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Abstract001

Large language models (LLMs) have demon-002
strated strong mathematical reasoning capa-003
bilities but remain susceptible to hallucina-004
tions—producing plausible yet incorrect state-005
ments—especially in theorem proving, sym-006
bolic manipulation, and numerical computation.007
While self-consistency (SC) has been explored008
as a means to improve factuality, existing ap-009
proaches primarily apply SC to final-answer010
selection, neglecting the logical consistency011
of intermediate reasoning steps. So we intro-012
duce a structured self-consistency framework013
designed to enhance the reliability of mathe-014
matical reasoning. Our method enforces self-015
consistency across intermediate steps and final016
outputs, reducing logical inconsistencies and017
hallucinations. Experimental results demon-018
strate that our SC significantly improves proof019
validity, symbolic reasoning accuracy, and nu-020
merical stability while maintaining computa-021
tional efficiency. Further analysis reveals that022
structured self-consistency not only enhances023
problem-solving accuracy but also reduces the024
variance of model-generated outputs. These025
findings highlight self-consistency as a robust026
mechanism for improving mathematical reason-027
ing in LLMs, paving the way for more reliable028
and interpretable AI-driven mathematics.029

1 Introduction030

Large language models (LLMs) have achieved sig-031

nificant breakthroughs in natural language process-032

ing (NLP) and mathematical reasoning (Kapfer033

et al., 2025). Recent models have demonstrated034

remarkable capabilities in theorem proving, sym-035

bolic manipulation, and numerical problem-solving036

(Lightman et al., 2023; Wang et al., 2024b,c). How-037

ever, despite these advances, LLMs still struggle038

with hallucinations—generating plausible yet fac-039

tually incorrect outputs (He et al., 2024). In math-040

ematical reasoning, where correctness is strictly041

binary, hallucinations can propagate through multi-042

step derivations, leading to fundamentally flawed043

proofs or incorrect calculations (Zhong et al., 2023). 044

These errors undermine the reliability of LLMs 045

in applications requiring high-precision reasoning, 046

such as automated theorem proving and scientific 047

computing (Jain et al., 2024). 048

Previous research has explored various meth- 049

ods to mitigate hallucinations in LLMs, includ- 050

ing fine-tuning on high-quality datasets (Xin et al., 051

2024), incorporating external verification mech- 052

anisms (Ankner et al., 2024), and designing hy- 053

brid neuro-symbolic architectures (Kapfer et al., 054

2025). A promising approach is self-consistency 055

(SC), which enhances factual reliability by aggregat- 056

ing multiple independent reasoning paths and select- 057

ing the most consistent response (Lightman et al., 058

2023). While SC has been successfully applied 059

to general question-answering tasks (Wang et al., 060

2024b), its application to mathematical reasoning 061

remains limited. Existing SC-based approaches 062

primarily focus on verifying final answers while ne- 063

glecting intermediate reasoning steps (Wang et al., 064

2024c), making them ineffective for theorem prov- 065

ing and multi-step symbolic reasoning. Addition- 066

ally, SC requires multiple response samples, in- 067

creasing computational cost, but the trade-off be- 068

tween accuracy gains and inference efficiency re- 069

mains underexplored (He et al., 2024). 070

Motivated by these challenges, we propose a 071

novel application of self-consistency for mathemat- 072

ical reasoning, where SC is applied not only to final 073

outputs but also to intermediate reasoning steps. 074

Our intuition is that self-consistency can serve as a 075

structural verification mechanism, reinforcing logi- 076

cal coherence throughout multi-step mathematical 077

derivations. By extending SC beyond simple an- 078

swer aggregation, we aim to improve LLM reliabil- 079

ity in theorem proving, algebraic transformations, 080

and numerical problem-solving. Furthermore, we 081

hypothesize that a structured application of SC can 082

reduce hallucinations while maintaining computa- 083

tional efficiency, addressing the trade-off between 084
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reasoning accuracy and inference cost.085

To validate this intuition, we propose a self-086

consistency framework for mathematical reason-087

ing that systematically applies SC at both interme-088

diate and final steps of problem-solving. We con-089

duct a comprehensive empirical study on three key090

mathematical reasoning tasks: 1) Theorem prov-091

ing: Ensuring consistency in logical deductions; 2)092

Symbolic manipulation: Improving accuracy in093

algebraic transformations; 3) Numerical compu-094

tation: Enhancing stability in computational tasks.095

Our extensive experiments demonstrate that SC sig-096

nificantly reduces hallucinations, improves logical097

consistency, and enhances mathematical accuracy098

across multiple datasets. Additionally, we analyze099

the computational trade-offs of SC, quantifying its100

impact on inference cost and problem-solving effi-101

ciency.102

Contributions This paper makes the following103

key contributions:104

• We propose a novel self-consistency frame-105

work that extends SC beyond final answers to106

intermediate reasoning steps, improving step-107

wise logical coherence.108

• We conduct a comprehensive evaluation of109

self-consistency across three distinct mathe-110

matical reasoning domains: theorem proving,111

symbolic manipulation, and numerical com-112

putation.113

• We analyze the computational trade-offs114

of self-consistency, demonstrating that struc-115

tured SC application improves accuracy while116

maintaining inference efficiency.117

2 Methodology118

2.1 Theoretical Foundation of119

Self-Consistency120

Self-consistency in large language models (LLMs)121

refers to the agreement between multiple inde-122

pendently sampled responses to the same query.123

Prior research has demonstrated that higher self-124

consistency correlates with improved factual relia-125

bility (Farquhar et al., 2024). In mathematical rea-126

soning tasks, where correctness is strictly binary,127

self-consistency plays a crucial role in distinguish-128

ing valid proofs from hallucinated or erroneous129

statements.130

Definition of Self-Consistency Given a mathe-131

matical statement 𝑠𝑖, we define its self-consistency132

factuality score as:133

𝑓 (𝑠𝑖) =
1
||

∑

𝑟𝑗∈
𝑃 (consistent|𝑠𝑖, 𝑟𝑗), (1) 134

where  = {𝑟1, 𝑟2, ..., 𝑟𝑘} represents a set of 135

responses to the same problem, obtained through 136

different stochastic sampling methods (e.g., temper- 137

ature sampling, nucleus sampling). The function 138

𝑃 (consistent|𝑠𝑖, 𝑟𝑗) denotes the probability that the 139

response 𝑟𝑗 aligns with the true mathematical cor- 140

rectness of 𝑠𝑖. 141

Probabilistic Interpretation From a probabilis- 142

tic perspective, self-consistency can be framed as an 143

expectation over a probability space (Ω, , 𝑃 ). Let 144

𝑆𝑖 be a random variable indicating the correctness 145

of statement 𝑠𝑖, and let the sampled responses 𝑅 be 146

drawn from a conditional probability distribution 147

𝑃 (𝑅|𝑆𝑖). The expected self-consistency factuality 148

score can be rewritten as: 149

𝔼[𝑓 (𝑆𝑖)] =
∑

𝑟𝑗∈
𝑃 (𝑆𝑖|𝑟𝑗)𝑃 (𝑟𝑗). (2) 150

This formulation allows us to interpret self- 151

consistency as a Bayesian estimation problem, 152

where multiple sampled responses collectively con- 153

tribute to refining the probability of correctness. 154

Self-Consistency as an Agreement Metric To 155

quantify the agreement among sampled responses, 156

we introduce an inter-response agreement function: 157

158
𝐶(𝑠𝑖) =

1
||

∑

𝑟𝑗 ,𝑟𝑘∈,𝑗≠𝑘
𝕀(𝑟𝑗 = 𝑟𝑘), (3) 159

where 𝕀(⋅) is an indicator function that returns 160

1 if two responses are identical and 0 otherwise. 161

Higher values of 𝐶(𝑠𝑖) indicate stronger agreement 162

among sampled responses, suggesting a more reli- 163

able factuality estimate. 164

Bayesian Updating for Self-Consistency Refine- 165

ment Given an initial belief about the correctness 166

of a response distribution, we can iteratively refine 167

our factuality estimation using Bayesian updating: 168

𝑃 (𝑆𝑖|) ∝ 𝑃 (𝑆𝑖)
∏

𝑟𝑗∈
𝑃 (𝑟𝑗|𝑆𝑖). (4) 169

This approach enables adaptive filtering, where 170

responses with lower agreement contribute less to 171

the final factuality score. As more responses are 172

aggregated, the probability distribution converges 173

to a more confident assessment. 174
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Relation to Entropy-Based Metrics Self-175

consistency can also be related to entropy-based176

uncertainty measures. The Shannon entropy of a177

response distribution is given by:178

𝐻(𝑅) = −
∑

𝑟𝑗∈
𝑃 (𝑟𝑗) log𝑃 (𝑟𝑗). (5)179

Lower entropy implies higher self-consistency,180

as the response distribution is more concentrated181

around a single correct answer. By minimizing182

entropy, we can improve the reliability of mathe-183

matical statements generated by LLMs.184

2.2 Self-Consistency for Mathematical185

Reasoning186

The application of self-consistency in mathematical187

reasoning requires specialized techniques to verify188

logical deductions, symbolic manipulations, and189

numerical calculations. Unlike general text gen-190

eration tasks, where factuality is often subjective,191

mathematical reasoning demands strict correctness.192

We introduce three primary domains where self-193

consistency enhances reasoning reliability: theo-194

rem proving, symbolic manipulation, and numeri-195

cal verification.196

Theorem Proving and Logical Deduction In197

formal mathematics, a proof is a sequence of de-198

ductive steps that logically derive a conclusion from199

axioms and previously established theorems. Given200

a theorem statement 𝑇 , we sample multiple proof at-201

tempts  = {𝑝1, 𝑝2, ..., 𝑝𝑚} and analyze their struc-202

tural consistency.203

To quantify proof agreement, we define the struc-204

tural proof consistency score:205

𝐶proof =
1
𝑚

∑

𝑝𝑖∈

∑

𝑝𝑗∈ ,𝑗≠𝑖
𝛿(𝑝𝑖, 𝑝𝑗), (6)206

where 𝛿(𝑝𝑖, 𝑝𝑗) is a structural similarity function207

that compares the sequence of logical steps in two208

proofs. Higher values of 𝐶proof indicate greater con-209

vergence among sampled proofs, suggesting higher210

reliability.211

To further refine consistency evaluation, we in-212

troduce a stepwise proof verification function:213

𝑉 (𝑝𝑖) =
𝑇
∏

𝑡=1
𝕀(step 𝑡 is valid), (7)214

where 𝑇 is the total number of proof steps, and215

𝕀(⋅) is an indicator function that returns 1 if step 𝑡 is216

logically valid and 0 otherwise. By aggregating217

𝑉 (𝑝𝑖) across all proof samples, we estimate the218

theorem’s self-consistency reliability.219

Symbolic Manipulation Many mathematical 220

problems involve transformations of symbolic ex- 221

pressions, such as algebraic simplifications, equa- 222

tion solving, and differentiation. A critical chal- 223

lenge is ensuring that different sampled responses 224

yield equivalent expressions. 225

Given a mathematical expression 𝑒, we obtain 226

multiple transformations  = {𝑒1, 𝑒2, ..., 𝑒𝑘} and 227

measure their consistency using tree-based struc- 228

tural comparison: 229

𝑆(𝑒1, 𝑒2) =
| (𝑒1) ∩  (𝑒2)|
| (𝑒1) ∪  (𝑒2)|

, (8) 230

where  (𝑒) represents the syntax tree of expres- 231

sion 𝑒. This measure evaluates the structural simi- 232

larity of different sampled outputs and ensures that 233

they converge to the same mathematical represen- 234

tation. 235

Additionally, we define an equivalence probabil- 236

ity for symbolic transformations: 237

𝑃eq(𝑒) =
1
||

∑

𝑒𝑖,𝑒𝑗∈ ,𝑖≠𝑗
𝕀(𝑒𝑖 ≡ 𝑒𝑗), (9) 238

where 𝑒𝑖 ≡ 𝑒𝑗 indicates that two expressions are 239

algebraically equivalent. A high 𝑃eq(𝑒) suggests 240

strong self-consistency in symbolic reasoning. 241

Numerical Calculations In numerical problem- 242

solving, consistency is evaluated by verifying 243

whether multiple sampled computations yield the 244

same numerical result. Given a function 𝑓 (𝑥) and 245

an input 𝑥, we generate multiple numerical outputs 246

 = {𝑛1, 𝑛2, ..., 𝑛𝑘} and compute a numerical con- 247

sistency score: 248

𝐶num = 1
𝑘

∑

𝑛𝑖∈

∑

𝑛𝑗∈ ,𝑗≠𝑖
𝕀(𝑛𝑖 = 𝑛𝑗). (10) 249

By applying self-consistency analysis to theo- 250

rem proving, symbolic manipulation, and numeri- 251

cal calculations, we enhance the factual reliability 252

of LLM-generated mathematical reasoning. These 253

techniques provide a robust framework for detect- 254

ing hallucinations and ensuring correctness in au- 255

tomated mathematical problem-solving. 256

2.3 Mathematical Consistency Estimation 257

Mathematical reasoning in large language models 258

(LLMs) is inherently probabilistic due to stochastic 259

generation mechanisms. To systematically quantify 260

the consistency of generated mathematical state- 261

ments, we introduce a set of estimation functions 262

that measure agreement across sampled responses. 263

These estimation methods apply to theorem proving, 264

symbolic reasoning, and numerical computation. 265
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Global Self-Consistency Score Given a set of266

responses  = {𝑟1, 𝑟2, ..., 𝑟𝑘} to a mathematical267

query, we define the global self-consistency score268

as:269
𝐶global =

1
𝑘

∑

𝑟𝑖,𝑟𝑗∈,𝑖≠𝑗
𝕀(𝑟𝑖 = 𝑟𝑗), (11)270

where 𝕀(⋅) is an indicator function that evaluates271

whether two sampled responses are identical. This272

metric provides a direct measure of how often the273

model generates consistent outputs.274

Theorem Proof Consistency For theorem prov-275

ing, a more structured estimation is required. Given276

a set of sampled proofs  = {𝑝1, 𝑝2, ..., 𝑝𝑚}, we de-277

fine a structural proof consistency score that mea-278

sures stepwise alignment:279

𝐶proof =
1
𝑚

∑

𝑝𝑖,𝑝𝑗∈ ,𝑖≠𝑗
𝑆(𝑝𝑖, 𝑝𝑗), (12)280

where 𝑆(𝑝𝑖, 𝑝𝑗) represents a similarity function281

that compares the logical steps of two proofs, nor-282

malized between 0 and 1. We compute 𝑆(𝑝𝑖, 𝑝𝑗) by283

matching corresponding proof steps and calculating284

an alignment score:285

𝑆(𝑝𝑖, 𝑝𝑗) =
1
𝑇

𝑇
∑

𝑡=1
𝕀(𝑠𝑖,𝑡 = 𝑠𝑗,𝑡), (13)286

where 𝑠𝑖,𝑡 is the 𝑡-th step in proof 𝑝𝑖, and 𝑇 is the287

total number of steps in the proof. A higher 𝐶proof288

indicates greater agreement in proof structures.289

Symbolic Expression Consistency Symbolic290

manipulations introduce additional challenges, as291

equivalent expressions may not be syntactically292

identical. To account for this, we define the sym-293

bolic consistency score based on semantic equiva-294

lence:295

𝐶symbolic =
1
||

∑

𝑒𝑖,𝑒𝑗∈ ,𝑖≠𝑗
𝕀(𝑒𝑖 ≡ 𝑒𝑗), (14)296

where 𝑒𝑖 ≡ 𝑒𝑗 indicates that two expressions297

are algebraically equivalent. This is determined298

by symbolic computation tools such as algebraic299

simplification or equation normalization.300

To refine symbolic consistency, we introduce a301

tree-based similarity function:302

𝑆tree(𝑒1, 𝑒2) =
| (𝑒1) ∩  (𝑒2)|
| (𝑒1) ∪  (𝑒2)|

, (15)303

where  (𝑒) is the set of nodes in the expression’s304

syntax tree. This measure quantifies how struc-305

turally similar two expressions are, even if they are306

not identical.307

Numerical Stability Estimation For numerical 308

reasoning, consistency is defined in terms of the 309

variance of generated outputs. Given numerical 310

results  = {𝑛1, 𝑛2, ..., 𝑛𝑘}, we compute the nu- 311

merical stability score using variance reduction: 312

𝐶num = 1 −
𝜎2( )

max(𝜎2
ref, 𝜖)

, (16) 313

where 𝜎2( ) is the variance of the sampled nu- 314

merical results, and 𝜎2
ref is a reference variance 315

threshold. The small constant 𝜖 ensures numerical 316

stability. Lower variance implies greater numerical 317

consistency. 318

Alternatively, we can compute a thresholded 319

agreement score: 320

𝐴num = 1
𝑘

∑

𝑛𝑖,𝑛𝑗∈ ,𝑖≠𝑗
𝕀(|𝑛𝑖 − 𝑛𝑗| < 𝜏), (17) 321

where 𝜏 is a predefined numerical tolerance. This 322

accounts for minor floating-point variations while 323

ensuring agreement. 324

Entropy-Based Uncertainty Estimation Self- 325

consistency can also be linked to entropy-based 326

uncertainty measures. We define the entropy of the 327

sampled responses as: 328

𝐻(𝑅) = −
∑

𝑟𝑗∈
𝑃 (𝑟𝑗) log𝑃 (𝑟𝑗). (18) 329

Lower entropy indicates greater consistency, as 330

responses converge toward a single, confident an- 331

swer. By minimizing entropy, we reduce ambiguity 332

in mathematical reasoning tasks. 333

These mathematical consistency estimation 334

methods collectively enable a structured approach 335

for quantifying reliability in LLM-generated proofs, 336

symbolic reasoning, and numerical computation. 337

2.4 Error Propagation Analysis 338

While self-consistency improves the reliability of 339

mathematical reasoning in large language models 340

(LLMs), errors can still propagate across differ- 341

ent stages of reasoning, particularly in multi-step 342

problem-solving scenarios. To systematically ana- 343

lyze and mitigate such error propagation, we intro- 344

duce a structured evaluation framework that tracks 345

inconsistencies at intermediate steps. 346

Stepwise Consistency Verification Mathemati- 347

cal reasoning often involves sequential steps, where 348

each step builds upon previous ones. Given a multi- 349

step derivation 𝐷 = {𝑠1, 𝑠2, ..., 𝑠𝑇 }, where 𝑠𝑡 repre- 350

sents the 𝑡-th step, we define the stepwise consis- 351

tency score as: 352
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𝐶step = 1
𝑇

𝑇
∑

𝑡=1
𝕀(𝑠𝑡 = �̂�𝑡), (19)353

where �̂�𝑡 denotes the expected correct step at354

position 𝑡, and 𝕀(⋅) is an indicator function that eval-355

uates correctness. This score quantifies the degree356

to which the model follows a consistent reasoning357

trajectory.358

Error Accumulation Function To assess how er-359

rors accumulate over sequential steps, we introduce360

an error accumulation function:361

𝐸(𝐷) =
𝑇
∑

𝑡=1
𝜆𝑡𝕀(𝑠𝑡 ≠ �̂�𝑡), (20)362

where 𝜆𝑡 is a weighting factor that accounts for363

the impact of errors at different stages. Early-stage364

errors (𝑡 is small) may compound more significantly365

in later steps, necessitating an exponential weight-366

ing function:367
𝜆𝑡 = 𝑒𝛼(𝑡−1), (21)368

where 𝛼 is a scaling factor that determines how369

strongly early errors influence subsequent steps.370

Error Propagation Probability Beyond individ-371

ual steps, we analyze the probability of an error372

propagating through subsequent steps. Given that373

an error occurs at step 𝑡, the probability that it prop-374

agates to step 𝑡 + 1 is modeled as:375

𝑃 (𝑠𝑡+1 incorrect|𝑠𝑡 incorrect) = 𝛽𝑡, (22)376

where 𝛽𝑡 is an empirically determined propaga-377

tion factor that depends on the problem type. The378

overall probability of an incorrect final result can379

be approximated recursively:380

𝑃 (𝑠𝑇 incorrect) = 1 −
𝑇
∏

𝑡=1
(1 − 𝛽𝑡𝕀(𝑠𝑡 ≠ �̂�𝑡)). (23)381

Higher values of 𝑃 (𝑠𝑇 incorrect) indicate that er-382

rors are more likely to persist throughout reasoning383

steps.384

Logical Flow Consistency To track logical con-385

sistency beyond stepwise correctness, we intro-386

duce a dependency graph consistency metric. We387

model multi-step reasoning as a directed acyclic388

graph (DAG), where nodes represent individual389

steps and edges encode logical dependencies. Let390

𝐺 = (𝑉 ,𝐸) be a reasoning graph with vertices 𝑉391

and directed edges 𝐸, the overall logical consis-392

tency score is:393

𝐶logic =
1
|𝐸|

∑

(𝑖,𝑗)∈𝐸
𝕀(𝑠𝑖 supports 𝑠𝑗). (24) 394

This function evaluates whether intermediate 395

steps are logically coherent, ensuring that no circu- 396

lar reasoning or unjustified leaps occur. 397

Mitigation Strategies To reduce error propaga- 398

tion, we employ two primary strategies: 1. Re- 399

evaluation and Backtracking: If step 𝑠𝑡 is de- 400

tected as inconsistent with previous reasoning, the 401

model regenerates steps 𝑠𝑡, 𝑠𝑡+1, ..., 𝑠𝑇 while con- 402

straining generation to align with earlier steps. 2. 403

Self-Checking via Multi-Path Reasoning: In- 404

stead of generating a single sequence, the model 405

generates multiple independent reasoning paths 406

𝐷1, 𝐷2, ..., 𝐷𝑘 and selects the most consistent tra- 407

jectory based on: 408

𝐷∗ = argmax
𝐷𝑖

𝐶step(𝐷𝑖) + 𝐶logic(𝐷𝑖). (25) 409

This approach ensures that only logically consis- 410

tent and self-reinforcing derivations are selected. 411

By combining these techniques, we establish a 412

rigorous framework for monitoring and mitigating 413

error propagation, thereby enhancing the reliability 414

of mathematical reasoning in LLMs. 415

3 Experiment Design 416

To systematically evaluate the effectiveness of self- 417

consistency-based hallucination detection in math- 418

ematical reasoning, we design a series of experi- 419

ments based on the evaluation setup from our prior 420

work (Kapfer et al., 2025; Lightman et al., 2023; 421

Wang et al., 2024b). 422

3.1 Research Questions 423

We aim to answer the following research questions: 424

• RQ1: How does self-consistency improve the 425

factual accuracy of LLM-generated mathemat- 426

ical proofs? 427

• RQ2: To what extent does self-consistency 428

mitigate hallucinations in symbolic reasoning? 429

• RQ3: Does self-consistency improve numer- 430

ical consistency in mathematical problem- 431

solving? 432

• RQ4: How does self-consistency correlate 433

with traditional accuracy metrics in mathemat- 434

ical reasoning tasks? 435
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3.2 Experimental Setup436

Our experiments follow the methodology outlined437

in prior work (Wang et al., 2024c; He et al., 2024;438

Jain et al., 2024; Zhong et al., 2023), adapted for439

the mathematical reasoning domain.440

Models Evaluated We conduct experiments us-441

ing the following models, consistent with our prior442

studies:443

• Base LLM (Kapfer et al., 2025): A444

transformer-based autoregressive model445

trained on mathematical reasoning tasks.446

• Self-Consistency LLM (SC-LLM) (Light-447

man et al., 2023): Our proposed model vari-448

ation that applies self-consistency filtering to449

refine generated responses.450

Datasets We evaluate our approach using bench-451

mark datasets previously used in (Xin et al., 2024;452

Ankner et al., 2024):453

• Mathematical Proof Dataset (Kapfer et al.,454

2025): A dataset used to assess LLM perfor-455

mance in theorem proving.456

• Symbolic Reasoning Dataset (Wang et al.,457

2024b): A collection of algebraic and sym-458

bolic transformation problems requiring ex-459

pression manipulation.460

• Numerical Reasoning Dataset (Lightman461

et al., 2023): A set of computational problems462

designed to measure the stability of numerical463

calculations.464

Baselines We compare our self-consistency ap-465

proach against baseline methods described in pre-466

vious work (Xin et al., 2024; Ankner et al., 2024):467

• Single-Step Generation (SSG) (Kapfer et al.,468

2025): The standard method where LLMs469

generate a single response without self-470

consistency validation.471

• Majority Voting (MV) (Lightman et al.,472

2023): A baseline self-consistency method473

that selects the most frequently occurring an-474

swer among multiple sampled responses.475

• Confidence-Based Filtering (CBF) (Wang476

et al., 2024c): A filtering mechanism that se-477

lects the most confident response based on478

internal probability scores.479

3.3 Evaluation Metrics480

We employ multiple evaluation metrics aligned481

with our prior study (Wang et al., 2024b) to assess482

the effectiveness of self-consistency.483

Theorem Proving Metrics 484

• Proof Validity (%) (Kapfer et al., 2025): The 485

proportion of generated proofs that match 486

ground truth solutions. 487

• Stepwise Agreement Score (SAS) (Lightman 488

et al., 2023): The average agreement rate of 489

generated proof steps with verified proof se- 490

quences. 491

• Logical Flow Consistency (LFC) (Wang 492

et al., 2024b): A graph-based measure of logi- 493

cal coherence in multi-step reasoning. 494

Symbolic Reasoning Metrics 495

• Expression Equivalence (%) (Wang et al., 496

2024c): The proportion of sampled symbolic 497

transformations that are semantically equiva- 498

lent. 499

• Tree Similarity Index (TSI) (Kapfer et al., 500

2025): A structural similarity measure be- 501

tween generated symbolic expressions. 502

Numerical Stability Metrics 503

• Variance Reduction (VR) (Lightman et al., 504

2023): The decrease in variance of numerical 505

outputs after applying self-consistency. 506

• Threshold Consistency (TC) (Xin et al., 507

2024): The fraction of sampled numerical re- 508

sponses that fall within a predefined numerical 509

tolerance. 510

3.4 Experimental Protocol 511

To ensure consistency and reproducibility, we con- 512

duct experiments under the following controlled 513

conditions (Wang et al., 2024c; He et al., 2024; Jain 514

et al., 2024; Zhong et al., 2023): 515

• Each model generates 𝑘 = 10 independent 516

responses per query using a fixed temperature 517

parameter, as defined in our prior experimental 518

setup. 519

• We evaluate responses using automated theo- 520

rem verification for proof validation. 521

• For symbolic reasoning, we compare expres- 522

sions using algebraic simplification techniques 523

to detect semantic equivalence. 524

• Numerical outputs are evaluated using 525

precision-based error thresholds from our 526

previous work. 527

• Each experiment is repeated three times, and 528

results are reported as averages with confi- 529

dence intervals. 530
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4 Experiment Results531

4.1 Self-Consistency and Factual Accuracy in532

Mathematical Proofs (RQ1)533

To evaluate the impact of self-consistency on the534

factual accuracy of LLM-generated mathematical535

proofs, we analyze the correctness of generated536

proofs before and after applying self-consistency537

filtering. The primary evaluation metrics include:538

• Proof Validity (%): The proportion of gener-539

ated proofs that match ground truth solutions.540

541

• Stepwise Agreement Score (SAS): The aver-542

age agreement rate of generated proof steps543

with verified proof sequences.544

Results Analysis Table 1 presents the accuracy545

improvements achieved by self-consistency filter-546

ing across different theorem difficulty levels. We547

observe that applying self-consistency improves548

proof validity by an average of 7.3%, with signifi-549

cant gains in complex theorem proving tasks.550

Table 1. Effect of Self-Consistency on Proof Validity and Step-
wise Agreement Score (SAS). Higher values indicate better
performance.

Theorem Difficulty Proof Validity (%) SAS (%)

Easy (No SC) 72.1 65.4
Easy (SC) 79.5 71.8
Medium (No SC) 65.4 59.2
Medium (SC) 71.8 64.5
Hard (No SC) 58.3 52.1
Hard (SC) 64.2 58.0

Figure 1 visualizes the improvements in proof551

accuracy across different theorem difficulty levels.552

Figure 1. Self-consistency improves proof validity and step-
wise agreement scores (SAS) across different theorem diffi-
culty levels.

4.2 Self-Consistency in Symbolic Reasoning 553

(RQ2) 554

To investigate how self-consistency improves sym- 555

bolic reasoning, we analyze the accuracy and sta- 556

bility of algebraic transformations and logical ex- 557

pressions before and after applying self-consistency 558

filtering. The primary evaluation metrics include: 559

• Expression Equivalence (EE %): The per- 560

centage of generated symbolic expressions 561

that are semantically equivalent to the ground 562

truth. 563

• Tree Similarity Index (TSI): A structural 564

measure of similarity between sampled sym- 565

bolic expressions. 566

Results Analysis Table 2 reports the improve- 567

ments in symbolic transformation accuracy. We 568

observe that self-consistency filtering significantly 569

enhances expression equivalence and structural con- 570

sistency across different categories of symbolic 571

transformations. 572

Table 2. Effect of Self-Consistency on Symbolic Reasoning
Performance. Higher values indicate better performance.

Symbolic Category Expression Equivalence (EE %) Tree Similarity Index (TSI)

Simplification (No SC) 68.0 0.72
Simplification (SC) 76.0 0.79
Equation Solving (No SC) 62.0 0.65
Equation Solving (SC) 71.0 0.71
Factoring (No SC) 57.0 0.60
Factoring (SC) 66.0 0.67

Figure 2 illustrates the improvements in expres- 573

sion equivalence and structural consistency. 574

Figure 2. Self-consistency improves expression equivalence
(EE) and tree similarity index (TSI) across different symbolic
transformation categories.

4.3 Self-Consistency in Numerical Reasoning 575

(RQ3) 576

To analyze the impact of self-consistency on numer- 577

ical reasoning, we evaluate the consistency and sta- 578

bility of LLM-generated numerical outputs across 579

different mathematical problem types. The primary 580

evaluation metrics include: 581

7



• Variance Reduction (VR): The decrease in582

variance of sampled numerical outputs after583

applying self-consistency.584

• Threshold Consistency (TC %): The propor-585

tion of numerical responses that fall within a586

predefined tolerance range.587

Results Analysis Table 3 reports the improve-588

ments in numerical stability. We observe a signif-589

icant reduction in variance, particularly in higher-590

precision computations, along with a consistent591

improvement in threshold consistency across all592

evaluated models.593

Table 3. Effect of Self-Consistency on Numerical Stability.
Lower variance and higher TC indicate better performance.

Numerical Task Variance Reduction (VR) Threshold Consistency (TC %)

Arithmetic (No SC) 0.012 76.0
Arithmetic (SC) 0.007 85.0
Algebra (No SC) 0.010 72.0
Algebra (SC) 0.005 80.0
Calculus (No SC) 0.008 68.0
Calculus (SC) 0.004 75.0

Figure 3 visualizes the improvements in thresh-594

old consistency and variance reduction.595

Figure 3. Self-consistency improves numerical reasoning sta-
bility by increasing threshold consistency (TC) and reducing
variance.

4.4 Correlation Between Self-Consistency and596

Traditional Accuracy Metrics (RQ4)597

To examine the relationship between self-598

consistency (SC) and traditional accuracy metrics,599

we analyze accuracy improvements as a function600

of SC depth and compare it against standard601

evaluation methods. Specifically, we focus on:602

• Accuracy (%): The percentage of correct an-603

swers across different problem-solving tasks.604

605
• Inference Cost (Thinking Tokens per Sam-606

ple): The number of tokens generated per sam-607

ple, measuring computational overhead.608

Results Analysis Table 4 presents the results 609

from an ablation study on training sequence length, 610

highlighting the trade-off between accuracy and 611

inference cost. We observe that increasing self- 612

consistency depth significantly boosts accuracy 613

while maintaining an efficient token budget. 614

Table 4. Effect of Self-Consistency on Accuracy and Inference
Cost. Higher accuracy and fewer thinking tokens indicate
better performance.

Dataset No SC (Accuracy / Tokens) With SC (Accuracy / Tokens)

AIME24 30.0% / 20721 50.0% / 6984
MATH500 90.0% / 5324 91.0% / 3268
GPQA 52.5% / 6841 53.0% / 3568

Figure 4 visualizes the trade-off between accu- 615

racy gains and inference cost reductions across 616

datasets. 617

Figure 4. Self-consistency improves accuracy while reducing
inference cost. Accuracy gains (bars) and reduction in gener-
ated tokens (lines) are shown across datasets.

5 Conclusion 618

This paper introduced a structured self-consistency 619

framework to improve mathematical reasoning in 620

large language models (LLMs) by enforcing logical 621

coherence across both intermediate steps and final 622

outputs. Our empirical evaluation demonstrated 623

that self-consistency significantly enhances theo- 624

rem proving, symbolic manipulation, and numeri- 625

cal computation while reducing hallucinations. Ad- 626

ditionally, we analyzed the computational trade- 627

offs, showing that self-consistency improves ac- 628

curacy without excessive inference costs. These 629

findings suggest that self-consistency is a promis- 630

ing approach for enhancing mathematical reliability 631

in LLMs, and future research can explore adaptive 632

self-consistency strategies, integration with exter- 633

nal verification mechanisms, and optimizing infer- 634

ence efficiency. 635
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6 Limitations636

While our method improves the consistency of in-637

termediate reasoning steps, it does not fully ad-638

dress the root causes of hallucinations, such as639

limitations in the training data or the model’s abil-640

ity to handle ambiguous or under-specified inputs.641

Further research is needed to explore ways to en-642

hance the model’s generalization to complex, out-643

of-distribution problems.644

7 Ethical Considerations645

The proposed structured self-consistency frame-646

work aims to improve the reliability and inter-647

pretability of AI-driven mathematical reasoning,648

potentially benefiting fields like education and re-649

search. However, as AI systems are increasingly650

trusted for complex tasks, there are concerns about651

over-reliance, especially given the potential for er-652

rors and hallucinations. Ensuring transparency and653

accountability in AI is crucial, particularly in high-654

stakes domains such as healthcare or finance. While655

this work enhances reasoning accuracy, continuous656

validation and user education will be necessary to657

ensure responsible and ethical use of AI technolo-658

gies.659
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A Related Work873

A.1 Hallucinations in LLMs874

Large language models (LLMs) have exhibited875

remarkable capabilities across diverse reason-876

ing tasks, but their susceptibility to hallucina-877

tions—producing statements that appear plausible878

yet deviate from factual correctness—remains a sig-879

nificant challenge (Yin et al., 2023; Xiong et al.,880

2024; Huang et al., 2023b; Bai et al., 2022). Hal-881

lucinations can manifest as factual inaccuracies,882

logical inconsistencies, or self-contradictory rea-883

soning chains, which are particularly problematic884

in mathematical reasoning, where correctness is bi-885

nary and errors propagate through multi-step deriva-886

tions (Kapfer et al., 2025; Wang et al., 2024b).887

To mitigate hallucinations, recent research has888

explored detection and prevention strategies. Some889

approaches analyze internal model representations,890

such as hidden states (Azaria and Mitchell, 2023;891

Burns et al., 2023) or attention matrices (Simhi892

et al., 2024; Zhang et al., 2024), to identify incon-893

sistencies. Others leverage entropy-based uncer-894

tainty estimation to quantify hallucination likeli-895

hood (Farquhar et al., 2024; Kossen et al., 2024).896

Furthermore, mitigation efforts have focused on897

fine-tuning LLMs with high-quality instructional898

datasets (Lee et al., 2023; Zhou et al., 2024; Elaraby899

et al., 2023) and reinforcement learning with hu-900

man feedback (RLHF) (Ouyang et al., 2022; Bai901

et al., 2022). While these methods improve factual902

accuracy, they often fail to generalize across di- 903

verse reasoning tasks, particularly in mathematical 904

problem-solving, which requires stepwise logical 905

coherence. 906

A.2 Self-Consistency for Improving Factuality 907

in LLMs 908

Self-consistency (SC) has emerged as an effec- 909

tive technique for improving factual reliability by 910

comparing multiple independently generated re- 911

sponses (Manakul et al., 2023; Farquhar et al., 2024; 912

Mündler et al., 2024). Prior studies have demon- 913

strated its efficacy in hallucination detection (Burns 914

et al., 2023; Azaria and Mitchell, 2023) and un- 915

certainty quantification (Desai and Durrett, 2020; 916

Jiang et al., 2021; Glushkova et al., 2021; Duan 917

et al., 2024). By leveraging SC, models can iden- 918

tify inconsistencies in their outputs and filter out 919

less reliable responses, leading to improved factual 920

accuracy (Wang et al., 2023; Shi et al., 2022; Chen 921

et al., 2023). 922

Despite these advances, existing SC approaches 923

impose strict constraints on task format, primar- 924

ily focusing on exact-match answer verification (Li 925

et al., 2022; Shi et al., 2022; Wang et al., 2023; 926

Huang et al., 2023a). To overcome this limitation, 927

recent work has adapted SC for open-ended tasks 928

using response clustering (Thirukovalluru et al., 929

2024), iterative refinement (Mündler et al., 2024), 930

and statement-level consistency verification (Chen 931

et al., 2023; Wang et al., 2024a). While these meth- 932

ods enhance SC applicability, they have yet to be 933

systematically applied to mathematical reasoning, 934

where stepwise verification is crucial for theorem 935

proving and symbolic transformations. 936

A.3 Self-Consistency in Mathematical 937

Reasoning 938

Mathematical reasoning tasks, including theorem 939

proving, symbolic manipulation, and numerical 940

problem-solving, pose unique challenges for LLMs 941

due to their reliance on multi-step logical inference 942

(Xin et al., 2024; Ankner et al., 2024). Traditional 943

SC-based methods focus on final answer validation 944

but fail to enforce intermediate step consistency, 945

leading to logically unsound proofs (Wang et al., 946

2024b). This limitation is particularly evident in 947

tasks requiring symbolic reasoning, where minor 948

inconsistencies in intermediate transformations can 949

yield incorrect conclusions (Kapfer et al., 2025). 950

To address this gap, researchers have explored 951

techniques such as process reward modeling (Light- 952
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man et al., 2023), tree-based search (Wu et al.,953

2024), and majority voting (Brown et al., 2024).954

These approaches aim to improve LLM consistency955

by refining reasoning paths, but they often intro-956

duce substantial computational overhead. A crit-957

ical research direction is balancing SC-enhanced958

accuracy with inference efficiency, ensuring that im-959

provements in correctness do not come at the cost960

of impractical computational expense (He et al.,961

2024; Jain et al., 2024).962

A.4 Decoding Strategies for Mitigating963

Hallucinations964

In addition to self-consistency, several decoding-965

based strategies have been proposed to mitigate966

hallucinations in LLMs. Contrastive decoding tech-967

niques adjust logit activations to amplify factual968

knowledge retention while suppressing misleading969

outputs (Burns et al., 2023; Chuang et al., 2024b).970

Other approaches, such as inference-time interven-971

tion (ITI), manipulate attention heads during decod-972

ing to steer the model towards more reliable gen-973

erations (Li et al., 2024). Lookback mechanisms974

analyze prior context to detect and correct inconsis-975

tencies dynamically (Chuang et al., 2024a).976

While these decoding methods improve factu-977

ality, they often require model modifications or978

extensive computational resources, limiting their979

scalability in real-world applications. In contrast,980

our approach leverages self-consistency without re-981

quiring fundamental changes to model architecture,982

making it more adaptable to various mathematical983

reasoning tasks.984
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