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Abstract1

Machine learning on graphs (GraphML) has been successfully deployed in a2

wide variety of problem areas, as many real-world datasets are inherently rela-3

tional. However, both research and industrial applications require a solid, robust,4

and well-designed code base. In recent years, frameworks and libraries, such as5

PyTorch-Geometric (PyG) or Deep Graph Library (DGL), have been developed6

and become first-choice solutions for implementing and evaluating GraphML mod-7

els. These frameworks are designed so that one can solve any graph-related task,8

including node- and graph-centric approaches (e.g., node classification, graph9

regression). However, there are no edge-centric models implemented, and edge-10

based tasks are often limited to link prediction. In this extended abstract, we11

introduce PyTorch-Geometric Edge (PyGE), a deep learning library that fo-12

cuses on models for learning vector representations of edges. As the name suggests,13

it is built upon the PyG library and implements edge-oriented ML models, includ-14

ing simple baselines and graph neural networks, as well as corresponding datasets,15

data transformations, and evaluation mechanisms. The main goal of the presented16

library is to make edge representation learning more accessible for both researchers17

and industrial applications, simultaneously accelerating the development of the18

aforementioned methods, datasets and benchmarks.19

1 Introduction20

Nowadays, one of the most prominent research areas in machine learning is representation learning.21

Solving classification, regression, or clustering tasks by means of popular machine learning models,22

like decision trees, SVMs, logistic regression, linear regression, or feed-forward neural networks,23

requires the presence of object features in the form of real-valued number vectors (also called24

embeddings, or representation vectors). Representation learning aims at finding algorithms and25

models that can extract such numeric features from arbitrary objects (images, texts, or graphs) in26

an automated and reliable way. In terms of machine learning on graphs (GraphML), these models /27

algorithms are called graph representation learning (GRL) methods. In recent years, GRL methods28

have been successfully deployed in a wide variety of domains, including social networks, financial29

networks, and computational chemistry [1–4].30

This wide adoption of graph-based models led to the creation of publicly available implementations,31

often in the form of frameworks or libraries with standardized APIs, which describe data formats,32

model building blocks, and scalable parameter optimization techniques. First-choice solutions are33

currently frameworks like PyTorch-Geometric (PyG) [5] or the Deep Graph Library (DGL) [6].34

They include most of the existing graph neural networks and some traditional models, as well as35

datasets, preprocessing transformations, and basic evaluation mechanisms. This simplifies both36

production-ready model development and conducting GraphML research.37

The implemented design choices allow solving any graph-related task (e.g., node classification, graph38

regression). Nevertheless, the main focus in these libraries is on node- and graph-centric models and39

tasks, whereas edge-based tasks are often limited to link prediction.40
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Present work. We aim to fill the gap for edge-centric GRL models and tasks. In this extended41

abstract, we introduce PyTorch-Geometric Edge (PyGE), a deep learning library focused on42

models for learning vector representations of graph edges. We build upon the PyTorch-Geometric43

(PyG) library and provide implementations: (1) for edge-centric models, including simple baselines44

and graph neural networks, (2) edge-based GNN layers, (3) datasets and corresponding preprocessing45

functions (in a PyTorch- and PyG-compliant format), and (4) evaluation mechanisms for edge tasks.46

PyGE should make edge representation learning more accessible for both researchers and industrial47

applications, simultaneously accelerating the development of edge-centric methods, datasets and48

benchmarks. Disclaimer: Please note that the introduced library is still under active development.49

We provide a summary of our planned work in Section 4.50

Contributions. We summarize our contributions as follows: (C1) We publicly release151

PyTorch-Geometric Edge, the first deep learning library for edge representation learning. (C2)52

We implement a subset of available edge-based models, graph neural network layers, datasets, and53

corresponding data transformations.54

2 Preliminaries55

We start by introducing definitions for basic concepts covered in our presented library and explore56

the current state of node and edge embedding approaches, as well as GraphML software.57

Graph. A graph G = (V, E) describes a set of nodes V that are connected (pairwise) by a set of58

edges E ∈ V × V . An attributed graph G = (V, E ,X,Xedge) extends this definition by a set of node59

attributes: X ∈ R|V|×dnode , and optionally also edge attributes: Xedge ∈ R|E|×dedge .60

Edge representation learning. The goal is to find a function fθ : E → Rdedge that maps an edge61

e(u,v) ∈ E into a low-dimensional (dedge ≪ dim(E)) vector representation (embedding) zuv that62

preserves selected properties of the edge (e.g., features or local structural neighborhood information).63

Edge-based tasks. Evaluation tasks for edge embeddings include: (1) link prediction – binary64

classification problem of the existence (future appearance) of an edge; (2) edge classification –65

label/type prediction of an existing edge (e.g., kind of social network relation); (3) edge regression –66

prediction a numerical edge feature (e.g., bond strength in a molecule).67

Node representation learning methods. Early approaches were built around the transductive68

setting with an enormous trainable lookup-embedding matrix, whose rows denote representation69

vectors for each node. The optimization process would preserve structural node information. For70

instance, DeepWalk [7], and its successor Node2vec [8] use the Skipgram [9] objective to model71

random walk-based co-occurrence probabilities. TADW [10] extended this approach to attributed72

graphs and reformulated the model as a matrix factorization problem. Other early approaches include:73

LINE [11], SDNE [12], or FSCNMF [13]. Recent methods are based on Graph Neural Networks74

(GNNs) – trainable functions that transform feature vectors of a node and its neighbors to a new75

embedding vector (inductive setting). These functions can be stacked to create a deep (graph) neural76

network. The most popular ideas include: a graph reformulation of the convolution operator (GCN77

[14]), neighborhood sampling and aggregation of sampled features (GraphSAGE [15]), attention78

mechanism over graph structure (GAT [16]) or modeling injective functions (GIN [17]).79

Edge representation learning methods. This area is still underdeveloped, i.e., only a handful of80

proposed models and algorithms exists. Most early approaches are node-based transformations,81

i.e., the edge embedding zuv is computed from two node embeddings zu and zv. There are simple82

non-trainable binary operators [8], such as the average (zuv = zu+zv

2 ), the Hadamard product83

(zuv = zu ∗ zv), or the weighted L1 (zuv = |zu − zv|) or L2 (zuv = |zu − zv|2) operators.84

NRIM [18] proposes trainable transformations as two kinds of neural network layers: node2edge85

(zuv = fθ([zu, zv,x
edge
uv ])) and edge2node (zu = fω([

∑
v∈N (u) zuv,xu])). Another group of86

edge embedding methods directly learn the edge embeddings, i.e., without an intermediate node87

1The link to the repository will be included in the final version and is now omitted due to double-blind policy.
We include an anonymized version of our library in the attachments on OpenReview.
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embedding step. Line2vec [19] utilizes a line graph transformation (converting nodes into edges88

and vice versa), applies a custom edge weighting method and runs Node2vec on the line graph.89

The loss function extends the Skipgram loss with a so-called collective homophily loss (to ensure90

closeness of neighboring edges in the embedding space). This method is inherently transductive (due91

to Node2vec) and completely ignores any attributes. Those problems are addressed by AttrE2vec92

[20]. It samples a fixed number of uniform random walks from two edge neighborhoods (N (u),93

N (v)) and aggregates feature vectors of encountered edges (using average, exponential decaying, or94

recurrent neural networks) into summary vectors Su, Sv, respectively. An MLP encoder network95

with a self-attention-like mechanism transforms the summary vectors and the edge features into the96

final edge embedding. AttrE2vec is trained using a contrastive cosine learning objective and a feature97

reconstruction loss. PairE [21] utilizes two kinds of edge feature aggregations: (1) concatenated node98

features (self features), (2) concatenation of averaged neighbor features for both nodes (agg features).99

An MLP encoder with skip-connections transforms these two vectors into the edge embedding. Two100

shallow decoders reconstruct the feature probability distribution. The resulting PairE autoencoder is101

trained using the sum of the KL-divergences of the self and agg features. Other methods include:102

EGNN [22], ConPI [23] or Edge2vec [24].103

GraphML software. The backbone of all modern deep learning frameworks are tools for automatic104

differentiation, such as: Tensorflow [25] or PyTorch [26]. GraphML libraries are mostly built upon105

these tools, e.g., PyG uses PyTorch, GEM [27] and DynGEM [28] use Tensorflow, DGL can be106

used both with Tensorflow and PyTorch, whereas some like KarateClub [29] are using a custom107

backend. All of these libraries are focused on node- and graph-centric models. Our proposed108

PyTorch-Geometric Edge library is the first one that focuses on edge-centric models and layers.109

It adapts the PyG library API and uses PyTorch as its backend.110

3 PyTorch-Geometric Edge111

Relation to PyG. Our proposed PyGE library re-uses the API and data format implemented in112

PyTorch-Geometric. The graph is stored as a Data() object with edges in form of a sparse COO113

matrix (edge_index). Other fields include: x (node attributes), edge_attr (edge attributes), y114

(node/edge labels). We also keep a similar layout of the library package structure, i.e., we have a115

module for datasets, models, neural network layers (nn), data transformations (transforms) and116

data samplers (samplers). The forward() method in all implemented models/layers accepts two117

parameters: x (node or edge features) and edge_index (adjacency matrix). Hence, the implemented118

models/layers can be integrated with other PyG models/layers and vice versa (we show that in the119

examples/ folder in the repository). The same applies for the datasets.120

3.1 Current state of implementation121

We now show the current state of the library and what is already implemented. Please refer to Section122

4 where we explain our future plans.123

Datasets. We currently include 5 datasets (Cora, PubMed, KarateClub, Dolphin and Cuneiform)124

that were originally used for evaluation of the implemented methods. We summarize their statistic in125

Table 1. Note most of them also require preprocessing steps (see: AttrE2vec [20] for details) for the126

edge classification evaluation – we implement appropriate data transformations.127

Table 1: Summary of included datasets. The ∗ symbol denotes the number of edge classes after
applying an appropriate data transformation.

Name |V| |E| dnode dedge classes

KarateClub [30] 34 156 - - 4∗

Dolphin [31] 62 318 - - 5∗

Cora [32] 2 708 10 556 1 433 - 8∗

PubMed [33] 19 717 88 648 500 - 4∗

Cuneiform [34] 5 680 23 922 3 2 2
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Models and layers. We implement most of the edge representation learning methods discussed128

in Section 2 into our proposed PyGE library (see: Table 2). Nevertheless, more of them will be129

implemented in future versions.130

Table 2: Models and layers implemented in PyGE.

Method Type Inductive Attributed Characteristics
Node pair operator [8] layer ✓ ✗ non-trainable
node2edge [18] layer ✓ ✓ trainable
Line2vec [19] model ✗ ✗ line graph, random-walk
AttrE2vec [20] model ✓ ✓ contrastive, AE, random-walk
PairE [21] model ✓ ✓ AE, KL-div

Embedding evaluation. We implement a ready-to-use edge classification evaluator class, which131

takes edge embeddings and edge labels, applies a logistic regression classifier and returns typical132

classification metrics, like ROC-AUC, F1 or accuracy. This is a widely adopted technique in133

unsupervised learning, called the linear evaluation protocol [35].134

Example usage. In the repository, we provide an end-to-end script showing the usage of a given135

model/layer. Every script: (1) loads a dataset and applies the required data transformations (prepro-136

cessing), (2) prepares the data split of edges into train and test sets, (3) builds a model, (4) trains the137

model for a certain amount of epochs, (5) evaluates the learned edge embeddings. We provide also an138

example script in this extended abstract – see Section A.139

3.2 Maintenance140

An open-source library requires continuous maintenance. We host our code base at GitHub, which141

allows to track all development progress and user-generated issues. We will build library releases and142

announce them on GitHub and host them later on the Python Package Index (PyPI) to allow users143

to simply run a pip install torch-geometric-edge command to install our library. We use144

the MIT license to give potential users, researchers, and industrial adopters a good user experience145

without worrying about the rights to use or modify our code base. Another aspect of software146

development and maintenance is Continuous Integration. We use the GitHub Actions module to147

automatically execute code quality checks and unit tests with every pull request to our library. This148

prevents that a change will break existing functionality or lower our assumed code quality.149

4 Summary and roadmap150

In this extended abstract, we presented an initial version of PyTorch-Geometric Edge, the first151

deep learning library that focuses on representation learning for graph edges. We provided information152

about currently implemented models/layers and datasets. Our roadmap is extensive and includes: (I)153

preparation of a complete documentation (right now: we rely on code quality checks and example154

scripts on how to use particular models/layers), (II) addition of more datasets (e.g., Enron Email155

Dataset2, FF-TW-YT3, among others), (III) implementation of other mentioned edge-centric models156

(and a continuous extension of the literature review to find new methods), (IV) we want to add157

more edge evaluation schemes, (V) in the full paper, we want to include an extensive benchmark158

of all implemented models and compare them in different downstream tasks; moreover we want to159

provide the entire reproducible experimental pipeline and pretrained models. With such an amount of160

incoming work, we want to encourage readers interested in edge representation learning to contact161

the authors and contribute to our library. We are convinced that edge representation learning can be162

widely adopted in networked tasks, like message classification in social networks, connection/attack163

classification in cybersecurity applications, to name only a few.164

2https://www.cs.cmu.edu/~enron/
3http://multilayer.it.uu.se/datasets.html
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[35] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon284

Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.285

URL https://openreview.net/forum?id=rklz9iAcKQ. 4286

A Example: PairE model287

Let’s explore how to use PyGE in practice. We will be using the PairE model to classify the citation288

type between academic papers (citation within a research area or cross citation; if the same research289

area, then which one). We start by loading the Cora dataset and extracting the target edge labels using290

our implemented MatchingNodeLabelsTransform() (if two node labels match, use this label, else291

use special label −1):292

from torch_geometric_edge.datasets import Cora293

from torch_geometric_edge.transforms import MatchingNodeLabelsTransform294

295

data = Cora("/tmp/pyge/", transform=MatchingNodeLabelsTransform())[0]296

Next, we split the edges into train and test sets:297

import torch298

from sklearn.model_selection import train_test_split299

300

train_mask, test_mask = train_test_split(301

torch.arange(data.num_edges),302

stratify=data.y,303

test_size=0.8,304

)305

Now, let’s create the PairE model:306

from torch_geometric_edge.models import PairE307

308

model = PairE(309

num_nodes=data.num_nodes,310

node_feature_dim=data.num_node_features,311

emb_dim=128,312

)313

We can train our model using standard PyTorch training-loop boilerplate code. Note, that we only314

use training edges (data.edge_index[:, train_mask]).315

optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)316

317

model.train()318

for _ in range(100):319

optimizer.zero_grad()320

321
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x_self, x_aggr = model.extract_self_aggr(data.x, data.edge_index[:, train_mask])322

h_edge = model(data.x, data.edge_index[:, train_mask])323

x_self_rec, x_aggr_rec = model.decode(h_edge)324

325

loss = model.loss(x_self, x_aggr, x_self_rec, x_aggr_rec)326

327

loss.backward()328

optimizer.step()329

Finally, we can evaluate our model’s edge embedding in the edge classification task using the330

LogisticRegressionEvaluator. The returned metrics will be prefixed to indicate the train/test331

split. Note that we use now all edges during inference:332

from torch_geometric_edge.evaluation import LogisticRegressionEvaluator333

334

model.eval()335

with torch.no_grad():336

Z = model(data.x, data.edge_index)337

338

metrics = LogisticRegressionEvaluator(["auc"]).evaluate(339

Z=Z,340

Y=data.y,341

train_mask=train_mask,342

test_mask=test_mask,343

)344

print(metrics)345
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