
A Appendix

A.1 More Ablations and Visualizations

Effect of Blocking Gradient of f(sj − si; θ4). As mentioned in Section 3.2, we compare the
performance of different detectors with or without blocking the gradient of f(sj − si; θ4) on the
COCO benchmark [5] in Table 1. These results indicate that blocking the gradient of f(sj − si; θ4)
can greatly boost the performance. We attribute this to the unstable training caused by the gradient
from the denominator, so they are blocked out by default in the experiments.

Visualization of Searched Parameterized Functions. Figure 1 visualizes the searched parameter-
ized functions for different detectors on the COCO benchmark [5]. Each line corresponds to an
independent parameterized function in Eq. (6). The dots on each line represent the control points for
each parameterized function. It can be observed that loss functions for different detectors seem to
differ from each other. Their intrinsic differences can lead to distinct loss functions.

Parameterized AP Loss on PASCAL VOC Benchmark [3]. We also search Parameterized AP
Loss on the PASCAL VOC benchmark and compare its performance with the commonly used Focal
Loss [7] and L1 combination. We adopt RetinaNet [7] with ImageNet [2] pre-trained ResNet50 [4]
and FPN [6] as the backbone. The training setting strictly follows the default config in MMDetection
codebase [1]. During search, we train the object detector for one epoch as the proxy task. Table 2
shows that the searched loss can perform well on the PASCAL VOC benchmark, bringing around
3.0 AP50 improvement. We also search Parameterized AP Loss on the COCO benchmark, and use
the searched loss to guide the training on PASCAL VOC benchmark. The result is superior than
the Focal Loss and L1 combination, which shows that the searched loss has a certain generalization
ability among different datasets.

More Detailed Ablations on Differentiable Substitution and Gradient Scale. Table 3 gives a
more detailed study on how substitution and gradient scale affect performance. It’s shown that even
without searched gradient scale and separate parameterization, Parameterized AP Loss can still
outperform handcrafted substitutions. Separate parameterization can bring more than 2.0 AP gain,
and gradient scale can further boost the performance by around 1.0 AP.

Table 1: The effect of blocking gradient of f(sj − si; θ4) on the COCO benchmark.

Model Block
Gradient AP AP50 AP75 APS APM APL

RetinaNet [7]
ResNet-50 [4] + FPN [6]

0.8 1.3 0.9 0.5 0.9 1.2
X 40.5 59.0 43.4 23.9 44.9 56.1

Faster R-CNN [8]
ResNet-50 [4] + FPN [6]

29.5 42.4 31.4 14.4 32.3 42.6
X 42.0 60.7 45.0 25.3 46.6 57.7

Deformable DETR [9]
ResNet-50 [4]

27.8 54.9 25.8 16.8 31.5 35.6
X 45.3 63.1 49.6 27.9 49.3 60.2

Table 2: Comparison on the PASCAL VOC benchmark with RetinaNet.

Loss AP50

Focal Loss [7] + L1 77.3
Parameterized AP Loss searched on COCO 79.6
Parameterized AP Loss searched on PASCAL VOC 80.2
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Table 3: More detailed ablations on differentiable substitution and gradient scale.

Differentiable
Substitution Gradient Scale AP AP50 AP75 APS APM APL

Sigmoid 1 3.2 5.9 2.8 2.7 4.0 4.9
Sqrt 1 2.3 4.3 2.2 1.8 2.9 4.0

Linear 1 22.9 39.3 23.2 16.9 27.3 29.2
Square 1 36.4 56.5 39.9 20.3 41.7 53.0

Searched Shared 1 37.1 58.1 39.1 21.0 41.7 51.1
Searched Separate 1 39.4 58.9 42.0 22.8 43.9 54.2
Searched Shared searched 37.8 58.3 39.9 21.6 42.2 52.1

Searched Separate searched 40.5 59.0 43.4 23.9 44.9 56.1
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(a) RetinaNet
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(b) RPN head in Faster R-CNN
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(c) R-CNN head in Faster R-CNN
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(d) Deformable DETR

Figure 1: Visualization of the searched parameterized functions on the COCO benchmark.

2



References
[1] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, et al.

Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155,
2019.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[3] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. IJCV, 2010.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In ECCV, 2014.

[6] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks
for object detection. In CVPR, 2017.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
ICCV, 2017.

[8] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. TPAMI, 2015.

[9] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. Deformable detr: Deformable transformers for
end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

3


	Appendix
	More Ablations and Visualizations


