

648 **A USE OF LARGE LANGUAGE MODELS**  
649650 We used large language models (e.g., vision-language variants of GPT-family and Gemini-family)  
651 as assistive tools during the preparation of this paper. They were employed for language polishing,  
652 copy editing, and suggesting alternative phrasings to improve readability. LLMs were *not* used to  
653 generate research ideas, design experiments, produce results, or draw conclusions. All research  
654 contributions—including benchmark design, environment implementation, experiments, analysis,  
655 and interpretation—were performed by the authors, who take full responsibility for the content.  
656657 **B ETHICS STATEMENT**  
658659 This work does not involve human subjects, personal data, or sensitive user information. All ex-  
660 periments are conducted in a simulated in-vehicle GUI environment (Automotive-ENV) with pro-  
661 grammatic task checkers. When using publicly available UI assets or icons, we respect their original  
662 licenses; any third-party materials included are either under compatible licenses or recreated by  
663 the authors. The benchmark includes safety-aware tasks (e.g., driving alignment and environment  
664 alerts); these are designed for research on safer interaction policies and must *not* be deployed to  
665 bypass driving regulations or distract drivers. Our release will exclude harmful content and will be  
666 provided strictly for research purposes under an academic license.  
667668 **C REPRODUCIBILITY STATEMENT**  
669670 We commit to releasing all artifacts required to reproduce our results: (1) the Automotive-ENV  
671 simulator, task definitions, and deterministic evaluation scripts; (2) agent baselines with configura-  
672 tion files, prompts, and inference parameters (e.g., temperature, max tokens); (3) logs of trajectories,  
673 screenshots, and a11y trees for completed runs; and (4) environment specifications (Python/Android  
674 tooling versions) and seed settings. We will also provide instructions and scripts for end-to-end  
675 replication—from environment setup to batch evaluation—together with hardware/OS details and  
676 expected wall-clock ranges for each experiment.  
677678 **D DISCUSSION**  
679680 GPS signals are indispensable for providing geographic context in automotive agents, yet they are  
681 prone to disruptions in real-world environments such as tunnels, underground parking, or dense ur-  
682 ban canyons. These interruptions can cause temporary localization failures, directly undermining  
683 navigation and geo-dependent decision-making. To address this limitation, large language models  
684 (LLMs) can act as virtual sensors by leveraging their built-in knowledge of road networks together  
685 with the last available GPS coordinates and timestamps. During short signal outages, the agent can  
686 simulate intermediate positions and continue offering navigation or context-aware recom-  
687 mendations. Once connectivity is restored, the simulated trajectory can be aligned with actual positioning  
688 data. This capability highlights the potential of LLMs to complement imperfect sensor signals and  
689 enhance robustness in safety-critical automotive applications.  
690

691

692

693

694

695

696

697

698

699

700

701