± 206 22.1± 2.0

DS[12] 3, 231 17.4 3, 567 20.4 3, 356 21.8 3, 301 16.8 3, 363± 125 19.1± 2.1

VOS [2] 4, 681 20.3 4, 535 21.0 4, 763 22.5 3, 681 18.5 4, 415± 498 20.6± 1.6

OpenDet[7] 4, 384 18.6 4, 746 21.1 4, 426 22.6 4, 602 18.0 4, 539± 167 20.1± 2.2

FCOS [15] 15, 421 24.1 18, 334 27.8 21, 377 25.8 16, 822 24.6 17, 988± 2, 553 25.6± 1.6

Faster RCNN [14] 5, 898 22.1 6, 732 24.0 6, 289 24.5 6, 612 20.0 6, 382± 206 22.7± 3.7

Table 18: A-OSE and WI of the compared methods in the experiments of MTSD. The same setting
is used as Table 12.

U1 U2 U1+2 mean
A-OSE WI A-OSE WI A-OSE WI A-OSE WI

ORE[9] 1, 711 5.5 2, 050 7.0 3, 283 11.7 2, 348± 827 8.0± 3.3

DS[12] 1, 658 6.9 2, 084 8.4 3, 742 15.3 2, 495± 899 10.2± 3.7

VOS [2] 1, 260 5.4 2, 003 8.9 3, 263 14.3 2, 175± 1, 013 9.5± 4.5

OpenDet[7] 722 3.8 1, 146 7.8 1, 868 11.6 1, 245± 579 7.8± 3.9

FCOS[15] 4, 897 5.7 7, 086 7.1 11, 983 12.8 7, 989± 3, 628 8.5± 3.8

Faster RCNN[14] 1, 144 5.5 1, 702 7.7 2, 846 13.2 1, 897± 868 8.8± 4.0

8



Table 19: Results of the FCOS baseline with different values of γ for each dataset. The numbers
represent APknown / APunk / WI. OI(A) and OI(V) indicate Open Images for Animal classes and
Vehicle classes, respectively.

Data \γ 1.5 2.0 3.0 4.0 5.0 10.0 15.0 50.0
OI(A) 30.4 / 30.2 / 54.9 30.2 / 34.8 / 49.9 30.2 / 39.5 / 47.3 30.2 / 41.8 / 45.5 29.6 / 43.0 / 44.3 25.1 / 44.2 / 34.7 18.9 / 43.9 / 26.2 2.3 / 40.6 / 4.8

OI(V) 30.4 / 12.9 / 38.8 30.4 / 14.8 / 37.3 30.6 / 17.2 / 38.1 30.7 / 18.7 / 37.6 30.8 / 19.7 / 35.9 29.9 / 21.9 / 26.7 26.2 / 22.0 / 24.0 11.4 / 20.2 / 24.5

CUB200 53.4 / 24.7 / 25.6 51.5 / 24.6 / 23.9 46.9 / 23.3 / 19.7 43.1 / 22.2 / 16.2 39.8 / 21.3 / 13.9 28.2 / 19.8 / 8.0 20.2 / 19.7 / 6.2 3.3 / 19.7 / 2.4

MTSD 41.7 / 4.4 / 8.5 39.5 / 5.2 / 9.5 36.7 / 6.0 / 10.4 34.3 / 6.3 / 8.5 32.3 / 6.5 / 7.6 25.4 / 6.4 / 4.1 21.6 / 6.2 / 3.4 8.6 / 5.5 / 0.7

Table 20: Results of the Faster RCNN baseline with different values of γ and T for each dataset. See
Table 19 for notations.

Open Images (Animal)
T \γ 1.5 2.0 3.0 4.0 5.0 10.0 15.0 50.0
0.5 32.5 / 8.4 / 60.6 32.5 / 11.8 / 60.5 32.5 / 15.0 / 60.2 32.4 / 16.6 / 60.0 32.4 / 17.6 / 59.9 32.2 / 20.1 / 59.4 32.1 / 21.0 / 59.3 31.6 / 23.6 / 59.1

0.8 39.5 / 17.6 / 54.6 39.5 / 21.4 / 54.2 39.4 / 24.3 / 53.6 39.2 / 25.8 / 53.0 39.0 / 26.8 / 52.6 38.4 / 29.4 / 50.8 37.9 / 30.8 / 49.0 37.0 / 34.0 / 46.4

1.0 40.6 / 22.7 / 51.1 40.5 / 25.9 / 50.5 40.0 / 28.5 / 49.3 39.6 / 30.1 / 47.9 39.3 / 31.3 / 46.6 38.4 / 33.9 / 42.6 37.8 / 35.3 / 40.4 36.2 / 37.6 / 35.7

2.0 38.5 / 22.4 / 27.9 36.9 / 24.5 / 27.3 34.5 / 26.2 / 25.1 31.8 / 26.6 / 24.1 28.4 / 26.3 / 20.9 9.8 / 23.4 / 11.1 2.3 / 22.7 / 4.1 0.0 / 22.7 / 0.0

3.0 20.0 / 15.5 / 14.9 14.3 / 16.8 / 17.9 3.6 / 16.1 / 9.0 0.1 / 15.7 / 0.0 0.0 / 15.7 / 0.0 0.0 / 15.7 / 0.0 0.0 / 15.7 / 0.0 0.0 / 15.7 / 0.0

Open Images (Vehicle)
T \γ 1.5 2.0 3.0 4.0 5.0 10.0 15.0 50.0
0.5 33.2 / 2.1 / 46.2 33.2 / 3.2 / 46.0 33.2 / 4.1 / 46.0 33.2 / 4.8 / 46.1 33.2 / 5.1 / 45.9 33.2 / 6.1 / 45.9 33.2 / 6.7 / 45.9 33.2 / 7.9 / 45.6

0.8 39.8 / 5.9 / 40.7 39.8 / 7.6 / 40.4 39.8 / 9.1 / 40.2 39.8 / 10.0 / 40.0 39.8 / 10.6 / 39.7 39.7 / 12.2 / 39.1 39.6 / 13.1 / 38.8 39.5 / 15.2 / 37.8

1.0 40.4 / 9.0 / 37.2 40.4 / 10.8 / 36.9 40.3 / 12.4 / 36.8 40.3 / 13.4 / 36.3 40.3 / 14.1 / 36.1 40.1 / 16.1 / 34.4 39.9 / 17.0 / 33.7 39.4 / 19.4 / 30.8

2.0 40.3 / 15.5 / 27.0 40.0 / 17.9 / 25.3 39.1 / 20.3 / 21.5 37.3 / 21.1 / 19.7 34.9 / 21.1 / 13.7 13.6 / 18.5 / 12.0 1.8 / 17.9 / 7.6 0.0 / 17.9 / 0.0

3.0 13.0 / 17.1 / 6.7 7.2 / 19.5 / 13.7 3.8 / 17.9 / 9.2 0.0 / 17.5 / 0.0 0.0 / 17.5 / 0.0 0.0 / 17.5 / 0.0 0.0 / 17.5 / 0.0 0.0 / 17.5 / 0.0

CUB200
T \γ 1.5 2.0 3.0 4.0 5.0 10.0 15.0 50.0

0.5 58.0 / 14.0 / 25.3 57.9 / 17.6 / 25.2 57.9 / 20.7 / 25.2 57.8 / 21.7 / 25.0 57.7 / 22.3 / 24.9 57.3 / 23.2 / 24.9 57.1 / 23.8 / 24.8 56.6 / 24.1 / 24.4

0.8 61.9 / 20.7 / 23.2 61.8 / 22.9 / 23.2 61.7 / 23.8 / 23.1 61.6 / 24.2 / 22.9 61.5 / 24.3 / 22.7 60.7 / 24.1 / 21.8 59.7 / 23.8 / 20.6 57.7 / 23.1 / 17.9

1.0 62.3 / 22.8 / 22.9 62.3 / 23.8 / 23.0 62.2 / 24.2 / 22.7 62.0 / 23.9 / 22.4 61.7 / 23.8 / 22.2 60.1 / 23.2 / 20.3 58.3 / 22.6 / 18.6 53.7 / 20.9 / 13.9

2.0 61.8 / 20.9 / 18.9 59.6 / 19.9 / 17.5 53.0 / 18.2 / 12.6 46.1 / 17.6 / 8.7 39.5 / 17.5 / 6.2 15.6 / 17.4 / 2.2 4.7 / 17.4 / 1.5 0.0 / 17.4 / 0.0

3.0 10.7 / 0.3 / 2.5 10.3 / 0.2 / 2.4 5.1 / 0.2 / 1.2 0.4 / 0.2 / 2.1 0.0 / 0.2 / 0.0 0.0 / 0.2 / 0.0 0.0 / 0.2 / 0.0 0.0 / 0.2 / 0.0

MTSD
T \γ 1.5 2.0 3.0 4.0 5.0 10.0 15.0 50.0

0.5 46.6 / 0.3 / 8.7 46.6 / 0.4 / 8.6 46.4 / 0.5 / 8.7 46.4 / 0.5 / 8.7 46.3 / 0.5 / 8.7 46.2 / 0.7 / 8.6 46.0 / 0.7 / 8.3 45.8 / 1.1 / 8.4

0.8 49.7 / 0.9 / 8.7 49.7 / 1.2 / 8.6 49.6 / 1.6 / 8.4 49.5 / 1.9 / 8.4 49.3 / 2.0 / 8.4 48.5 / 2.4 / 8.1 47.7 / 2.6 / 7.9 46.2 / 3.3 / 7.3

1.0 50.4 / 1.7 / 9.3 50.3 / 2.3 / 8.9 50.0 / 3.0 / 8.8 49.6 / 3.4 / 8.5 49.4 / 3.7 / 8.4 47.9 / 4.3 / 8.2 46.5 / 4.5 / 7.7 43.1 / 5.1 / 6.9

2.0 50.4 / 4.8 / 7.7 48.2 / 5.7 / 6.8 42.9 / 6.0 / 5.5 38.5 / 6.0 / 4.7 35.9 / 5.8 / 4.5 22.9 / 5.2 / 3.0 15.5 / 5.1 / 1.6 1.6 / 5.0 / 0.2

3.0 3.5 / 0.0 / 0.2 3.5 / 0.0 / 0.2 3.0 / 0.0 / 0.2 2.4 / 0.0 / 0.3 1.3 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0

D.4 Effect of Hyperparameters with the Baseline Methods88

Our baseline methods use the ratio of the top two class scores for the known/unknown classification,89

where we use the hyperparameter γ as a threshold. Tables 19 and 20 show how the choice of γ affects90

the results. We can observe that overall, while γ (and T with Faster RCNN) do affect the results,91

APknown and APunk are not very sensitive to their choice. There is a trade-off between APknown92

and APunk, since smaller γ tends to make the detectors overlook unknown objects while large γ’s93

make the detectors overlook known objects. Setting a large temperature T (> 1) with Faster RCNN94

damages performance on both APknown and APunk.95

The optimal choice of the hyperparameters depends on datasets and model architectures. The96

dependency comes from two factors. One is the difference in the output layer design, i.e., sigmoid97

(FCOS) vs. softmax (Faster RCNN). Faster RCNN employs a softmax layer to predict the confidence98

scores, while FCOS uses a sigmoid layer. Due to the winner-take-all nature of softmax, Faster RCNN99

needs a relatively larger γ to convert known predictions into unknown classes. The other is the100

number of classes in the datasets. Our configurations with CUB200 and MTSD have 150 and 230101

of known classes, respectively, which are larger than that of Open Images (e.g., 24 classes for an102

“Animal” case). The larger the number of classes is, the more uncertain the prediction will be. Thus,103

small γ is better for a small class set, and vice versa.104

D.5 Effects of Different Backbone Pretrained on a Large-Scale Data105

Considering the recent success of open vocabulary detection (OVD) [17, 6, 13], we conjecture106

that utilizing a stronger backbone pre-trained on large-scale data could potentially enhance the107

performance of open-set object detection (OSOD). Thus, we conduct experimental evaluations using108

9



such backbones on CUB200 and MTSD datasets, following the same experimental settings as above.109

Specifically, we select OpenDet, which exhibits the best performance in our previous experiments.110

OpenDet employs a ResNet50 model pre-trained on ImageNet-1K as its backbone. We replace it111

with a ResNet50 model pre-trained on ImageNet-22K and fine-tune the entire detector (i.e., OpenDet)112

on each dataset as usual.113

Table 21 shows the results, which indicate that OpenDet with the new backbone produces better114

APunk on both datasets. This supports our conjecture, while the performance gain is modest. Futher115

studies will be necessary.116

Table 21: Effects of using different backbones on OSOD-III performance. OpenDet [7] adopting
the standard backbone (ResNet50 pretrained on ImaegeNet1K) and a new backbone (ResNet50
pretrained an ImageNet22K) are compared. The average of all splits is reported.

Training IN22K
CUB200 [16] MTSD [3]

APknown APunk APknown APunk

OpenDet[7]
63.3± 1.1 27.0± 3.0 51.8 9.9± 3.9

✓ 63.8± 1.2 27.3± 3.4 51.3 11.0± 4.4

D.6 More Examples of Detection Results117

Figures 6, 7, and 8 show more detection results for the four datasets, respectively. We only show the118

bounding boxes with confidence scores > 0.3. We can observe from these results a similar tendency119

to the quantitative comparisons we provide in the main paper. That is, OpenDet and our baselines120

show comparable, limited performance in detecting unknown objects. They have the same several121

types of erroneous predictions, such as failures to detect unknown objects, confusion of know objects122

with unknown, and vice versa. Furthermore, they often predict two bounding boxes, significantly123

overlapped, with known and unknown labels for the same object instances. Their limited performance124

on APunk, along with these failures, indicates that the existing OSOD methods will be insufficient125

for real-world applications.126
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OpenDet FCOS Faster RCNN GTVOSORE

Unk(0.87) Unk(0.45) Segway [Unk]

Segway [Unk]

Airplane [Unk]

Unk(0.56)Unk(0.64)

Helicopter(0.97)

Helicopter(0.93)

Unk(0.89)Helicopter(0.47)

Unk(0.93) Bus [Unk]Unk(0.41)

Ambulance(0.45)

Unk(0.84)
Unk(0.99)

Unk(0.98)

Unk(0.99)

Unk(0.54) Unk(0.87) Unk(0.36) Unk(0.46) Truck [Unk]

Swan [Unk]

Swan [Unk]

Mouse [Unk]

Giraffe [Unk]

Dog [Unk]

Dog [Unk]

Antelope [Unk]

Antelope [Unk]

Unk(0.31)

Unk(0.53)

Chicken(0.96)

Chicken(0.85)

Chicken(0.49)

Unk(0.44)
Unk(0.35)

Chicken(0.97)

Unk(0.77)
Unk(0.87)

Chicken(0.93)

Chicken(0.88)

Chicken(0.62)

Hamster(0.92) Hamster(1.0)

Squirrel(0.44)

Hamster(0.91)

Unk(0.86) Unk(0.70) Unk(0.97)

Unk(0.98)Unk(0.71)

Unk(0.93)

Unk(0.79)

Cattle(0.94)

Unk(0.75)

Deer(0.98)

Cattle(0.80)Cattle(0.63)

Squirrel(0.71)

Unk(0.42)

Unk(0.43)

Lion(0.71) Unk(0.78)

Monkey(1.0)

Monkey(0.98)

Unk(0.75)

Monkey(0.43)

Unk(0.53) Unk(0.91)

Unk(0.50)

Lion(0.45)

Unk(0.96)

Unk(0.99)

Cattle(0.67)

Unk(0.50)

Unk(0.62)

Unk(0.88)

Cattle(0.90) Cattle(0.56)

Unk(0.92)

Unk(0.38)

Cattle(0.94)

Deer(0.33)

Cattle(0.44)

Deer(0.93)

Deer(0.81)

Cattle(0.81) Cattle(0.68)

Bicycle(0.33)

DS

Hamster(0.49)

Squirrel(0.56)

Monkey(0.96)

Koala(0.78)

Chicken(0.86)

Chicken(0.95)

Cattle(0.63)

Deer(0.79)

Deer(0.77)

Cattle(0.74)

Deer(0.81)

Van(0.83)

Airplane(1.0)

Airplane(0.35)

Bicycle(0.64)

Bicycle(0.94)

Figure 6: Examples of detection results for Open Images. Upper: the super-class is “Animal.”
Lower: “Vehicle.” Red boxes represent unknown class detection, and blue boxes represent known
class detection. “Unk” in the images stands for “unknown”.
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VOS OpenDet FCOS Faster RCNN GT

American Redstart(0.99)American Redstart(0.98) American Redstart(0.75) American Redstart(1.0) American Redstart [Known]

Blue Grosbeak(1.0) Blue Grosbeak(1.0) Blue Grosbeak(0.56) Blue Grosbeak(1.0)

Unk(0.96)

Blue Grosbeak [Known]

Boat tailed Grackle [Known]Unk(0.98)

Unk(0.92)

Unk(0.32)

Unk(0.48)

Unk(0.87)

Scarlet Tanager(0.56)

Brown Thrasher(0.47)

Unk(0.97)

Long tailed Jaeger(0.95)

Elegant Tern(0.38) Unk(0.51)

Long tailed Jaeger(0.34) Unk(0.57)

Elegant Tern(0.7)

Scissor tailed Flycatcher [Unk]

Bewick Wren[Unk]
Unk(0.83)

Lincoln Sparrow(0.56)

Savannah Sparrow(0.34)
Unk(0.67)

Lincoln Sparrow(0.94) Lincoln Sparrow(0.98)

Unk(0.95)

ORE

American Redstart(0.98)

Blue Grosbeak(1.0)

Unk(0.81)

Unk(0.53)
Unk(0.35)

Long tailed Jaeger(0.51)

Unk(0.54)

Lincoln Sparrow(0.94)

Unk(0.31)

Unk(0.36)

DS

American Redstart(0.99)

Unk(0.91)

Blue Grosbeak(1.0)

Unk(0.93)

Lincoln Sparrow(0.90)

Unk(0.98)

Elegant Tern(0.78)

Unk(0.91)

Figure 7: Examples of detection results for CUB200. See Fig 6 for notations.

VOS OpenDet FCOS Faster RCNN GT

Regulatory-g1[Unk]Regulatory-g2 (0.61) Regulatory-g2 (0.96)Regulatory-g2 (0.64)

Unk (0.85)

Regulatory-g2 (0.72)

Regulatory-g1[Unk]Unk(0.95)Unk (0.85)

Complementary(0.7)

Unk (0.68)Complementary(0.4)

Unk (0.87) Unk (0.77)

Warning-g1(0.71)

Warning-g1(0.46)Warning-g1(0.73) Warning-g3[Unk]

Regulatory[Unk]

Unk (0.85)

Regulatory-g2 (0.81) Regulatory-g2 [known]Regulatory-g2 (0.54) Regulatory-g2 (0.59) Regulatory-g2 (0.90)

Complementary[Unk]

ORE

Regulatory-g2 (0.93)

Warning-g1(0.80)

Unk (0.81)

Unk (0.49)

Regulatory-g2 (0.87)

DS

Warning-g3(0.61)

Regulatory-g2 (0.78)

Unk (0.95)

Unk (0.89)

Regulatory-g2 (0.84)

Figure 8: Examples of detection results for MTSD. See Fig 6 for notations.
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