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ABSTRACT

We tackle the task of customized image editing using a text-conditioned Diffusion
Model (DM). The goal is to fuse the subject in a reference image (e.g., sunglasses)
with a source one (e.g., a boy), while retaining the fidelity of them both (e.g., the
boy wearing the sunglasses). An intuitive approach, called LoRA fusion, first sep-
arately trains a DM LoRA for each image to encode its details. Then the two Lo-
RAs are linearly combined by a weight to generate a fused image. Unfortunately,
even through careful grid search or learning the weight, this approach still trades
off the fidelity of one image against the other. We point out that the evil lies in
the overlooked role of diffusion time-step in the generation process, i.e., a smaller
time-step controls the generation of a more fine-grained attribute. For example, a
large LoRA weight for the source may help preserve its fine-grained details (e.g.,
face attributes) at a small time-step, but could overpower the reference subject
LoRA and lose the fidelity of its overall shape at a larger time-step. To address
this deficiency, we propose TimeFusion, which learns a time-step-specific LoRA
fusion weight that resolves the trade-off, i.e., generating the source and reference
subject in high fidelity given their respective prompt. Then we can customize
image editing using this weight and a target prompt. Codes are in Appendix.

1 INTRODUCTION

Source 𝑰𝒔 Reference 𝑰𝒓

𝑷𝒔 = "a boy" “a boy wearing 
sunglasses”

Edited Image 𝑰′

𝑷𝒓 = “sunglasses"

(a)

“a boy 
wearing 

sunglasses”

Figure 1: Customized image editing, which fuses
the source image with the subject in a reference im-
age, while retaining the fidelity of them both.

Image editing modifies an image I by alter-
ing user-defined visual attributes while re-
taining its fidelity, i.e., preserving other at-
tributes. For example, editing an image of
a boy with the target prompt “wearing sun-
glasses” should only add sunglasses without
altering the boy or his background. Recent ef-
forts Hertz et al. (2022); Orgad et al. (2023);
Tumanyan et al. (2023); Cao et al. (2023);
Pan et al. (2023); Wallace et al. (2023); Wu &
De la Torre (2023); Kawar et al. (2023); Hertz
et al. (2023) utilize a text-conditioned Dif-
fusion Model (DM) Ho et al. (2020), whose
reverse process progressively transforms random noise into an image aligning with a given text
prompt. The general paradigm involves two steps: first, calibrating the reverse process to recon-
struct I and retain fidelity; then, modifying it by introducing the target prompt to complete the edit.
In particular, the main differences in existing methods lie in the reconstruction step. One approach,
known as DDIM inversion Song et al. (2020), attempts to identify a noise initialization from which
running the reverse process yields I . However, the inversion is prone to errors, leading to fidelity
loss Tumanyan et al. (2023); Wallace et al. (2023), e.g., distorting the appearance of the boy. There-
fore, we base our study on an improved technique Hu et al. (2021) that involves learning a set of
Low-Rank Adaptation (LoRA) layers injected into the DM (or learning a LoRA for short), which
enables the LoRA-guided reverse process to reconstruct I .

Most existing image editing methods are text-based, which oftentimes lack customizability. For
example, as shown in Figure 1, a user may want to edit a source image Is so that the boy wears the
exact sunglasses in a reference image Ir to produce the edited I ′. In this case, it is impractical to
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Figure 2: (a) Failure of current LoRA fusion in customized image editing, where no combination
of coefficients maintains the fidelity of both images. (b) The proposed learnable time-step-specific
coefficient and patch-specific one (visualized values are averaged across the LoRA injection layers).
(c) The high-level training and inference pipeline for the proposed TimeFusion.

fully specify the appearance of the sunglasses using textual control. We aim to bridge this gap by
exploring customized image editing, where the goal is to fuse the subject in Ir1 with an image Is,
while retaining the fidelity of both.

To address this, a natural extension to the above editing paradigm is LoRA fusion Ryu (2023):
first, learn a source and reference LoRA to reconstruct Is and the subject in Ir, respectively; then
linearly combine their guidance in the reverse process using a fusion coefficient (βs, βr), e.g., a
larger βs increases the guidance strength from the source LoRA. However, as shown in Figure 2(a),
no combination of coefficients maintains the fidelity of both Is and Ir, i.e., increasing βr preserves
the visual attributes of the reference subject but sacrifices the fidelity of Is.

Therefore, the crux of customized image editing lies in finding a more precise method for fusing Lo-
RAs that accommodates the visual attributes of both Is and Ir. This motivates us to improve LoRA
fusion by considering the diffusion time-step (along which the reverse process generates an image).
This is based on two key observations: 1) Diffusion time-step is theoretically and empirically linked
to visual attributes Yue et al. (2024a;b), where the reverse process at a smaller time-step is respon-
sible for generating a more fine-grained attribute. For example, as we will later show in Figure 4,
providing LoRA guidance at smaller time-steps modifies more fine-grained attributes. 2) Thus, a
time-step-specific fusion coefficient provides the required precision, e.g., using a large βs at a small
time-step to preserve the fine-grained facial details in Is, while increasing βr at a larger time-step
to maintain the more coarse-grained shape of the sunglasses in Ir (more examples in Figure 13).

Building on the above analysis, we propose a time-step specific LoRA fusion strategy called Time-
Fusion. Specifically, we first learn a source and reference LoRA using a standard technique Avra-
hami et al. (2023) (preliminaries provided in Appendix). Then our coefficients for LoRA fusion
consist of two parts, as shown in Figure 2(b): 1) the aforementioned time-step specific ones (βs

t , β
r
t )

for each diffusion time-step t ∈ {1, . . . , T}. 2) a patch-level one αs,αr ∈ R8×8 for the 8× 8 latent
patches in each layer where LoRA is injected (layer index omitted for simplicity). The patch-level
coefficient acts as a modifier to the time-step one, further refining the fusion by considering spatial
information, e.g., applying a large source LoRA coefficient on a background patch to faithfully re-
construct Is. Overall, during the reverse process at time-step t, the LoRA fusion coefficient for a
patch at spatial location (i, j) will be (αs

i,jβ
s
t ,α

r
i,jβ

r
t ). The paradigm of TimeFusion is summarized

in Figure 2(c). We train the coefficients so that the fused LoRA reconstructs Is and Ir according
to their respective prompt, i.e., accommodating the visual attributes of both images. In inference,
using the learned LoRA fusion, we achieve customized image editing by simply supplying the target
prompt. Figure 3 showcases our results. Our contributions include:

• We tackle the challenging task of customized image editing with a text-conditioned DM (Sec-
tion 2.1), by improving the current LoRA fusion (Section 2.2).

• Motivated by the connection between diffusion time-step and visual attribute (Section 2.1), we
propose TimeFusion, a novel time-step-specific LoRA fusion strategy in Section 3.

1We segment the subject with SAM Kirillov et al. (2023), requiring the user to click its location in Ir based
on the prompt P r . Note that this can be easily automated with a text-conditioned segmentation model such
as Rasheed et al. (2024).
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Object Scene

Figure 3: Comparison of customized image editing results between our TimeFusion and existing
SOTAs Chen et al. (2023); Chen & Huang (2023). We compare 3 tasks, including addition, object
and scene replacement (details in Section 3). The source prompt is omitted, and the reference subject
prompt is highlighted in orange inside the target prompt. For fairness, examples are chosen based
on their best visual quality from various random seeds. See Section 5 for analysis and Appendix for
additional results.
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• Extensive qualitative and quantitative experiments in Section 5 demonstrate the superiority of our
TimeFusion over existing works in customized image editing.

2 PROBLEM FORMULATIONS

2.1 TEXT-CONDITIONED DIFFUSION MODEL (DM)

A text-conditioned DM is a generative model that allows textual control. It uses a forward process
that incrementally adds noise to input data to learn a reverse process, where the model is trained
to reconstruct clean data from noisy one and its text description. In this work, we focus on Stable
Diffusion (SD) Rombach et al. (2022), where each input data z0 is an image feature. Specifically,
z0 is the latent variable of a pre-trained image autoencoder, which is encoded from an image to
reconstruct it. Hence we use z0 and image interchangeably when the context is clear.

Forward Process. It progressively adds Gaussian noise to each image z0 in T time-steps, producing
noisy images z1, . . . , zT , with the subscript denoting time-step. Each zt adheres to its noisy image
distribution q(zt|z0), which gradually collapses towards a pure noise with reducing mean and in-
creasing variance as t increases (details in Appendix). Recent works Yue et al. (2024a;b) show that
the forward process connects diffusion time-step with the visual attributes of an image. In a nutshell,
an increasing t causes a large overlap between noisy image distributions, essentially collapsing dif-
ferent images into similar ones by losing the visual attributes that differentiate them. In particular,
the theory suggests that fine-grained attributes (i.e., those affecting local appearances, such as ex-
pression) become lost at a smaller time-step compared to coarse-grained ones (i.e., those affecting
global appearances, such as background). This pattern of attribute loss has interesting implications
in the following reverse process.

Reverse Process. It corresponds to a learned Gaussian transition pθ(zt−1|zt, P ) conditioned on a
text prompt P and parameterized by θ. The term is computed in two steps: first reconstructing z0 as
z′0 by a learnable denoising network d(zt, P, t; θ) with parameter θ, then computing q(zt−1|zt, z′0),
which has a closed-form solution given in Appendix. In training, we minimize the reconstruction
error:

L(θ, z0, P ) =

T∑
t=1

E
q(zt|z0)

∥z0 − d(zt, P, t; θ)∥2, (1)

where zt is sampled from the forward process at a random time-step t. In inference, to generate
an image conditioned on a prompt P , we first set zT as a random noise, and recursively run the
reverse process pθ(zt−1|zt, P ) until obtaining z0. Then for SD, it has a decoder that maps z0 to an
image in the pixel space. In particular, due to the progressive loss of attributes going from z0 to zT
in the forward process, the reverse process must correspondingly make up for the lost attribute in
each step to accurately reconstruct z0. Hence as fine-grained attributes are lost at smaller time-steps,
the reverse process is responsible for generating them at smaller time-steps correspondingly. The
technique introduced in the next section will help us visualize this.

2.2 LOW-RANK ADAPTATION (LORA)

Training a DM with a randomly initialized θ by minimizing Equation 1 can be extremely expensive.
Hence the common approach is to initialize θ from a DM pre-trained on diverse image data (e.g.,
SD), and fine-tune it to a downstream task. LoRA is the most mainstream fine-tuning method Hu
et al. (2021); Song et al. (2024); Gu et al. (2024).

LoRA refers to a set of low-rank matrices, each of which is injected into a corresponding layer of DM
to update its weight. Specifically, let W ∈ Rm×n denote the pre-trained weight matrix of a layer in
DM. The LoRA matrice injected to this layer is given by ∆W = AB, where A ∈ Rm×r, B ∈ Rr×n,
such that the rank of ∆W equals a small r ≪ min(m,n). After injection, the weight of this layer
becomes W +∆W .

LoRA Training. In fine-tuning, the original DM weights are frozen, and only the injected LoRA
is trained. We denote the LoRA matrices as θl (or LoRA θl for short), and the weight of DM after
LoRA injection as θ ⊕ θl. Given a downstream dataset D where each sample (z0, P ) comprises of
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𝑷𝑷 ="a boy"

𝑰𝑰 𝑰𝑰𝟎𝟎 𝑰𝑰𝟏𝟏 𝑰𝑰𝟐𝟐 𝑰𝑰𝟑𝟑 𝑰𝑰𝟒𝟒

Figure 4: Effect of applying LoRA guidance at a subset of diffusion time-steps (highlighted by a red
bar), ranging from no guidance in I0 to full guidance in I4. The LoRA is learned to reconstruct I
given P . All images are generated with the same noise initialization.

an image z0 and its prompt description P , the objective of fine-tuning is given below:

min
θl

∑
(z0,P )∈D

L(θ ⊕ θl, z0, P ). (2)

LoRA in Image Editing. This is a special case of the above fine-tuning process, where D contains
only the image I for editing and its prompt P (e.g., “a boy”), i.e., we essentially learn a LoRA θl to
reconstruct I . To generate an edited image, one can run this reverse process parameterized by θ⊕ θl

with a modified prompt P ′ (e.g., “a smiling boy” to change his expression). In particular, we can
visualize the effect of LoRA guidance (by ∆W ) at different ranges of time-steps. In Figure 4, we
compare the image generated by the original SD (I0), by only injecting LoRA at a subset of time-
steps (I1, I2, I3) and by injecting LoRA at all time-steps (I4). It is clear that the guidance controls a
more fine-grained attribute at a smaller time-step, e.g., I3 (guiding large time-steps) mainly retains
the overall background of I , while I1 (guiding small ones) mainly alters the local face attributes
from I0.

LoRA Fusion. Without loss of generality, one can fuse two LoRAs trained on different datasets
by a tuple of tunable strength coefficients (β1, β2). After injecting the fused LoRAs, the weight of
a DM layer becomes W + β1∆W1 + β2∆W2, where ∆Wi and βi denote the corresponding low-
rank matrix in the i-th LoRA and its coefficient, respectively. An example use case of LoRA fusion
is synthesizing a subject in a specific style Shah et al. (2023), where a LoRA trained on images
of a subject (e.g., one specific dog) is fused with the other LoRA on one image of a style (e.g.,
watercolor). However, as we analyze in the introduction, the current way of fusing LoRAs does not
have the required precision to tackle the customized image editing task (Figure 2(a)). In the next
section, we propose TimeFusion to fix this.

3 TIMEFUSION

We aim to tackle the customized image editing task: given a source image Is and its text prompt P s,
a reference image Ir containing a subject described by a prompt P r, the goal is to fuse the subject
in Ir with Is according to a target prompt P ′, while retaining their fidelity.

Our TimeFusion is an extension to LoRA fusion discussed in Section 2.2, where the fusion coeffi-
cient additionally depends on diffusion time-step and spatial location in the feature map. It consists
of three steps: 1) learn a LoRA to reconstruct Is and Ir, respectively; 2) initialize time-step-specific
coefficients and patch-specific coefficients for LoRA fusion; 3) learn the coefficients to retain the
reconstruction capability of each individual LoRA after fusing them. We detail each step below:

Step 1. We aim to learn a LoRA θs to reconstruct Is, and a LoRA θr to reconstruct the subject in
Ir. For pre-processing, we use SAM Kirillov et al. (2023) to get the subject mask in Ir by asking
the user to click the subject location based on P r. We leave it as future work to automate this with
a text-conditioned segmentation model, e.g., by combining SAM with Grounding DINO Liu et al.
(2023). After getting the subject mask, we train the LoRAs by:

min
θs

L(θ ⊕ θs, zs0, P
s), min

θr,[V]
L(θ ⊕ θr, ẑr0, “[V]”), (3)

where θ is the pre-trained weight of SD, zs0 denotes the image latent of Is, ẑr0 denotes the image
latent of Ir after applying the subject mask (i.e., L is only evaluated inside the mask), and [V]
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Figure 5: The overall pipeline of learning the time-step-specific and patch-specific coefficients
(Steps 2 and 3 in Section 3). We highlight the reference object (segmented by SAM) with a blue
border. The lock and unlock icon denotes frozen and trainable parameters, respectively. On the
right, we detail our LoRA fusion strategy on an example layer in the SD U-Net, where × denotes
the element-wise product. We omit the channel dimensions in layer input and output for simplicity.

denotes a learnable token embedding following standard practice Avrahami et al. (2023); Gal et al.
(2022). We slightly abuse the notation to put [V] inside the prompt.

Step 2. For time-step-specific coefficients, we define βs
t , β

r
t for each t ∈ {1, . . . , T}. In practice, we

find it unnecessary to learn a unique coefficient at each t. Instead, we sequentially group the time-
steps into K splits of equal size (e.g., the first split being 1, . . . , T/K), and share the coefficient
value inside each split. We ablation the effects of K in Figure 11. For patch-specific coefficients,
we define αs,αr ∈ R8×8 for each layer with LoRA injection (layer index omitted for simplicity).
Note that the spatial dimension of the feature map at different layers in SD can be different, i.e.,
ranging from 8×8 to 64×64. To keep our coefficients simple, we fix the number of patches to 8× 8
by varying the patch size at different layers (e.g., 8 when the spatial dimension is 64× 64). Overall,
at time-step t, the LoRA fusion coefficient for a patch at location (i, j) (out of the 8× 8 patches) is
(αs

i,jβ
s
t ,α

r
i,jβ

r
t ), as shown in Figure 5 right. We denote the set of all coefficients as β, and the DM

weight after injecting the fused LoRA as θ ⊕ θβ. We initialize all coefficients in β as 1 and train
them in the next step.

Step 3. As illustrated in Figure 5 left, we learn β by the following objective:

min
β

L
(
θ ⊕ θβ, z̄s0, P

s
)
+ L

(
θ ⊕ θβ, z̄r0, “[V]”

)
, (4)

where [V] is the token embedding learned in Step 1, z̄s0, z̄
r
0 denotes the reconstructed image latent

by LoRA θs and θr, respectively. Overall, we are training the fusion weight, such that the fused
LoRAs can accommodate all visual attributes of Is and Ir to accurately reconstruct their latents.

Generating Edited Image. After training, we replace the subject name in the target prompt P ′

by the learned token [V] (e.g., “a boy wearing sunglasses”→“a boy wearing [V]” for subject “sun-
glasses”). Then we run the reverse process parameterized by θ ⊕ θβ given the modified P ′ to get
the edited image. We highlight two points: 1) This scheme can be extended to do object replace-
ment (e.g., replacing a mug with “can” by P ′ = “[V]” with [V] being the learned token for “can”)
or scene replacement (e.g., changing a “dog” background by P ′ = “a dog at [V]” with [V] being
the learned token for a background). 2) Once the LoRAs and their fusion coefficients are learned,
they can generalize to different editing prompts without additional fine-tuning, leveraging the prior
knowledge of SD (Appendix Figure 12).

4 RELATED WORK

Image Editing are mostly Text-Based (TBIE). To maintain the fidelity of the user-provided image,
a line of works Cao et al. (2023); Tumanyan et al. (2023) adopt DDIM inversion Song et al. (2020)
or its enhanced versions Pan et al. (2023); Wallace et al. (2023) for accelerated reconstruction. How-
ever, such methods are unstable and prone to errors. To improve the reconstruction, fine-tuning SD
or injected LoRA layers Kawar et al. (2023); Zhang et al. (2023) provides a promising solution.
Besides reconstruction, several techniques are proposed to improve editing, e.g., by adjusting at-
tention maps Hertz et al. (2022), interpolating learnable text embeddings Kawar et al. (2023) and
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encoding semantic change in the text LoRA Song et al. (2024). However, customized image editing
is under-explored. The most relevant work SpecRef Chen & Huang (2023) is based on DDIM inver-
sion, where the reference image feature is extracted in the inversion stage, and incorporated when
adjusting attention maps for editing. Yet its performance is bottlenecked by DDIM inversion. We
improve it by extending LoRA fusion for customized image editing.

LoRA Fusion is mainly used for multi-concept customization, which synthesizes novel combina-
tions of concepts, without the need to perverse the fidelity of any user-provided images. Existing
works focus on improving LoRA training Po et al. (2023) or fusion strategy Zhong et al. (2024).
For the latter, some notable improvements include Mix-of-Show Gu et al. (2024), which proposes
gradient fusion that directly learns the combined LoRA weights without losing the capability for
single concept generation; MoLE Wu et al. (2023a), which leverages learnable gating functions for
each LoRA layer to fulfill the combination; and ZipLoRA Shah et al. (2023), which claims that the
columns of two LoRA weights should be orthogonal to avoid identity loss and optimizes orthogonal
coefficients for each column of two LoRAs. However, we find existing LoRA fusion strategy lacks
the required precision in customized image editing. Hence we extend it with time-step-specific and
patch-specific fusion coefficients.

5 EXPERIMENT

Implementation Details. Following prior editing works Kawar et al. (2023); Song et al. (2024);
Zhang et al. (2023), we adopt Stable Diffusion Rombach et al. (2022) as our DM and use its default
parameters. When learning LoRA θs to reconstruct Is, the learning rate is set as 1e-4 and the
optimization iteration is 800. We use the approach in Avrahami et al. (2023) to learn the subject in a
single image Ir. For time-step-specific coefficients, we equally divide the time-steps into 20 splits,
i.e., K = 20. When learning with Equation 4, we set the learning rate as 5e−2 and training iterations
as 100. Experiments are conducted on an NVIDIA A100 GPU with a batch size of 1. Computation
analysis is included in Appendix.

Dataset. To evaluate the effectiveness of our TimeFusion in handling various objects, we col-
lected images separately as source and reference ones from the widely used website, i.e., Unsplash
(https://unsplash.com/). In particular, the number of source images is 18 and the main subjects in-
clude humans, animals, and objects. For the reference images, there are objects, animals, and scenes
totaling 20 images. During the fusion of source and reference images, each source image is paired
with 2-3 different reference images. Finally, we obtain 50 source-reference pairs with corresponding
prompts for customized image editing, including 20, 18, and 12 samples for object addition, object
replacement, and scene replacement, respectively.

5.1 QUALITATIVE EVALUATION

Our Results. Our proposed TimeFusion supports both addition and replacement editing. Especially,
the replacement involves object and scene replacement. The qualitative results are shown in Figure 3
and more results are in Appendix. Overall, our generated images largely preserve the fidelity of both
the source images and the reference subjects while achieving high alignment with target prompts,
demonstrating the superiority of TimeFusion’s fusion and editing capability. For example, we could
make a baby holding a spoon and replace a bottle with a teapot. We highlight the robustness of
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Figure 6: Customized image editing with three objects.
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Figure 7: Qualitative comparison with LoRA fusion methods.

our TimeFusion from three perspectives: 1) Our method supports significant changes in the object’s
overall posture, e.g., making the cat from standing to sitting, being held, and jumping in Figure 14.
2) We also support multiple reference images, e.g., making the boy wear the sunglasses and tie, and
changing the dog to the cat at the beach (while retaining the position and posture of the dog in Is)
in Figure 6. 3) We are robust to a coarse reference subject mask, e.g., a dilated mask in Figure 15.

Comparison with SOTAs. The comparison is in Figures 3, 16 and 17. The closest work SpecRef
Chen & Huang (2023) is based on DDIM inversion. Yet it falls short in customized image editing
due to the error-prone inversion process. AnyDoor Chen et al. (2023) adopts a more restrictive
setting. It additionally requires the user to provide the editing mask in the source image for inserting
the reference subject, i.e., the model can conveniently edit the user-provided area with other parts
fixed. Even under this easier task, we observe that it often loses the reference subject fidelity (e.g.,
the sunglasses, hat, or the can in the first row of Figure 3). Furthermore, some fused subjects look
unnatural in the source image (e.g., the clock or the cat in the last row of Figure 3). We also highlight
a limitation of AnyDoor’s setting. While a user-provided editing mask reduces the complexity of the
task, it may accidentally lead to inferior results in some cases, e.g., changing a cup to a can in the
first row of Figure 3 will require editing the reflection on the table, but this can be easily overlooked
by the user when providing the mask, causing the reflection unedited.

Comparison with Multi-Concept Customization Methods. The other close line of works Shah
et al. (2023); Zhong et al. (2024) aims to achieve multi-concept customization through LoRA fusion.
We compare with them in Figure 7, where none of these baselines achieves successful editing. They
either make almost no edit to the source image (e.g., ZipLoRA Shah et al. (2023)) or fail to fuse
the reference subject correctly (e.g., LoRA Switch and LoRA Composite Zhong et al. (2024)). In
contrast, our TimeFusion produces high-quality editing results, showing that it provides the required
precision to preserve the fidelity of both the source images and reference subjects.

Table 1: Quantitative evaluation of our
TimeFusion against SOTAs. See main text
for metric explanation.

CLIP-T ↑ CLIP-I ↑ DINO ↑

SpecRef 0.266 0.694 0.778
AnyDoor 0.288 0.780 0.780

TimeFusion 0.316 0.828 0.806

Table 2: Ablation of using only time-step-specific
coefficients, only patch-specific ones, and standard
LoRA fusion with a single set of coefficients.

Method βt α CLIP-T ↑ CLIP-I ↑ DINO ↑

Time-step only ✓ 0.316 0.820 0.795
Patch only ✓ 0.297 0.871 0.768

LoRA fusion 0.321 0.797 0.788

TimeFusion ✓ ✓ 0.316 0.828 0.806

5.2 QUANTITATIVE EVALUATION

Similarity Metrics. Since customized image editing requires image-level alignment with the source
image and subject-level alignment with the reference subject, we consider the metrics in both con-
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cept customization Gu et al. (2024); Shah et al. (2023) and image editing Kawar et al. (2023); Song
et al. (2024): 1) text alignment (CLIP-T) which measures the CLIP similarity between the target
prompt and the edited image; 2) source alignment (CLIP-I) which measures the CLIP similarity
between the source image and edited image; 3) reference alignment (DINO), which computes the
cosine similarity between ViT S/16 DINO embeddings Caron et al. (2021) of reference and edited
images. It is worth noting that as SD generates an image that matches the CLIP text embedding of
the given prompt, the direct text-to-image results from SD (with no control) will have the highest
CLIP-T score. Moreover, making no edits to the source image will lead to the highest CLIP-I score.
However, none of these two situations are expected in customized image editing. Therefore, the key
is to obtain a balanced CLIP-I and CLIP-T score, instead of having a high score in only one of them.
The results are summarized in Table 1, where our TimeFusion achieves the best scores across the
three metrics compared with SpecRef and AnyDoor.

89.6

10.2

0.2
Preference Rates (%)

TimeFusion AnyDoor SpecRef

Figure 8: User study.

User Study. We further evaluate our proposed TimeFusion through
an extensive human perceptual evaluation study. It consists of 50
source-reference pairs with corresponding prompts. 51 AMT eval-
uators participated in this study to rate the editing quality of the
50 samples. Each sample includes a source image, a reference im-
age containing a specified subject, a target prompt, and three edited
images generated by TimeFusion, AnyDoor, and SpecRef, which
are randomly shuffled. They are required to choose the best result
among the three. Finally, we collected 2,550 answers and the re-
sults are depicted in Figure 8, where 89.6% of participants prefer
our TimeFusion.

“a
 c

at
”

“h
at

”

“…
 w

ea
ri

ng
 h

at
”

“a
 m

on
ke

y”

“c
ak

e”

“…
 h

ol
di

ng
 c

ak
e”

“a
 b

oy
”

“t
ie

”

“…
 w

ea
ri

ng
 ti

e”

TimeFusion Time-step Patch LoRA fusion𝑰𝒔 𝑰𝒓

Figure 9: Qualitative comparison by ablating the use of fusion coefficients. “Time-step” and “Patch”
denote using only the corresponding coefficients. “LoRA fusion” denotes its standard approach with
a single set of coefficients (Section 2.2).

5.3 ABLATION ANALYSIS

Ablation on LoRA Coefficients. We ablation the use of time-step-specific coefficient and patch-
specific one in Figure 9 and Table 2. The “LoRA fusion” coefficients are obtained by grid-search,
and the rest are learned by Equation 4. With only time-step coefficients, we observe a loss of
spatial information, e.g., the image backgrounds of the cat and boy are blurry, and the cake held
by the monkey loses its details. Only using patch coefficients barely makes any edit in Figure 9,
hence it is the best in CLIP-I but the worst in the other two metrics in Table 2. The LoRA fusion
has little control (only a single set of coefficients) of the generated image, hence it has the highest
CLIP-T score, yet alters the source image significantly (lowest CLIP-I score). Finally, since time-
step coefficient βt provides the fusion precision and patch coefficient α refines spatial information,
our TimeFusion equipped with both coefficients gains a balanced score as expected in the above
“Similarity Metrics” and achieves the best results.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

“a
 p

en
gu

in
”

“b
ea

ch
”

“a
 te

dd
y”

“t
oy

”

“a
 to

y”

𝟏×𝟏𝑰𝒔 𝑰𝒓

“…
 a

t b
ea

ch
”

2 ×𝟐 4 ×𝟒 8 ×𝟖

Figure 10: Ablation on the size of patch-level coefficients. TimeFusion uses 8× 8 (Section 3).
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Figure 11: Ablation on the number of splits K for the time-step-specific coefficients.

Ablation on Patch-level Coefficient. We examine the effect of the patch-level coefficient’s size on
the editing results in Figure 10. It could be observed that a small size provides only coarse spatial
information, hence it fails to maintain the fidelity of either the source image or reference subject, e.g.,
the posture and position of the penguin and the appearance of the toy are not well preserved. As the
size of the patch-level coefficient increases from 1× 1 to 8× 8, the generated images progressively
achieve better fidelity. Therefore, we used 8× 8 in TimeFusion.

Ablation on Time-step Coefficient. We ablation the number of splits K for the time-step coeffi-
cient. As depicted in Figure 11, as K increases from 5 to 20, we observe consistent improvements
in fidelity, e.g., the baby’s posture at K = 5 and the baby’s leg at K = 10 are not preserved. This
is because when K is small, a long range of time-steps shares the same time-step coefficients, yet
corresponds to multiple visual attributes. Hence the fusion may be imprecise to lose fidelity. How-
ever, further improving K to 50 leads to a slight loss of fidelity, e.g., the shade of the baby’s clothes.
We conjecture that the reason is inadequate learning for coefficients: as the optimization iteration of
fusion is fixed to 100, each time-step coefficient is only expected to be trained twice when K = 50.
Yet increasing the iteration increases the training time. Hence we choose K = 20 to balance the
editing results and compute.

6 CONCLUSION

We presented TimeFusion, which enables customized image editing with the text-conditioned Sta-
ble Diffusion (SD). The crux is to first learn two SD LoRAs for encoding the visual attributes of the
source image and reference subject, respectively, and then fuse them in a precise way to maintain
the fidelity of both. Motivated by the connection between diffusion time-step and visual attributes,
we extend the current LoRA fusion with learnable time-step-specific and patch-specific coefficients.
They are trained such that SD, after LoRA fusion, can still reconstruct the source image and ref-
erence subject. We show that the additional coefficients enable LoRA fusion to simultaneously
accommodate the visual attributes of the user-provided source and reference images. Hence we
significantly improve the fidelity in customized image editing, compared to the current state-of-the-
arts. As a future direction, we will speed up the LoRA learning process in training and the SD
reverse process in editing by exploring Fast Diffusion Model Wu et al. (2023b) and Consistency
Models Song et al. (2023).
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A APPENDIX / SUPPLEMENTAL MATERIAL

This Appendix is organized as follows:

• Section A.1 lists the limitations of TimeFusion.
• Section A.2 includes the computation analysis.
• Section A.3 analyses the generalization to different prompts.
• Section A.4 illustrates the details of learning source and reference LoRAs.
• Section A.5 provides the detailed formulation of DM’s forward and reverse process.
• Section A.6 visualizes more time-step coefficients, varies object posture changes, discusses the

effect of subject masks, and showcases additional results.

Abbreviation/Symbol Meaning

Abbreviations
TBIE Text-Based Image Editing
LoRA Low-Rank Adaptation
DM Diffusion Model
SD Stable Diffusion

Symbols in Method
Is, Ir Source, reference image
P s, P r Source, reference subject prompt
P ′, I ′ target prompt, edited image
βs, βr LoRA fusion coefficient
βs
t , β

r
t Time-step-specific coefficient

αs,αr Patch-specific coefficient
z Image latent by SD encoder
z1, . . . , zT Noisy samples
θ SD weight
D Downstream dataset
θs, θr Source, reference image LoRA
L DM loss
[V] Learnable subject token embedding
β Set of all fusion coefficients
⊕ LoRA injection

Table 3: List of abbreviations and symbols used in the paper.

A.1 LIMITATIONS

Our approach performs sub-optimally when the target prompt contains orientations, e.g., “in front
of”, due to Stable Diffusion’s limitation. We also leverage the diffusion model for generation, whose
reverse process can be expensive (compared to GAN’s one-step generation).

A.2 COMPUTATION ANALYSIS

The detailed computational resources and time consumption of TimeFusion and each compared
method are listed as follows:

1. Tuning-free methods: AnyDoor takes 10-second DDIM sampling with 18G GPU VRAM.
However, it often fails to preserve the fidelity of the reference subject (e.g., the sunglasses,
hat, or the can in the first row of Figure 3). Furthermore, some fused subjects look unnatural
in the source image (e.g., the clock or the cat in the last row of Figure 3).

2. DDIM inversion methods: SpecRef costs 29 seconds for inversion followed by DDIM
sampling with 16G GPU VRAM. Yet due to the error-prone inversion process, it fails in
object addition and has low fidelity in replacement manipulations (Figure 3).
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Figure 12: Customized image editing with different prompts.

3. LoRA fusion methods: They all first train two LoRAs for the source image and reference
subject which consumes around 6 minutes each, with 14G GPU VRAM. During fusing
LoRA, our TimeFusion consumes 4 minutes with 20G GPU VRAM and ZipLoRA costs 6
minutes with 24G GPU VRAM. Serving as tuning-free approaches for LoRA combination,
LoRA Switch and LoRA Composite take 29-second and 21-second DDIM sampling with
both 8G GPU VRAM. However, ZipLoRA, LoRA Switch, and LoRA Composite struggle
to fulfill a good trade-off to preserve the fidelity of the source image and reference subject
simultaneously (Figure 7).

A.3 GENERALIZATION ANALYSIS

Our TimeFusion adopts time-step-specific and patch-specific coefficients to fuse source image LoRA
and reference subject LoRA. It is worth noting that these two coefficients are learned such that
the fused LoRA can reconstruct the source image and the reference subject with their respective
prompts, i.e., not overfitting to any of the two images. Take the reference patch coefficient αr for
example, the reference subject having a large weight αr on some positions does not imply that it is
fixed to its layout and pose in the final generation. This is because the generation is affected not only
by reference patch coefficient αr, but also by source patch coefficient αs and time-step coefficients
βs
t and βr

t , e.g., αr does not affect source image reconstruction given source prompt. In fact, having
both patch and time-step coefficients gives the model enough flexibility to accommodate source and
reference image attributes, allowing the final generation to be faithful to the user’s prompt.
Furthermore, in the LoRA fusion methods for multi-concept customization, the user prompt is not
known a priori. To enable fair comparison with existing works, we choose to learn prompt-agnostic
coefficients. To follow the user-specified prompt after fusion, we simply leverage SD’s extrapolating
power to imagine the composition of the source image and reference subject, which is empirically
justified and extensively leveraged in any SD-based image editing works Kawar et al. (2023); Tu-
manyan et al. (2023). Actually, prompt-agnostic fusion has the added benefit of quickly adapting to
different prompts given the same source and reference images. As shown in Figure 12, we could
add the clock or replace the banana with the clock, and make the squirrel hold the candle or next to
the candle.

A.4 DETAILS ON LEARNING LORA

Source LoRA. We learn a LoRA θs to reconstruct the source image Is. Then the weight of SD after
injecting θs becomes θ⊕θs, where θ is the pre-trained weight of SD. During training, we follow the
objective function as formulated in Equation 3: minθs L(θ ⊕ θs, zs0, P

s), where zs0 and P s denote
the image latent and text prompt of Is respectively, L is defined in Equation 1. After training,
utilizing the SD parameterized by θ ⊕ θs, we could input prompt P s to obtain reconstructed Is.

Reference LoRA. Considering the LoRA θr for reconstructing a reference subject, we adopt the
technique in Avrahami et al. (2023). Given a reference image Ir containing a specified subject
indicated by mask M and prompt P r (e.g., “sunglasses”), Avrahami et al. (2023) adapt the standard
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Figure 13: Time-step coefficient visualization.

diffusion loss in Equation 1 into a masked version:

Lmask(θ ⊕ θr, zr0, “[V]”) =
T∑

t=1

E
q(zr

t |zr
0)
∥zr0 ⊙M − d(zrt , “[V]”, t; θ ⊕ θr)⊙M∥2. (5)

During training, they use the prompt “[V]” instead of the original P r, where [V] denotes a learnable
token embedding for this reference subject. Moreover, they follow Ruiz et al. (2023) to use prior
preservation loss, thus preventing the problems of language drift and reduced output diversity. The
prior preservation loss is formulated as follows:

min
θr,[V]

L(θ ⊕ θr, zpr0 , P r), (6)

where zpr0 is the image latent of a pre-generated image by pre-trained SD using prompt P r. Then
the final loss is the sum of that in Equations 5 and 6. In particular, they adopt a two-phase training
strategy, including solely optimizing the learnable token embedding, as well as joint learning of [V]
and θr. After training, with the SD parameterized by θ ⊕ θr and the learned token embedding of
[V], we could use a new prompt containing [V] to customize this subject into various contexts.

A.5 ADDITIONAL DETAILS ON DIFFUSION MODEL

Forward Process. Given a variance schedule β1, . . . , βT (i.e., how much noise is added at each
time-step), each zt adheres to the following noisy sample distribution:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), where αt := 1− βt, ᾱt :=

t∏
s=1

αs, (7)

where the mean approaches 0 and variance approaches 1 as T → ∞.

Closed Form of q (zt−1|zt, z0). Given by N (zt−1|µ̃t(zt, z0), β̃tI), where

µ̃t(zt, z0) =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, β̃t =

1− ᾱt−1

1− ᾱt
βt. (8)

A.6 ADDITIONAL RESULTS

Time-step Coefficient Visualization. In Figure 13, we visualize the learned time-step coefficients.
The reference subjects in the first row consist of relatively small objects, while those in the second
row represent a special case—backgrounds. Notably, the coefficients exhibit different trends for
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Figure 14: Customized image editing with significant changes of objects.
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Figure 15: Customized image editing with fine and coarse masks of reference subjects.

customized image editing between these two types of reference subjects. Specifically, the coefficient
values for reference backgrounds are generally higher than those for the source images, whereas the
opposite trend is observed for small reference objects. Even among the same type of reference
subjects, the coefficient values differ. For example, variations can be observed in the time-step
visualizations for small reference objects and their corresponding source images in the first row
of Figure 13. Consequently, the optimal time-step-specific coefficients, along with patch-specific
coefficients, are distinct for different pairs of source and reference images to achieve the objective
outlined in Equation 4. Moreover, the visualization examples broadly align with the relationship
between the diffusion time-step and visual attributes, i.e., using a large βs at a small time-step to
preserve the fine-grained details in Is while increasing βr at a larger time-step to keep the more
coarse-grained shape of the subject in Ir.

Significant Object Changes. Our TimeFusion supports significant changes of objects. In Figure
14, we provide the customized image editing results with the same reference object, i.e., the cat. The
position and posture of the cat could be adjusted according to the source images and text prompts,
e.g., from standing to sitting, being held, and jumping.

Reference Subject Masks. We use the approach in Avrahami et al. (2023) to learn the subject in
a single reference image Ir. Avrahami et al. (2023) state that subject masks can be loose masks
provided by the user, or generated by an automatic segmentation method (e.g., SAM). We dilate the
fine masks obtained by SAM to simulate coarse masks. As shown in Figure 15, even with coarse
masks, we could generate comparable editing results.

Additional Results. Additionally, Figures 16 and 17 provide extra results for Figure 3, demon-
strating the superiority of our TimeFusion for customized image editing.
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Figure 16: Comparison of customized image editing results between our TimeFusion and existing
SOTAs Chen et al. (2023); Chen & Huang (2023). We compare 3 tasks, including addition, object
and scene replacement (details in Section 3). The source prompt is omitted, and the reference subject
prompt is highlighted in orange inside the target prompt. For fairness, examples are chosen based
on their best visual quality from various random seeds. See Section 5 for analysis.
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Figure 17: Comparison of customized image editing results between our TimeFusion and existing
SOTAs Chen et al. (2023); Chen & Huang (2023). We compare 3 tasks, including addition, object
and scene replacement (details in Section 3). The source prompt is omitted, and the reference subject
prompt is highlighted in orange inside the target prompt. For fairness, examples are chosen based
on their best visual quality from various random seeds. See Section 5 for analysis.
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