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1. Introduction
Methods that rely on density functional theory

(DFT) have established themselves as work tools in
modern computational material science. Neverthe-
less, these methods often prove to be too costly for
performing calculations related to the crystal struc-
ture search or calculations of the temperature de-
pendencies of the physical properties (for exam-
ple, thermal conductivity or viscosity) of liquid elec-
trolytes. Machine-learned interatomic potentials
(MLIPs) offer a more cost-effective alternative that
can achieve accuracy comparable to that obtained
with DFT simulations.

2. Accelerating simulations usingmoment tensor
potential
In this work, we show how machine-learned Mo-

ment Tensor Potentials (MTPs) [1, 2] can be used
as accurate interatomic potential models for appli-
cations such as crystal structure prediction and liq-
uid electrolyte simulation. A key feature of our ap-
proach [3, 4] is the integration of an active learning
strategy (based on the maxvol algorithm [5]) during
the construction of the training datasets, which al-
lows us for the development of a reliable and precise
MLIPs, while keeping the training datasets small.

2.1 Crystal structure prediction
A typical approach to predict the most energeti-

cally favorable crystal structures is based on the it-
erative procedure of generating candidate structures
followed by their local optimization and ranking [6].
Wewill present our approach, which accelerates this
procedure, by generating a reliable MTPs, for effi-
cient materials search. We applied it to both inor-
ganic solids [7] and molecular crystals [3]. As an ex-
ample, Fig. 1 shows a convex hull of the Zn-Cu-Pd
system, where each read circle represents a novel
structure hitherto unknown to the Materials Project
database. Fig. 2 shows good agreement between
DFT-based search of the polymorphs of glycine and
MTP-based search. All the aforementioned develop-
ments are implemented in our code Sputnik (struc-
ture prediction using theoretical krystallography),
which is already publicly available at [8] and will be
soon released [7].

Fig. 1: Convex hull of the Zn-Cu-Pd system. Red cir-
cles represent novel compounds, not presented in
the Materials Project Database.
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Fig. 2: Comparison between DFT-calculated and
MTP-calculated energies of the most energeti-
cally favorable (α, β, γ) glycine polymorphs.
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2.2 Liquid electrolytes simulations
Another application of the actively-trained MTPs

is related to simulations of temperature dependence
of physical characteristics such as density, viscos-
ity, thermal and electrical conductivities of liquid
electrolytes. MLIPs allow one to perform large-
scale molecular dynamic simulations and compute
the aforementioned properties with substantial ac-
curacy, as we have recently demonstrated by calcu-
lating properties of liquid LiF-NaF-KFmelt [4]. How-
ever, one of the limitations of many modern MLIPs
is associated with the lack of long-range interactions
description, which might become a problem dur-
ing the simulations of molecular electrolytes, which
are widely applied in industry. We will show sev-
eralmethodological advancements of the explicit in-
clusion of long-range interactions in MTP construc-
tion [9], which allowed us to accurately compute
the viscosities of several molecular electrolytes as
demonstrated in Fig. 3.
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Fig. 3: Viscosity calculated using Green-Kubo
method during molecular dynamics simulations
with machine-learned MTP. Carbonates are la-
beled as: DMC – dimethyl , EMC – diethyl methyl,
DEC – diethyl, VC – vinyline, EC – ethylene, PC –
propylene.

2.3 Related works
Several works recently showed the application of

machine learning methods to the inorganic crys-
tal structure prediction problem [10, 11] – our work
might be considered as complementary to the afore-
mentioned works. The use of MLIPs for liquid elec-
trolyte simulations is a recent trend; see, for exam-
ple, work [12].
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