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Abstract

Large language models (LLMs) have demon-
strated strong mathematical reasoning capa-
bilities but remain susceptible to hallucina-
tions—producing plausible yet incorrect state-
ments—especially in theorem proving, sym-
bolic manipulation, and numerical computation.
While self-consistency (SC) has been explored
as a means to improve factuality, existing ap-
proaches primarily apply SC to final-answer
selection, neglecting the logical consistency
of intermediate reasoning steps. So we intro-
duce a structured self-consistency framework
designed to enhance the reliability of mathe-
matical reasoning. Our method enforces self-
consistency across intermediate steps and final
outputs, reducing logical inconsistencies and
hallucinations. Experimental results demon-
strate that our SC significantly improves proof
validity, symbolic reasoning accuracy, and nu-
merical stability while maintaining computa-
tional efficiency. Further analysis reveals that
structured self-consistency not only enhances
problem-solving accuracy but also reduces the
variance of model-generated outputs. These
findings highlight self-consistency as a robust
mechanism for improving mathematical reason-
ing in LLMs, paving the way for more reliable
and interpretable Al-driven mathematics.

1 Introduction

Large language models (LLMs) have achieved sig-
nificant breakthroughs in natural language process-
ing (NLP) and mathematical reasoning (Kapfer
et al., 2025). Recent models have demonstrated
remarkable capabilities in theorem proving, sym-
bolic manipulation, and numerical problem-solving
(Lightman et al., 2023; Wang et al., 2024b,c). How-
ever, despite these advances, LLMs still struggle
with hallucinations—generating plausible yet fac-
tually incorrect outputs (He et al., 2024). In math-
ematical reasoning, where correctness is strictly
binary, hallucinations can propagate through multi-
step derivations, leading to fundamentally flawed

proofs or incorrect calculations (Zhong et al., 2023).
These errors undermine the reliability of LLMs
in applications requiring high-precision reasoning,
such as automated theorem proving and scientific
computing (Jain et al., 2024).

Previous research has explored various meth-
ods to mitigate hallucinations in LLMs, includ-
ing fine-tuning on high-quality datasets (Xin et al.,
2024), incorporating external verification mech-
anisms (Ankner et al., 2024), and designing hy-
brid neuro-symbolic architectures (Kapfer et al.,
2025). A promising approach is self-consistency
(SC), which enhances factual reliability by aggregat-
ing multiple independent reasoning paths and select-
ing the most consistent response (Lightman et al.,
2023). While SC has been successfully applied
to general question-answering tasks (Wang et al.,
2024b), its application to mathematical reasoning
remains limited. Existing SC-based approaches
primarily focus on verifying final answers while ne-
glecting intermediate reasoning steps (Wang et al.,
2024c), making them ineffective for theorem prov-
ing and multi-step symbolic reasoning. Addition-
ally, SC requires multiple response samples, in-
creasing computational cost, but the trade-off be-
tween accuracy gains and inference efficiency re-
mains underexplored (He et al., 2024).

Motivated by these challenges, we propose a
novel application of self-consistency for mathemat-
ical reasoning, where SC is applied not only to final
outputs but also to intermediate reasoning steps.
Our intuition is that self-consistency can serve as a
structural verification mechanism, reinforcing logi-
cal coherence throughout multi-step mathematical
derivations. By extending SC beyond simple an-
swer aggregation, we aim to improve LLM reliabil-
ity in theorem proving, algebraic transformations,
and numerical problem-solving. Furthermore, we
hypothesize that a structured application of SC can
reduce hallucinations while maintaining computa-
tional efficiency, addressing the trade-off between



reasoning accuracy and inference cost.

To validate this intuition, we propose a self-
consistency framework for mathematical reason-
ing that systematically applies SC at both interme-
diate and final steps of problem-solving. We con-
duct a comprehensive empirical study on three key
mathematical reasoning tasks: 1) Theorem prov-
ing: Ensuring consistency in logical deductions; 2)
Symbolic manipulation: Improving accuracy in
algebraic transformations; 3) Numerical compu-
tation: Enhancing stability in computational tasks.
Our extensive experiments demonstrate that SC sig-
nificantly reduces hallucinations, improves logical
consistency, and enhances mathematical accuracy
across multiple datasets. Additionally, we analyze
the computational trade-offs of SC, quantifying its
impact on inference cost and problem-solving effi-
ciency.

Contributions This paper makes the following
key contributions:

e We propose a novel self-consistency frame-
work that extends SC beyond final answers to
intermediate reasoning steps, improving step-
wise logical coherence.

e We conduct a comprehensive evaluation of
self-consistency across three distinct mathe-
matical reasoning domains: theorem proving,
symbolic manipulation, and numerical com-
putation.

e We analyze the computational trade-offs
of self-consistency, demonstrating that struc-
tured SC application improves accuracy while
maintaining inference efficiency.

2 Methodology

2.1 Theoretical Foundation of
Self-Consistency

Self-consistency in large language models (LLMs)
refers to the agreement between multiple inde-
pendently sampled responses to the same query.
Prior research has demonstrated that higher self-
consistency correlates with improved factual relia-
bility (Farquhar et al., 2024). In mathematical rea-
soning tasks, where correctness is strictly binary,
self-consistency plays a crucial role in distinguish-
ing valid proofs from hallucinated or erroneous
statements.

Definition of Self-Consistency Given a mathe-
matical statement s;, we define its self-consistency
factuality score as:
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f(s;) = — P(consistent|s;, r;), (1)
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where R = {ry,r,,...,r;} represents a set of
responses to the same problem, obtained through
different stochastic sampling methods (e.g., temper-
ature sampling, nucleus sampling). The function
P(consistent|s;, r;) denotes the probability that the
response r; aligns with the true mathematical cor-
rectness of s;.

Probabilistic Interpretation From a probabilis-
tic perspective, self-consistency can be framed as an
expectation over a probability space (2, F, P). Let
S; be a random variable indicating the correctness
of statement s;, and let the sampled responses R be
drawn from a conditional probability distribution
P(R]|S;). The expected self-consistency factuality
score can be rewritten as:

ELf(SPI= ) P(S;|r)P(r). 2)
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This formulation allows us to interpret self-
consistency as a Bayesian estimation problem,
where multiple sampled responses collectively con-
tribute to refining the probability of correctness.

Self-Consistency as an Agreement Metric To
quantify the agreement among sampled responses,
we introduce an inter-response agreement function:

1
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where [I(-) is an indicator function that returns
1 if two responses are identical and O otherwise.
Higher values of C(s;) indicate stronger agreement
among sampled responses, suggesting a more reli-
able factuality estimate.

Bayesian Updating for Self-Consistency Refine-
ment Given an initial belief about the correctness
of a response distribution, we can iteratively refine
our factuality estimation using Bayesian updating:

P(S;|R) x P(S;) H P(r;|S)). “
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This approach enables adaptive filtering, where
responses with lower agreement contribute less to
the final factuality score. As more responses are
aggregated, the probability distribution converges
to a more confident assessment.



Relation to Entropy-Based Metrics Self-
consistency can also be related to entropy-based
uncertainty measures. The Shannon entropy of a
response distribution is given by:

H(R)=- Y P(r))log P(r)). (5)
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Lower entropy implies higher self-consistency,
as the response distribution is more concentrated
around a single correct answer. By minimizing
entropy, we can improve the reliability of mathe-
matical statements generated by LLMs.

2.2 Self-Consistency for Mathematical
Reasoning

The application of self-consistency in mathematical
reasoning requires specialized techniques to verify
logical deductions, symbolic manipulations, and
numerical calculations. Unlike general text gen-
eration tasks, where factuality is often subjective,
mathematical reasoning demands strict correctness.
We introduce three primary domains where self-
consistency enhances reasoning reliability: theo-
rem proving, symbolic manipulation, and numeri-
cal verification.

Theorem Proving and Logical Deduction In
formal mathematics, a proof is a sequence of de-
ductive steps that logically derive a conclusion from
axioms and previously established theorems. Given
a theorem statement 7', we sample multiple proof at-
tempts P = {p;, p,, ..., P,,} and analyze their struc-
tural consistency.

To quantify proof agreement, we define the struc-
tural proof consistency score:

Cproof = % Z Z 5(17,',]’]), (6)
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where 6(p;, p;) is a structural similarity function
that compares the sequence of logical steps in two
proofs. Higher values of C,,, indicate greater con-
vergence among sampled proofs, suggesting higher
reliability.

To further refine consistency evaluation, we in-
troduce a stepwise proof verification function:

T
V(p,) = [ ] Ustep t is valid), (7)
t=1

where T is the total number of proof steps, and
[(+) is an indicator function that returns 1 if step ¢ is
logically valid and O otherwise. By aggregating
V(p;) across all proof samples, we estimate the
theorem’s self-consistency reliability.

Symbolic Manipulation Many mathematical
problems involve transformations of symbolic ex-
pressions, such as algebraic simplifications, equa-
tion solving, and differentiation. A critical chal-
lenge is ensuring that different sampled responses
yield equivalent expressions.

Given a mathematical expression e, we obtain
multiple transformations £ = {e,e,,...,e,} and
measure their consistency using tree-based struc-
tural comparison:

|7 (e)) N T (e;)]
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where T (e) represents the syntax tree of expres-
sion e. This measure evaluates the structural simi-
larity of different sampled outputs and ensures that
they converge to the same mathematical represen-
tation.

Additionally, we define an equivalence probabil-
ity for symbolic transformations:

1
Pl©) = 37 DY e =e). )

e‘-,ejeé',i;éj

(®)

where e; = e; indicates that two expressions are
algebraically equivalent. A high P, (e) suggests
strong self-consistency in symbolic reasoning.

Numerical Calculations In numerical problem-
solving, consistency is evaluated by verifying
whether multiple sampled computations yield the
same numerical result. Given a function f(x) and
an input x, we generate multiple numerical outputs
N = {n,ny,....,n.} and compute a numerical con-
sistency score:

Cnum = % Z Z ﬂ(ni = nj)-

n,eN njef\f,jq’:i

(10)

By applying self-consistency analysis to theo-
rem proving, symbolic manipulation, and numeri-
cal calculations, we enhance the factual reliability
of LLM-generated mathematical reasoning. These
techniques provide a robust framework for detect-
ing hallucinations and ensuring correctness in au-
tomated mathematical problem-solving.

2.3 Mathematical Consistency Estimation

Mathematical reasoning in large language models
(LLMs) is inherently probabilistic due to stochastic
generation mechanisms. To systematically quantify
the consistency of generated mathematical state-
ments, we introduce a set of estimation functions
that measure agreement across sampled responses.
These estimation methods apply to theorem proving,
symbolic reasoning, and numerical computation.



Global Self-Consistency Score Given a set of
responses R = {r,r,,....r;} to a mathematical
query, we define the global self-consistency score

as: 1 an

Cglobal = E Z
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where [(-) is an indicator function that evaluates
whether two sampled responses are identical. This
metric provides a direct measure of how often the
model generates consistent outputs.

Theorem Proof Consistency For theorem prov-
ing, a more structured estimation is required. Given
a set of sampled proofs P = {p, p,, ..., D,y }, We de-
fine a structural proof consistency score that mea-
sures stepwise alignment:

Cproof = % Z

Di-Pj EP,i#j
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where S(p;, p;) represents a similarity function
that compares the logical steps of two proofs, nor-
malized between 0 and 1. We compute S(p;, p;) by
matching corresponding proof steps and calculating
an alignment score:

T
1
Sip) =5 Yy =5;0.  (13)
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where s; , is the #-th step in proof p;, and T is the
total number of steps in the proof. A higher C,

proof
indicates greater agreement in proof structures.

Symbolic Expression Consistency Symbolic
manipulations introduce additional challenges, as
equivalent expressions may not be syntactically
identical. To account for this, we define the sym-
bolic consistency score based on semantic equiva-
lence:

1 —
Csymbolic = E 2 H(ei = ej)a (14)
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where e¢; = e; indicates that two expressions

are algebraically equivalent. This is determined
by symbolic computation tools such as algebraic
simplification or equation normalization.
To refine symbolic consistency, we introduce a
tree-based similarity function:
[T (e)NT(ey)l
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where T (e) is the set of nodes in the expression’s

syntax tree. This measure quantifies how struc-

turally similar two expressions are, even if they are
not identical.

Numerical Stability Estimation For numerical
reasoning, consistency is defined in terms of the
variance of generated outputs. Given numerical
results N' = {ny,n,,...,n; }, we compute the nu-
merical stability score using variance reduction:

a*(N)

¢ 2
max(aref, €)

num — 1 - s (16)

where 6%(N') is the variance of the sampled nu-
merical results, and arzef is a reference variance
threshold. The small constant € ensures numerical
stability. Lower variance implies greater numerical
consistency.

Alternatively, we can compute a thresholded
agreement score:

Anum = % Z
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where 7 is a predefined numerical tolerance. This
accounts for minor floating-point variations while
ensuring agreement.

Entropy-Based Uncertainty Estimation Self-
consistency can also be linked to entropy-based
uncertainty measures. We define the entropy of the
sampled responses as:

H(R)=- Y P(r))log P(r)).

r/-ER

(18)

Lower entropy indicates greater consistency, as
responses converge toward a single, confident an-
swer. By minimizing entropy, we reduce ambiguity
in mathematical reasoning tasks.

These mathematical consistency estimation
methods collectively enable a structured approach
for quantifying reliability in LLM-generated proofs,
symbolic reasoning, and numerical computation.

2.4 Error Propagation Analysis

While self-consistency improves the reliability of
mathematical reasoning in large language models
(LLMs), errors can still propagate across differ-
ent stages of reasoning, particularly in multi-step
problem-solving scenarios. To systematically ana-
lyze and mitigate such error propagation, we intro-
duce a structured evaluation framework that tracks
inconsistencies at intermediate steps.

Stepwise Consistency Verification Mathemati-
cal reasoning often involves sequential steps, where
each step builds upon previous ones. Given a multi-
step derivation D = {s, 55, ..., S;-}, where s, repre-
sents the 7-th step, we define the stepwise consis-
tency score as:
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where §, denotes the expected correct step at
position ¢, and [(-) is an indicator function that eval-
uates correctness. This score quantifies the degree
to which the model follows a consistent reasoning
trajectory.

Error Accumulation Function To assess how er-
rors accumulate over sequential steps, we introduce
an error accumulation function:

T
E(D) = ) Al(s, # 3, (20)
t=1

where 4, is a weighting factor that accounts for
the impact of errors at different stages. Early-stage
errors (¢ is small) may compound more significantly
in later steps, necessitating an exponential weight-

ing function: at=1) 1)

A =e

where «a is a scaling factor that determines how
strongly early errors influence subsequent steps.

Error Propagation Probability Beyond individ-
ual steps, we analyze the probability of an error
propagating through subsequent steps. Given that
an error occurs at step ¢, the probability that it prop-
agates to step ¢ + 1 is modeled as:

P(s,, incorrect|s, incorrect) = f,, (22)

where f; is an empirically determined propaga-
tion factor that depends on the problem type. The
overall probability of an incorrect final result can
be approximated recursively:

T
P(sy incorrect) = 1 — H(l = BA(s, # 8,)). (23)
=1

Higher values of P(s incorrect) indicate that er-
rors are more likely to persist throughout reasoning
steps.

Logical Flow Consistency To track logical con-
sistency beyond stepwise correctness, we intro-
duce a dependency graph consistency metric. We
model multi-step reasoning as a directed acyclic
graph (DAG), where nodes represent individual
steps and edges encode logical dependencies. Let
G = (V, E) be a reasoning graph with vertices V'
and directed edges E, the overall logical consis-
tency score is:

1

Clogic = ] (24)
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This function evaluates whether intermediate
steps are logically coherent, ensuring that no circu-
lar reasoning or unjustified leaps occur.

Mitigation Strategies To reduce error propaga-
tion, we employ two primary strategies: 1. Re-
evaluation and Backtracking: If step s, is de-
tected as inconsistent with previous reasoning, the
model regenerates steps s,, S,,, ..., Sy While con-
straining generation to align with earlier steps. 2.
Self-Checking via Multi-Path Reasoning: In-
stead of generating a single sequence, the model
generates multiple independent reasoning paths
D, D,, ..., D, and selects the most consistent tra-
jectory based on:

D* = arg max Cstep(D1) + Ciogic(D)). (25)

This approach ensures that only logically consis-
tent and self-reinforcing derivations are selected.

By combining these techniques, we establish a
rigorous framework for monitoring and mitigating
error propagation, thereby enhancing the reliability
of mathematical reasoning in LLMs.

3 Experiment Design

To systematically evaluate the effectiveness of self-
consistency-based hallucination detection in math-
ematical reasoning, we design a series of experi-
ments based on the evaluation setup from our prior
work (Kapfer et al., 2025; Lightman et al., 2023;
Wang et al., 2024b).

3.1 Research Questions

We aim to answer the following research questions:

e RQ1: How does self-consistency improve the
factual accuracy of LLM-generated mathemat-
ical proofs?

e RQ2: To what extent does self-consistency
mitigate hallucinations in symbolic reasoning?

e RQ3: Does self-consistency improve numer-
ical consistency in mathematical problem-
solving?

e RQ4: How does self-consistency correlate
with traditional accuracy metrics in mathemat-
ical reasoning tasks?



3.2 Experimental Setup

Our experiments follow the methodology outlined
in prior work (Wang et al., 2024c; He et al., 2024;
Jain et al., 2024; Zhong et al., 2023), adapted for
the mathematical reasoning domain.

Models Evaluated We conduct experiments us-
ing the following models, consistent with our prior
studies:

e Base LLM (Kapfer et al, 2025): A
transformer-based autoregressive model
trained on mathematical reasoning tasks.

o Self-Consistency LLM (SC-LLM) (Light-
man et al., 2023): Our proposed model vari-
ation that applies self-consistency filtering to
refine generated responses.

Datasets We evaluate our approach using bench-
mark datasets previously used in (Xin et al., 2024;
Ankner et al., 2024):

¢ Mathematical Proof Dataset (Kapfer et al.,
2025): A dataset used to assess LLM perfor-
mance in theorem proving.

e Symbolic Reasoning Dataset (Wang et al.,
2024b): A collection of algebraic and sym-
bolic transformation problems requiring ex-
pression manipulation.

e Numerical Reasoning Dataset (Lightman
et al., 2023): A set of computational problems
designed to measure the stability of numerical
calculations.

Baselines We compare our self-consistency ap-
proach against baseline methods described in pre-
vious work (Xin et al., 2024; Ankner et al., 2024):

o Single-Step Generation (SSG) (Kapfer et al.,
2025): The standard method where LLMs
generate a single response without self-
consistency validation.

e Majority Voting (MV) (Lightman et al.,
2023): A baseline self-consistency method
that selects the most frequently occurring an-
swer among multiple sampled responses.

e Confidence-Based Filtering (CBF) (Wang
et al., 2024c): A filtering mechanism that se-
lects the most confident response based on
internal probability scores.

3.3 Evaluation Metrics

We employ multiple evaluation metrics aligned
with our prior study (Wang et al., 2024b) to assess
the effectiveness of self-consistency.

Theorem Proving Metrics

e Proof Validity (%) (Kapfer et al., 2025): The
proportion of generated proofs that match
ground truth solutions.

o Stepwise Agreement Score (SAS) (Lightman
et al., 2023): The average agreement rate of
generated proof steps with verified proof se-
quences.

e Logical Flow Consistency (LFC) (Wang
et al., 2024b): A graph-based measure of logi-
cal coherence in multi-step reasoning.

Symbolic Reasoning Metrics

e Expression Equivalence (%) (Wang et al.,
2024c): The proportion of sampled symbolic
transformations that are semantically equiva-
lent.

o Tree Similarity Index (TSI) (Kapfer et al.,
2025): A structural similarity measure be-
tween generated symbolic expressions.

Numerical Stability Metrics

e Variance Reduction (VR) (Lightman et al.,
2023): The decrease in variance of numerical
outputs after applying self-consistency.

e Threshold Consistency (TC) (Xin et al.,
2024): The fraction of sampled numerical re-
sponses that fall within a predefined numerical
tolerance.

3.4 Experimental Protocol

To ensure consistency and reproducibility, we con-
duct experiments under the following controlled
conditions (Wang et al., 2024c; He et al., 2024; Jain
et al., 2024; Zhong et al., 2023):

e Each model generates k = 10 independent
responses per query using a fixed temperature
parameter, as defined in our prior experimental
setup.

e We evaluate responses using automated theo-
rem verification for proof validation.

e For symbolic reasoning, we compare expres-
sions using algebraic simplification techniques
to detect semantic equivalence.

e Numerical outputs are evaluated using
precision-based error thresholds from our
previous work.

e Each experiment is repeated three times, and
results are reported as averages with confi-
dence intervals.



4 Experiment Results

4.1 Self-Consistency and Factual Accuracy in
Mathematical Proofs (RQ1)

To evaluate the impact of self-consistency on the
factual accuracy of LLM-generated mathematical
proofs, we analyze the correctness of generated
proofs before and after applying self-consistency
filtering. The primary evaluation metrics include:

e Proof Validity (%): The proportion of gener-
ated proofs that match ground truth solutions.

o Stepwise Agreement Score (SAS): The aver-
age agreement rate of generated proof steps
with verified proof sequences.

Results Analysis Table 1 presents the accuracy
improvements achieved by self-consistency filter-
ing across different theorem difficulty levels. We
observe that applying self-consistency improves
proof validity by an average of 7.3%, with signifi-
cant gains in complex theorem proving tasks.

Table 1. Eftect of Self-Consistency on Proof Validity and Step-

4.2 Self-Consistency in Symbolic Reasoning
(RQ2)

To investigate how self-consistency improves sym-
bolic reasoning, we analyze the accuracy and sta-
bility of algebraic transformations and logical ex-
pressions before and after applying self-consistency
filtering. The primary evaluation metrics include:

e Expression Equivalence (EE %): The per-
centage of generated symbolic expressions
that are semantically equivalent to the ground
truth.

e Tree Similarity Index (TSI): A structural
measure of similarity between sampled sym-
bolic expressions.

Results Analysis Table 2 reports the improve-
ments in symbolic transformation accuracy. We
observe that self-consistency filtering significantly
enhances expression equivalence and structural con-
sistency across different categories of symbolic
transformations.

Table 2. Effect of Self-Consistency on Symbolic Reasoning
Performance. Higher values indicate better performance.

Symbolic Category Expression Equivalence (EE %) Tree Similarity Index (TSI)

wise Agreement Score (SAS). Higher values indicate better Simplification (No SC) 680 0.72
Simplification (SC 76.0 0.79
performance. Equ]a)lion Slolvi(ng (;\lo SC) 62.0 0.65
Equation Solving (SC) 71.0 0.71
. 1. Factoring (No SC) 57.0 0.60
Theorem Difficulty Proof Validity (%) SAS (% )ucoring 50) 660 067
Easy (No SC) 72.1 654 , , ,
Easy (SC) 795 71.8 Figure 2 illustrates the improvements in expres-
Medium (No SC) 65.4 59 7 sion equivalence and structural consistency.
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Hard (No SC) 583 501 Self-Consistency Impact on Symbolic Reasoning Performance
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Figure 1 visualizes the improvements in proof
accuracy across different theorem difficulty levels.
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Figure 1. Self-consistency improves proof validity and step-
wise agreement scores (SAS) across different theorem diffi-
culty levels.

Simplification  Equation Solving Factoring
Symbolic Transformation Category

Figure 2. Self-consistency improves expression equivalence
(EE) and tree similarity index (TSI) across different symbolic
transformation categories.

4.3 Self-Consistency in Numerical Reasoning
(RQ3)

To analyze the impact of self-consistency on numer-
ical reasoning, we evaluate the consistency and sta-
bility of LLM-generated numerical outputs across
different mathematical problem types. The primary
evaluation metrics include:



e Variance Reduction (VR): The decrease in
variance of sampled numerical outputs after
applying self-consistency.

e Threshold Consistency (TC %): The propor-
tion of numerical responses that fall within a
predefined tolerance range.

Results Analysis Table 3 reports the improve-
ments in numerical stability. We observe a signif-
icant reduction in variance, particularly in higher-
precision computations, along with a consistent
improvement in threshold consistency across all
evaluated models.

Table 3. Effect of Self-Consistency on Numerical Stability.
Lower variance and higher TC indicate better performance.

Numerical Task Variance Reduction (VR) Threshold Consistency (TC %)

Arithmetic (No SC) 0.012 76.0
Arithmetic (SC) 0.007 85.0
Algebra (No SC) 0.010 72.0
Algebra (SC) 0.005 80.0
Calculus (No SC) 0.008 68.0
Calculus (SC) 0.004 75.0

Figure 3 visualizes the improvements in thresh-
old consistency and variance reduction.
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Figure 3. Self-consistency improves numerical reasoning sta-
bility by increasing threshold consistency (TC) and reducing
variance.

4.4 Correlation Between Self-Consistency and
Traditional Accuracy Metrics (RQ4)

To examine the relationship between self-
consistency (SC) and traditional accuracy metrics,
we analyze accuracy improvements as a function
of SC depth and compare it against standard
evaluation methods. Specifically, we focus on:

e Accuracy (%): The percentage of correct an-
swers across different problem-solving tasks.

o Inference Cost (Thinking Tokens per Sam-
ple): The number of tokens generated per sam-
ple, measuring computational overhead.

Results Analysis Table 4 presents the results
from an ablation study on training sequence length,
highlighting the trade-off between accuracy and
inference cost. We observe that increasing self-
consistency depth significantly boosts accuracy
while maintaining an efficient token budget.

Table 4. Effect of Self-Consistency on Accuracy and Inference
Cost. Higher accuracy and fewer thinking tokens indicate
better performance.

Dataset No SC (Accuracy / Tokens) With SC (Accuracy / Tokens)
AIME24 30.0% /20721 50.0% / 6984
MATHS500 90.0% / 5324 91.0% / 3268
GPQA 52.5% / 6841 53.0% / 3568

Figure 4 visualizes the trade-off between accu-
racy gains and inference cost reductions across
datasets.

Self-Consistency Trade-Off: Accuracy vs. Inference Cost

mm Ac®racy (No SC)
B Accu¥acy (With SC)

—e— Tokens (No SC)  _ 59000
Tokens (With SC)

-17500
-15000

-12500
40

Accuracy (%)

-10000

- 7500

N
o

Thinking Tokens per Sample

-5000

=2500
AIME24

MATH500 GPQA
Dataset

Figure 4. Self-consistency improves accuracy while reducing
inference cost. Accuracy gains (bars) and reduction in gener-
ated tokens (lines) are shown across datasets.

5 Conclusion

This paper introduced a structured self-consistency
framework to improve mathematical reasoning in
large language models (LLMs) by enforcing logical
coherence across both intermediate steps and final
outputs. Our empirical evaluation demonstrated
that self-consistency significantly enhances theo-
rem proving, symbolic manipulation, and numeri-
cal computation while reducing hallucinations. Ad-
ditionally, we analyzed the computational trade-
offs, showing that self-consistency improves ac-
curacy without excessive inference costs. These
findings suggest that self-consistency is a promis-
ing approach for enhancing mathematical reliability
in LLMs, and future research can explore adaptive
self-consistency strategies, integration with exter-
nal verification mechanisms, and optimizing infer-
ence efficiency.



6 Limitations

While our method improves the consistency of in-
termediate reasoning steps, it does not fully ad-
dress the root causes of hallucinations, such as
limitations in the training data or the model’s abil-
ity to handle ambiguous or under-specified inputs.
Further research is needed to explore ways to en-
hance the model’s generalization to complex, out-
of-distribution problems.

7 Ethical Considerations

The proposed structured self-consistency frame-
work aims to improve the reliability and inter-
pretability of Al-driven mathematical reasoning,
potentially benefiting fields like education and re-
search. However, as Al systems are increasingly
trusted for complex tasks, there are concerns about
over-reliance, especially given the potential for er-
rors and hallucinations. Ensuring transparency and
accountability in Al is crucial, particularly in high-
stakes domains such as healthcare or finance. While
this work enhances reasoning accuracy, continuous
validation and user education will be necessary to
ensure responsible and ethical use of Al technolo-
gies.
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A Related Work

A.1 Hallucinations in LLMs

Large language models (LLMs) have exhibited
remarkable capabilities across diverse reason-
ing tasks, but their susceptibility to hallucina-
tions—producing statements that appear plausible
yet deviate from factual correctness—remains a sig-
nificant challenge (Yin et al., 2023; Xiong et al.,
2024; Huang et al., 2023b; Bai et al., 2022). Hal-
lucinations can manifest as factual inaccuracies,
logical inconsistencies, or self-contradictory rea-
soning chains, which are particularly problematic
in mathematical reasoning, where correctness is bi-
nary and errors propagate through multi-step deriva-
tions (Kapfer et al., 2025; Wang et al., 2024b).

To mitigate hallucinations, recent research has
explored detection and prevention strategies. Some
approaches analyze internal model representations,
such as hidden states (Azaria and Mitchell, 2023;
Burns et al., 2023) or attention matrices (Simhi
et al., 2024; Zhang et al., 2024), to identify incon-
sistencies. Others leverage entropy-based uncer-
tainty estimation to quantify hallucination likeli-
hood (Farquhar et al., 2024; Kossen et al., 2024).
Furthermore, mitigation efforts have focused on
fine-tuning LL.Ms with high-quality instructional
datasets (Lee et al., 2023; Zhou et al., 2024; Elaraby
et al., 2023) and reinforcement learning with hu-
man feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022). While these methods improve factual
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accuracy, they often fail to generalize across di-
verse reasoning tasks, particularly in mathematical
problem-solving, which requires stepwise logical
coherence.

A.2 Self-Consistency for Improving Factuality
in LLMs

Self-consistency (SC) has emerged as an effec-
tive technique for improving factual reliability by
comparing multiple independently generated re-
sponses (Manakul et al., 2023; Farquhar et al., 2024;
Miindler et al., 2024). Prior studies have demon-
strated its efficacy in hallucination detection (Burns
et al., 2023; Azaria and Mitchell, 2023) and un-
certainty quantification (Desai and Durrett, 2020;
Jiang et al., 2021; Glushkova et al., 2021; Duan
et al., 2024). By leveraging SC, models can iden-
tify inconsistencies in their outputs and filter out
less reliable responses, leading to improved factual
accuracy (Wang et al., 2023; Shi et al., 2022; Chen
et al., 2023).

Despite these advances, existing SC approaches
impose strict constraints on task format, primar-
ily focusing on exact-match answer verification (Li
et al., 2022; Shi et al., 2022; Wang et al., 2023;
Huang et al., 2023a). To overcome this limitation,
recent work has adapted SC for open-ended tasks
using response clustering (Thirukovalluru et al.,
2024), iterative refinement (Miindler et al., 2024),
and statement-level consistency verification (Chen
et al., 2023; Wang et al., 2024a). While these meth-
ods enhance SC applicability, they have yet to be
systematically applied to mathematical reasoning,
where stepwise verification is crucial for theorem
proving and symbolic transformations.

A.3 Self-Consistency in Mathematical
Reasoning

Mathematical reasoning tasks, including theorem
proving, symbolic manipulation, and numerical
problem-solving, pose unique challenges for LLMs
due to their reliance on multi-step logical inference
(Xin et al., 2024; Ankner et al., 2024). Traditional
SC-based methods focus on final answer validation
but fail to enforce intermediate step consistency,
leading to logically unsound proofs (Wang et al.,
2024b). This limitation is particularly evident in
tasks requiring symbolic reasoning, where minor
inconsistencies in intermediate transformations can
yield incorrect conclusions (Kapfer et al., 2025).
To address this gap, researchers have explored
techniques such as process reward modeling (Light-
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man et al., 2023), tree-based search (Wu et al.,
2024), and majority voting (Brown et al., 2024).
These approaches aim to improve LLLM consistency
by refining reasoning paths, but they often intro-
duce substantial computational overhead. A crit-
ical research direction is balancing SC-enhanced
accuracy with inference efficiency, ensuring that im-
provements in correctness do not come at the cost
of impractical computational expense (He et al.,
2024; Jain et al., 2024).

A.4 Decoding Strategies for Mitigating
Hallucinations

In addition to self-consistency, several decoding-
based strategies have been proposed to mitigate
hallucinations in LLMs. Contrastive decoding tech-
niques adjust logit activations to amplify factual
knowledge retention while suppressing misleading
outputs (Burns et al., 2023; Chuang et al., 2024b).
Other approaches, such as inference-time interven-
tion (ITT), manipulate attention heads during decod-
ing to steer the model towards more reliable gen-
erations (Li et al., 2024). Lookback mechanisms
analyze prior context to detect and correct inconsis-
tencies dynamically (Chuang et al., 2024a).

While these decoding methods improve factu-
ality, they often require model modifications or
extensive computational resources, limiting their
scalability in real-world applications. In contrast,
our approach leverages self-consistency without re-
quiring fundamental changes to model architecture,
making it more adaptable to various mathematical
reasoning tasks.
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