
PyTorch-Geometric Edge – a library for learning
representations of graph edges

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Machine learning on graphs (GraphML) has been successfully deployed in a2

wide variety of problem areas, as many real-world datasets are inherently rela-3

tional. However, both research and industrial applications require a solid, robust,4

and well-designed code base. In recent years, frameworks and libraries, such as5

PyTorch-Geometric (PyG) or Deep Graph Library (DGL), have been developed6

and become first-choice solutions for implementing and evaluating GraphML mod-7

els. These frameworks are designed so that one can solve any graph-related task,8

including node- and graph-centric approaches (e.g., node classification, graph9

regression). However, there are no edge-centric models implemented, and edge-10

based tasks are often limited to link prediction. In this extended abstract, we11

introduce PyTorch-Geometric Edge (PyGE), a deep learning library that fo-12

cuses on models for learning vector representations of edges. As the name suggests,13

it is built upon the PyG library and implements edge-oriented ML models, includ-14

ing simple baselines and graph neural networks, as well as corresponding datasets,15

data transformations, and evaluation mechanisms. The main goal of the presented16

library is to make edge representation learning more accessible for both researchers17

and industrial applications, simultaneously accelerating the development of the18

aforementioned methods, datasets and benchmarks.19

1 Introduction20

Nowadays, one of the most prominent research areas in machine learning is representation learning.21

Solving classification, regression, or clustering tasks by means of popular machine learning models,22

like decision trees, SVMs, logistic regression, linear regression, or feed-forward neural networks,23

requires the presence of object features in the form of real-valued number vectors (also called24

embeddings, or representation vectors). Representation learning aims at finding algorithms and25

models that can extract such numeric features from arbitrary objects (images, texts, or graphs) in26

an automated and reliable way. In terms of machine learning on graphs (GraphML), these models /27

algorithms are called graph representation learning (GRL) methods. In recent years, GRL methods28

have been successfully deployed in a wide variety of domains, including social networks, financial29

networks, and computational chemistry [1–4].30

This wide adoption of graph-based models led to the creation of publicly available implementations,31

often in the form of frameworks or libraries with standardized APIs, which describe data formats,32

model building blocks, and scalable parameter optimization techniques. First-choice solutions are33

currently frameworks like PyTorch-Geometric (PyG) [5] or the Deep Graph Library (DGL) [6].34

They include most of the existing graph neural networks and some traditional models, as well as35

datasets, preprocessing transformations, and basic evaluation mechanisms. This simplifies both36

production-ready model development and conducting GraphML research.37

The implemented design choices allow solving any graph-related task (e.g., node classification, graph38

regression). Nevertheless, the main focus in these libraries is on node- and graph-centric models and39

tasks, whereas edge-based tasks are often limited to link prediction.40

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

PyTorch-Geometric Edge – a library for learning representations of graph edges

Present work. We aim to fill the gap for edge-centric GRL models and tasks. In this extended41

abstract, we introduce PyTorch-Geometric Edge (PyGE), a deep learning library focused on42

models for learning vector representations of graph edges. We build upon the PyTorch-Geometric43

(PyG) library and provide implementations: (1) for edge-centric models, including simple baselines44

and graph neural networks, (2) edge-based GNN layers, (3) datasets and corresponding preprocessing45

functions (in a PyTorch- and PyG-compliant format), and (4) evaluation mechanisms for edge tasks.46

PyGE should make edge representation learning more accessible for both researchers and industrial47

applications, simultaneously accelerating the development of edge-centric methods, datasets and48

benchmarks. Disclaimer: Please note that the introduced library is still under active development.49

We provide a summary of our planned work in Section 4.50

Contributions. We summarize our contributions as follows: (C1) We publicly release151

PyTorch-Geometric Edge, the first deep learning library for edge representation learning. (C2)52

We implement a subset of available edge-based models, graph neural network layers, datasets, and53

corresponding data transformations.54

2 Preliminaries55

We start by introducing definitions for basic concepts covered in our presented library and explore56

the current state of node and edge embedding approaches, as well as GraphML software.57

Graph. A graph G = (V, E) describes a set of nodes V that are connected (pairwise) by a set of58

edges E ∈ V × V . An attributed graph G = (V, E ,X,Xedge) extends this definition by a set of node59

attributes: X ∈ R|V|×dnode , and optionally also edge attributes: Xedge ∈ R|E|×dedge .60

Edge representation learning. The goal is to find a function fθ : E → Rdedge that maps an edge61

e(u,v) ∈ E into a low-dimensional (dedge ≪ dim(E)) vector representation (embedding) zuv that62

preserves selected properties of the edge (e.g., features or local structural neighborhood information).63

Edge-based tasks. Evaluation tasks for edge embeddings include: (1) link prediction – binary64

classification problem of the existence (future appearance) of an edge; (2) edge classification –65

label/type prediction of an existing edge (e.g., kind of social network relation); (3) edge regression –66

prediction a numerical edge feature (e.g., bond strength in a molecule).67

Node representation learning methods. Early approaches were built around the transductive68

setting with an enormous trainable lookup-embedding matrix, whose rows denote representation69

vectors for each node. The optimization process would preserve structural node information. For70

instance, DeepWalk [7], and its successor Node2vec [8] use the Skipgram [9] objective to model71

random walk-based co-occurrence probabilities. TADW [10] extended this approach to attributed72

graphs and reformulated the model as a matrix factorization problem. Other early approaches include:73

LINE [11], SDNE [12], or FSCNMF [13]. Recent methods are based on Graph Neural Networks74

(GNNs) – trainable functions that transform feature vectors of a node and its neighbors to a new75

embedding vector (inductive setting). These functions can be stacked to create a deep (graph) neural76

network. The most popular ideas include: a graph reformulation of the convolution operator (GCN77

[14]), neighborhood sampling and aggregation of sampled features (GraphSAGE [15]), attention78

mechanism over graph structure (GAT [16]) or modeling injective functions (GIN [17]).79

Edge representation learning methods. This area is still underdeveloped, i.e., only a handful of80

proposed models and algorithms exists. Most early approaches are node-based transformations,81

i.e., the edge embedding zuv is computed from two node embeddings zu and zv. There are simple82

non-trainable binary operators [8], such as the average (zuv = zu+zv

2), the Hadamard product83

(zuv = zu ∗ zv), or the weighted L1 (zuv = |zu − zv|) or L2 (zuv = |zu − zv|2) operators.84

NRIM [18] proposes trainable transformations as two kinds of neural network layers: node2edge85

(zuv = fθ([zu, zv,x
edge
uv])) and edge2node (zu = fω([

∑
v∈N (u) zuv,xu])). Another group of86

edge embedding methods directly learn the edge embeddings, i.e., without an intermediate node87

1The link to the repository will be included in the final version and is now omitted due to double-blind policy.
We include an anonymized version of our library in the attachments on OpenReview.

2

PyTorch-Geometric Edge – a library for learning representations of graph edges

embedding step. Line2vec [19] utilizes a line graph transformation (converting nodes into edges88

and vice versa), applies a custom edge weighting method and runs Node2vec on the line graph.89

The loss function extends the Skipgram loss with a so-called collective homophily loss (to ensure90

closeness of neighboring edges in the embedding space). This method is inherently transductive (due91

to Node2vec) and completely ignores any attributes. Those problems are addressed by AttrE2vec92

[20]. It samples a fixed number of uniform random walks from two edge neighborhoods (N (u),93

N (v)) and aggregates feature vectors of encountered edges (using average, exponential decaying, or94

recurrent neural networks) into summary vectors Su, Sv, respectively. An MLP encoder network95

with a self-attention-like mechanism transforms the summary vectors and the edge features into the96

final edge embedding. AttrE2vec is trained using a contrastive cosine learning objective and a feature97

reconstruction loss. PairE [21] utilizes two kinds of edge feature aggregations: (1) concatenated node98

features (self features), (2) concatenation of averaged neighbor features for both nodes (agg features).99

An MLP encoder with skip-connections transforms these two vectors into the edge embedding. Two100

shallow decoders reconstruct the feature probability distribution. The resulting PairE autoencoder is101

trained using the sum of the KL-divergences of the self and agg features. Other methods include:102

EGNN [22], ConPI [23] or Edge2vec [24].103

GraphML software. The backbone of all modern deep learning frameworks are tools for automatic104

differentiation, such as: Tensorflow [25] or PyTorch [26]. GraphML libraries are mostly built upon105

these tools, e.g., PyG uses PyTorch, GEM [27] and DynGEM [28] use Tensorflow, DGL can be106

used both with Tensorflow and PyTorch, whereas some like KarateClub [29] are using a custom107

backend. All of these libraries are focused on node- and graph-centric models. Our proposed108

PyTorch-Geometric Edge library is the first one that focuses on edge-centric models and layers.109

It adapts the PyG library API and uses PyTorch as its backend.110

3 PyTorch-Geometric Edge111

Relation to PyG. Our proposed PyGE library re-uses the API and data format implemented in112

PyTorch-Geometric. The graph is stored as a Data() object with edges in form of a sparse COO113

matrix (edge_index). Other fields include: x (node attributes), edge_attr (edge attributes), y114

(node/edge labels). We also keep a similar layout of the library package structure, i.e., we have a115

module for datasets, models, neural network layers (nn), data transformations (transforms) and116

data samplers (samplers). The forward() method in all implemented models/layers accepts two117

parameters: x (node or edge features) and edge_index (adjacency matrix). Hence, the implemented118

models/layers can be integrated with other PyG models/layers and vice versa (we show that in the119

examples/ folder in the repository). The same applies for the datasets.120

3.1 Current state of implementation121

We now show the current state of the library and what is already implemented. Please refer to Section122

4 where we explain our future plans.123

Datasets. We currently include 5 datasets (Cora, PubMed, KarateClub, Dolphin and Cuneiform)124

that were originally used for evaluation of the implemented methods. We summarize their statistic in125

Table 1. Note most of them also require preprocessing steps (see: AttrE2vec [20] for details) for the126

edge classification evaluation – we implement appropriate data transformations.127

Table 1: Summary of included datasets. The ∗ symbol denotes the number of edge classes after
applying an appropriate data transformation.

Name |V| |E| dnode dedge classes

KarateClub [30] 34 156 - - 4∗

Dolphin [31] 62 318 - - 5∗

Cora [32] 2 708 10 556 1 433 - 8∗

PubMed [33] 19 717 88 648 500 - 4∗

Cuneiform [34] 5 680 23 922 3 2 2

3

PyTorch-Geometric Edge – a library for learning representations of graph edges

Models and layers. We implement most of the edge representation learning methods discussed128

in Section 2 into our proposed PyGE library (see: Table 2). Nevertheless, more of them will be129

implemented in future versions.130

Table 2: Models and layers implemented in PyGE.

Method Type Inductive Attributed Characteristics
Node pair operator [8] layer ✓ ✗ non-trainable
node2edge [18] layer ✓ ✓ trainable
Line2vec [19] model ✗ ✗ line graph, random-walk
AttrE2vec [20] model ✓ ✓ contrastive, AE, random-walk
PairE [21] model ✓ ✓ AE, KL-div

Embedding evaluation. We implement a ready-to-use edge classification evaluator class, which131

takes edge embeddings and edge labels, applies a logistic regression classifier and returns typical132

classification metrics, like ROC-AUC, F1 or accuracy. This is a widely adopted technique in133

unsupervised learning, called the linear evaluation protocol [35].134

Example usage. In the repository, we provide an end-to-end script showing the usage of a given135

model/layer. Every script: (1) loads a dataset and applies the required data transformations (prepro-136

cessing), (2) prepares the data split of edges into train and test sets, (3) builds a model, (4) trains the137

model for a certain amount of epochs, (5) evaluates the learned edge embeddings. We provide also an138

example script in this extended abstract – see Section A.139

3.2 Maintenance140

An open-source library requires continuous maintenance. We host our code base at GitHub, which141

allows to track all development progress and user-generated issues. We will build library releases and142

announce them on GitHub and host them later on the Python Package Index (PyPI) to allow users143

to simply run a pip install torch-geometric-edge command to install our library. We use144

the MIT license to give potential users, researchers, and industrial adopters a good user experience145

without worrying about the rights to use or modify our code base. Another aspect of software146

development and maintenance is Continuous Integration. We use the GitHub Actions module to147

automatically execute code quality checks and unit tests with every pull request to our library. This148

prevents that a change will break existing functionality or lower our assumed code quality.149

4 Summary and roadmap150

In this extended abstract, we presented an initial version of PyTorch-Geometric Edge, the first151

deep learning library that focuses on representation learning for graph edges. We provided information152

about currently implemented models/layers and datasets. Our roadmap is extensive and includes: (I)153

preparation of a complete documentation (right now: we rely on code quality checks and example154

scripts on how to use particular models/layers), (II) addition of more datasets (e.g., Enron Email155

Dataset2, FF-TW-YT3, among others), (III) implementation of other mentioned edge-centric models156

(and a continuous extension of the literature review to find new methods), (IV) we want to add157

more edge evaluation schemes, (V) in the full paper, we want to include an extensive benchmark158

of all implemented models and compare them in different downstream tasks; moreover we want to159

provide the entire reproducible experimental pipeline and pretrained models. With such an amount of160

incoming work, we want to encourage readers interested in edge representation learning to contact161

the authors and contribute to our library. We are convinced that edge representation learning can be162

widely adopted in networked tasks, like message classification in social networks, connection/attack163

classification in cybersecurity applications, to name only a few.164

2https://www.cs.cmu.edu/~enron/
3http://multilayer.it.uu.se/datasets.html

4

https://www.cs.cmu.edu/~enron/
http://multilayer.it.uu.se/datasets.html

PyTorch-Geometric Edge – a library for learning representations of graph edges

References165

[1] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele166

Catasta, Jure Leskovec, Regina Barzilay, Peter Battaglia, Yoshua Bengio, Michael Bronstein,167

Stephan Günnemann, Will Hamilton, Tommi Jaakkola, Stefanie Jegelka, Maximilian Nickel,168

Chris Re, Le Song, Jian Tang, Max Welling, and Rich Zemel. Open graph benchmark: Datasets169

for machine learning on graphs, may 2020. URL http://arxiv.org/abs/2005.00687. 1170

[2] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network Representation Learning:171

A Survey. IEEE Transactions on Big Data, 6(1):3–28, 2018. doi: 10.1109/tbdata.2018.2850013.172

[3] Bentian Li and Dechang Pi. Network representation learning: a systematic literature review.173

Neural Computing and Applications, 32(21):16647–16679, nov 2020. ISSN 0941-0643. doi:174

10.1007/s00521-020-04908-5.175

[4] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine176

Learning on Graphs: A Model and Comprehensive Taxonomy, 2020. URL http://arxiv.177

org/abs/2005.03675. 1178

[5] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.179

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 1180

[6] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,181

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.182

Deep graph library: A graph-centric, highly-performant package for graph neural networks.183

arXiv preprint arXiv:1909.01315, 2019. 1184

[7] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social185

Representations. In Proceedings of the 20th ACM SIGKDD international conference on186

Knowledge discovery and data mining - KDD ’14, pages 701–710, New York, New York,187

USA, 2014. ACM Press. ISBN 9781450329569. doi: 10.1145/2623330.2623732. URL188

http://dl.acm.org/citation.cfm?doid=2623330.2623732. 2189

[8] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In190

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data191

Mining, volume 13-17-Augu, pages 855–864, 2016. ISBN 9781450342322. doi: 10.1145/192

2939672.2939754. 2, 4193

[9] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed194

representations of words and phrases and their compositionality. In Proceedings of the 26th195

International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,196

pages 3111–3119, USA, 2013. Curran Associates Inc. URL http://dl.acm.org/citation.197

cfm?id=2999792.2999959. 2198

[10] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. Network rep-199

resentation learning with rich text information. In Proceedings of the 24th International200

Conference on Artificial Intelligence, IJCAI’15, pages 2111–2117. AAAI Press, 2015. ISBN201

978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832415.2832542. 2202

[11] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-203

scale information network embedding. In WWW 2015 - Proceedings of the 24th International204

Conference on World Wide Web, pages 1067–1077, 2015. ISBN 9781450334693. doi: 10.1145/205

2736277.2741093. 2206

[12] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of207

the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, volume208

13-17-Augu, pages 1225–1234, 2016. ISBN 9781450342322. doi: 10.1145/2939672.2939753.209

2210

[13] Sambaran Bandyopadhyay, Harsh Kara, Aswin Kannan, and M N Murty. FSCNMF: Fusing211

structure and content via non-negative matrix factorization for embedding information networks,212

2018. 2213

[14] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional214

Networks. In ICLR, 2017. 2215

[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on216

Large Graphs. In NIPS, pages 1024–1034, 2017. 2217

5

http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.03675
http://arxiv.org/abs/2005.03675
http://arxiv.org/abs/2005.03675
http://dl.acm.org/citation.cfm?doid=2623330.2623732
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2832415.2832542

PyTorch-Geometric Edge – a library for learning representations of graph edges

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua218

Bengio. Graph Attention Networks. In ICLR, 2018. 2219

[17] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural220

networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826. 2221

[18] Thomas Kipf, Ethan Fetaya, Kuan Chieh Wang, Max Welling, and Richard Zemel. Neural222

relational inference for Interacting systems. In 35th International Conference on Machine223

Learning, ICML 2018, volume 6, pages 4209–4225, 2018. ISBN 9781510867963. 2, 4224

[19] Sambaran Bandyopadhyay, Anirban Biswas, Narasimha Murty, and Ramasuri Narayanam. Be-225

yond node embedding: A direct unsupervised edge representation framework for homogeneous226

networks, 2019. 3, 4227

[20] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Attre2vec: Unsupervised attributed228

edge representation learning. Information Sciences, 592:82–96, 2022. ISSN 0020-0255.229

doi: https://doi.org/10.1016/j.ins.2022.01.048. URL https://www.sciencedirect.com/230

science/article/pii/S0020025522000779. 3, 4231

[21] You Li, Bei Lin, Binli Luo, and Ning Gui. Graph representation learning beyond node and232

homophily. IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2022. doi:233

10.1109/tkde.2022.3146270. URL https://doi.org/10.1109%2Ftkde.2022.3146270. 3,234

4235

[22] Liyu Gong and Qiang Cheng. Adaptive edge features guided graph attention networks. CoRR,236

abs/1809.02709, 2018. URL http://arxiv.org/abs/1809.02709. 3237

[23] Zhen Wang, Bo Zong, and Huan Sun. Modeling context pair interaction for pairwise tasks on238

graphs. In Proceedings of the 14th ACM International Conference on Web Search and Data239

Mining, WSDM ’21, page 851–859, New York, NY, USA, 2021. Association for Computing240

Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441744. URL https://doi.org/241

10.1145/3437963.3441744. 3242

[24] Changping Wang, Chaokun Wang, Zheng Wang, Xiaojun Ye, and Philip S. Yu. Edge2vec:243

Edge-based social network embedding. ACM Trans. Knowl. Discov. Data, 14(4), may 2020.244

ISSN 1556-4681. doi: 10.1145/3391298. URL https://doi.org/10.1145/3391298. 3245

[25] TensorFlow Developers. Tensorflow, May 2022. URL https://doi.org/10.5281/246

zenodo.6574269. Specific TensorFlow versions can be found in the "Versions"247

list on the right side of this page.
See the full list of authors <a href="htt248

ps://github.com/tensorflow/tensorflow/graphs/contr ibutors">on GitHub. 3249

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,250

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas251

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,252

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-253

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-254

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,255

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/256

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.257

pdf. 3258

[27] Palash Goyal and Emilio Ferrara. Gem: A python package for graph embedding methods.259

Journal of Open Source Software, 3(29):876. 3260

[28] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for261

dynamic graphs. CoRR, abs/1805.11273, 2018. 3262

[29] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-263

source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th264

ACM International Conference on Information and Knowledge Management (CIKM ’20), page265

3125–3132. ACM, 2020. 3266

[30] Wayne W. Zachary. An information flow model for conflict and fission in small groups.267

Journal of Anthropological Research, 33(4):452–473, 1977. ISSN 00917710. URL http:268

//www.jstor.org/stable/3629752. 3269

[31] D Lusseau, K Schneider, O J Boisseau, P Haase, E Slooten, and S M Dawson. The bottlenose270

dolphin community of doubtful sound features a large proportion of long-lasting associations -271

6

http://arxiv.org/abs/1810.00826
https://www.sciencedirect.com/science/article/pii/S0020025522000779
https://www.sciencedirect.com/science/article/pii/S0020025522000779
https://www.sciencedirect.com/science/article/pii/S0020025522000779
https://doi.org/10.1109%2Ftkde.2022.3146270
http://arxiv.org/abs/1809.02709
https://doi.org/10.1145/3437963.3441744
https://doi.org/10.1145/3437963.3441744
https://doi.org/10.1145/3437963.3441744
https://doi.org/10.1145/3391298
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.jstor.org/stable/3629752
http://www.jstor.org/stable/3629752
http://www.jstor.org/stable/3629752

PyTorch-Geometric Edge – a library for learning representations of graph edges

can geographic isolation explain this unique trait? Behavioral Ecology and Sociobiology, 54:272

396–405, 2003. ISSN 0340-5443. doi: 10.1007/s00265-003-0651-y. 3273

[32] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina274

Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008.275

doi: 10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/276

article/view/2157. 3277

[33] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying278

for Collective Classification. In Proceedings ofthe Workshop on Mining and Learn- ing with279

Graphs, pages 1–8, Edinburgh, Scotland, UK., 2012. 3280

[34] Nils M. Kriege, Matthias Fey, Denis Fisseler, Petra Mutzel, and Frank Weichert. Recognizing281

cuneiform signs using graph based methods. CoRR, abs/1802.05908, 2018. URL http:282

//arxiv.org/abs/1802.05908. 3283

[35] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon284

Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.285

URL https://openreview.net/forum?id=rklz9iAcKQ. 4286

A Example: PairE model287

Let’s explore how to use PyGE in practice. We will be using the PairE model to classify the citation288

type between academic papers (citation within a research area or cross citation; if the same research289

area, then which one). We start by loading the Cora dataset and extracting the target edge labels using290

our implemented MatchingNodeLabelsTransform() (if two node labels match, use this label, else291

use special label −1):292

from torch_geometric_edge.datasets import Cora293

from torch_geometric_edge.transforms import MatchingNodeLabelsTransform294

295

data = Cora("/tmp/pyge/", transform=MatchingNodeLabelsTransform())[0]296

Next, we split the edges into train and test sets:297

import torch298

from sklearn.model_selection import train_test_split299

300

train_mask, test_mask = train_test_split(301

torch.arange(data.num_edges),302

stratify=data.y,303

test_size=0.8,304

)305

Now, let’s create the PairE model:306

from torch_geometric_edge.models import PairE307

308

model = PairE(309

num_nodes=data.num_nodes,310

node_feature_dim=data.num_node_features,311

emb_dim=128,312

)313

We can train our model using standard PyTorch training-loop boilerplate code. Note, that we only314

use training edges (data.edge_index[:, train_mask]).315

optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)316

317

model.train()318

for _ in range(100):319

optimizer.zero_grad()320

321

7

https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
http://arxiv.org/abs/1802.05908
http://arxiv.org/abs/1802.05908
http://arxiv.org/abs/1802.05908
https://openreview.net/forum?id=rklz9iAcKQ

PyTorch-Geometric Edge – a library for learning representations of graph edges

x_self, x_aggr = model.extract_self_aggr(data.x, data.edge_index[:, train_mask])322

h_edge = model(data.x, data.edge_index[:, train_mask])323

x_self_rec, x_aggr_rec = model.decode(h_edge)324

325

loss = model.loss(x_self, x_aggr, x_self_rec, x_aggr_rec)326

327

loss.backward()328

optimizer.step()329

Finally, we can evaluate our model’s edge embedding in the edge classification task using the330

LogisticRegressionEvaluator. The returned metrics will be prefixed to indicate the train/test331

split. Note that we use now all edges during inference:332

from torch_geometric_edge.evaluation import LogisticRegressionEvaluator333

334

model.eval()335

with torch.no_grad():336

Z = model(data.x, data.edge_index)337

338

metrics = LogisticRegressionEvaluator(["auc"]).evaluate(339

Z=Z,340

Y=data.y,341

train_mask=train_mask,342

test_mask=test_mask,343

)344

print(metrics)345

8

	1 Introduction
	2 Preliminaries
	3 PyTorch-Geometric Edge
	3.1 Current state of implementation
	3.2 Maintenance

	4 Summary and roadmap
	A Example: PairE model

