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CNN + Distance Transform Map

An emerging trend for medical image segmentation.

https://github.com/JunMa11/SegWithDistMap

There are many great studies, 
but
 these methods are tested 

on different datasets;
 the comparison among 

them has not been well 
studied.

https://github.com/JunMa11/SegWithDistMap


CNN + Distance Transform Map: Two Categories

Our contributions:
 summarizing  the  latest  

developments;
benchmarking five methods 

on two datasets.

Answer the question:
How can distance transform maps boost 
segmentation CNNs?



Basic Notation
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 Distance transform map (DTM)

 Signed distance function (SDF)
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Category 1: New Loss Functions

CNNs With

Distance Transform Maps

Adding Auxiliary Tasks
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Reconstruction branch

Multi-heads

Boundary loss 
Hausdorff distance loss
Signed distance function loss
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 Boundary loss

 Hausdorff distance loss

 Signed distance function loss
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Category 2: Adding Auxiliary Tasks
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Experiments
 Dataset

 Network and training protocol

• Organ segmentation: left atrial (LA) MRI; 16 cases for training; 20 cases for testing 

• Tumor segmentation: liver tumor CT; 90 for training; 28 for testing

• V-Net; 5 resolutions; 16 channels in the 1st resolution;

• Learning rate searching: 0.01, 0.001, 0.0001

• Adam optimizer

 Metrics

• Dice

• Jaccard

• 95% Hausdorff Distance

• Average surface distance (ASD)



Experimental Results on left atrial MRI Dataset 



Experimental Results on Liver Tumor CT Dataset



Take Home Message

• First-try recommendation: multi-heads and reconstruction branch CNNs for 

organ segmentation; boundary loss and Hausdorff distance loss for tumor 

segmentation; 

• Implementation details have remarkable effects on the final performance.

• Unsolved open question: how can we obtain robust performance gains 

when incorporating DTM into CNNs?

• Code is available: https://github.com/JunMa11/SegWithDistMap

• Limitation: Only V-Net and two datasets are used for experiments, which is 

not justified at all. More extensive experiments: SOTA networks, large 

datasets…

https://github.com/JunMa11/SegWithDistMap


Thanks for watching!


