
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PWM: POLICY LEARNING WITH MULTI-TASK
WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has made significant strides in complex tasks but
struggles in multi-task settings with different embodiments. World models methods
offer scalability by learning a simulation of the environment, but often rely on
inefficient gradient-free optimization methods for policy extraction. In contrast,
gradient-based methods exhibit lower variance but fail to handle discontinuities.
Our work reveals that well-regularized world models can generate smoother opti-
mization landscapes than the actual dynamics, facilitating more effective first-order
optimization. We introduce Policy learning with multi-task World Models (PWM),
a novel model-based RL algorithm for continuous control. Initially, the world model
is pre-trained on offline data, and then policies are extracted from it using first-
order optimization in less than 10 minutes per task. PWM effectively solves tasks
with up to 152 action dimensions and outperforms methods that use ground-truth
dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27%
higher rewards than existing baselines, without relying on costly online planning.
Visualizations and code available at policy-world-model.github.io.

Large Multi-task
World Model

Policy

Policy

Policy
0.8

0.9

1.0

1.1

1.2

P
P

O
-n

or
m

. R
ew

ar
d

High-dim. single tasks

0.8

0.9

N
or

m
al

iz
ed

 S
co

re

80 Multi-task

PPO SAC SHAC TD-MPC2 PWM (ours)

Figure 1: We prpose PWM, a new method for multi-task RL that utilizes pre-trained world models to learn
policies for each task. When sufficiently regularized, these world models induce smooth optimization landscapes,
which allows for efficient first-order optimization. Our approach can solve tasks in <10 minutes and achieves
higher rewards in both single-task and multi-task environments.

1 INTRODUCTION

The pursuit of generalizability in machine learning has recently been propelled by the training of
large models on substantial datasets (Brown et al., 2020; Kirillov et al., 2023; Bommasani et al.,
2021). Such advancements have notably permeated robotics, where multi-task behavior cloning
techniques have shown remarkable performance (Zitkovich et al., 2023; Octo Model Team et al.,
2024; Goyal et al., 2023; Bousmalis et al., 2023). Nevertheless, these approaches predominantly
hinge on near-expert data and struggle with adaptability across diverse robot morphologies due to
their dependence on teleoperation (Zitkovich et al., 2023; Octo Model Team et al., 2024; Kumar et al.,
2021).

In contrast, Reinforcement Learning (RL) offers a robust framework capable of learning from
suboptimal data, addressing the aforementioned limitations. However, traditional RL has been
focused on single-task experts (Mnih et al., 2013; Schulman et al., 2017; Haarnoja et al., 2018).
Recently, (Hansen et al., 2024) suggested that a potential pathway to multi-task RL is with the world

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PWM: POLICY LEARNING WITH MULTI-TASK
WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has made significant strides in complex tasks but
struggles in multi-task settings with different embodiments. World models methods
offer scalability by learning a simulation of the environment, but often rely on
inefficient gradient-free optimization methods for policy extraction. In contrast,
gradient-based methods exhibit lower variance but fail to handle discontinuities.
Our work reveals that well-regularized world models can generate smoother opti-
mization landscapes than the actual dynamics, facilitating more effective first-order
optimization. We introduce Policy learning with multi-task World Models (PWM),
a novel model-based RL algorithm for continuous control. Initially, the world model
is pre-trained on offline data, and then policies are extracted from it using first-
order optimization in less than 10 minutes per task. PWM effectively solves tasks
with up to 152 action dimensions and outperforms methods that use ground-truth
dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27%
higher rewards than existing baselines, without relying on costly online planning.
Visualizations and code available at policy-world-model.github.io.

Large Multi-task
World Model

Policy

Policy

Policy
0.8

0.9

1.0

1.1

1.2

P
P

O
-n

or
m

. R
ew

ar
d

High-dim. single tasks

0.8

0.9

N
or

m
al

iz
ed

 S
co

re

80 Multi-task

PPO SAC SHAC TD-MPC2 PWM (ours)

Figure 1: We propose PWM, a new method for multi-task RL that utilizes pre-trained world models to learn
policies for each task. When sufficiently regularized, these world models induce smooth optimization landscapes,
which allows for efficient first-order optimization. Our approach can solve tasks in <10 minutes and achieves
higher rewards in both single-task and multi-task environments.

1 INTRODUCTION

The pursuit of generalizability in machine learning has recently been propelled by the training of
large models on substantial datasets Brown et al. (2020); Kirillov et al. (2023); Bommasani et al.
(2021). Such advancements have notably permeated robotics, where multi-task behavior cloning
techniques have shown remarkable performance Zitkovich et al. (2023); Octo Model Team et al.
(2024); Goyal et al. (2023); Bousmalis et al. (2023). Nevertheless, these approaches predominantly
hinge on near-expert data and struggle with adaptability across diverse robot morphologies due to
their dependence on teleoperation Zitkovich et al. (2023); Octo Model Team et al. (2024); Kumar
et al. (2021).

In contrast, Reinforcement Learning (RL) offers a robust framework capable of learning from
suboptimal data, addressing the aforementioned limitations. However, traditional RL has been
focused on single-task experts Mnih et al. (2013); Schulman et al. (2017); Haarnoja et al. (2018).
Recently, Hansen et al. (2024) suggested that a potential pathway to multi-task RL is with the world

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

models framework, where a large model learns the environment dynamics and is then combined with
Zeroth-order Gradient (ZoG) methods. Despite advancements, ZoG methods struggle with sample
inefficiency due to the high variance (Mohamed et al., 2020; Suh et al., 2022; Parmas et al., 2023)
and online planning time scales with model size, rendering it infeasible at scale.

First-order Gradient (FoG) methods provide a low-variance alternative that have shown superior
sample efficiency and asymptotic performance when combined with smooth differentiable simulations
(Xu et al., 2022; Georgiev et al., 2024). However, they struggle to optimize through discontinuities
(Suh et al., 2022; Georgiev et al., 2024). In this work, we explore the tight coupling between FoG
optimization and world models through the lens of differentiable simulation. Counter-intuitively,
we find that for gradient-based optimization, we don’t want world models to be accurate; instead,
we want them to be smooth and have a low optimality gap. This in turn enables efficient FoG
optimization.

Building on these insights, we propose Policy learning with multi-task World Models (PWM), an
algorithm that can learn policies from offline pre-trained world models in under <10 minutes per
task. With this new-found efficiency, we also propose a new multi-task framework, where instead of
training a full multi-task algorithm, we only train a multi-task world model and then extract a policy
for each task. This decoupling of the supervised objective and the RL objective results in more stable,
more efficient learning and higher episode rewards. Our empirical evaluations on high-dimensional
tasks indicate that PWM not only achieves higher reward than baselines but also outperforms methods
that use ground-truth dynamics. In a multi-task scenario utilizing a pre-trained 48M parameter world
model from TD-MPC2, PWM achieves up to 27% higher reward than TD-MPC2 without relying on
online planning.

This underscores the efficacy of PWM and supports our broader contributions:

1. Through pedagogical examples and ablations, we show that more accurate world models do
not result in better policies. Instead of pursuing world model improvements in isolation, we
should aim to build world models that result in better policies.

2. When regularized correctly, world models enable efficient first-order optimization. We show
that this results in better performing policies and faster training times in comparison to
zeroth-order methods.

3. We propose PWM, a model-based algorithm for learning continuous control policies from
pre-trained multi-task world models that can solve tasks in <10 minutes using FoG optimiza-
tion.

2 BACKGROUND

We focus on discrete-time and infinite horizon Reinforcement Learning (RL) scenarios characterized
by system states s ∈ Rn = S , actions a ∈ Rm = A, dynamics function f : S×A → S and a reward
function r : S ×A → R. Combined, these form a Markov Decision Problem (MDP) summarized by
the tuple (S,A, f, r, γ) where γ is the discount factor. Actions at each timestep t are sampled from
a stochastic policy at ∼ πθ(·|st), parameterized by θ. The goal of the policy is to maximize the
cumulative discounted rewards:

max
θ

J(θ) := max
θ

E s1∼ρ(·)
at∼πθ(·|st)

[∞∑
t=1

γtr(st,at)

]
(1)

where ρ(s1) is the initial state distribution. Since this maximization over an infinite sum is intractable,
in practice we often maximize over a value estimate. The value of a state st is defined as the expected
reward follow the policy πθ

V π
ψ (st) := Eah∼πθ(·|sh)

[∞∑
h=t

γhr(sh,ah)

]
(2)

When V is approximated with a learned model with parameters ψ and πθ attempts to maximize some
function of V , we arrive at the popular and successful actor-critic architecture (Konda & Tsitsiklis,
1999). Additionally, in MBRL it is common to also learn approximations of f and r, which we
denote as Fϕ and Rϕ, respectively. It has also been shown to be beneficial to encode the true state
s into a latent state z using a learned encoder Eϕ (Hafner et al., 2019; Hansen et al., 2022; 2024;

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

models framework, where a large model learns the environment dynamics and is then combined with
Zeroth-order Gradient (ZoG) methods. Despite advancements, ZoG methods struggle with sample
inefficiency due to the high variance Mohamed et al. (2020); Suh et al. (2022); Parmas et al. (2023)
and online planning time scales with model size, rendering it infeasible at scale.

First-order Gradient (FoG) methods provide a low-variance alternative that have shown superior
sample efficiency and asymptotic performance when combined with smooth differentiable simulations
Xu et al. (2022). However, they struggle to optimize through discontinuities Suh et al. (2022);
Georgiev et al. (2024). In this work, we explore the tight coupling between FoG optimization and
world models through the lens of differentiable simulation. Counter-intuitively, we find that for
gradient-based optimization, we don’t want world models to be accurate; instead, we want them to be
smooth and have a low optimality gap. This in turn enables efficient FoG optimization.

Building on these insights, we propose Policy learning with multi-task World Models (PWM), an
algorithm that can learn policies from offline pre-trained world models in under <10 minutes per
task. With this new-found efficiency, we also propose a new multi-task framework, where instead
of training a multi-task algorithm, we only train a multi-task world model and then extract a policy
for each task. This decoupling of the supervised and RL objectives results in more stable and
efficient learning with higher episode rewards. Our empirical evaluations on high-dim. tasks indicate
that PWM not only achieves higher reward than baselines but also outperforms methods that use
ground-truth dynamics. In a multi-task scenario utilizing a pre-trained 48M parameter world model
from TD-MPC2, PWM achieves up to 27% higher reward than TD-MPC2 without relying on online
planning. This underscores the efficacy of PWM and supports our broader contributions:

1. Correlation Between World Model Smoothness and Policy Performance: Through
pedagogical examples and ablations, we demonstrate that smoother, better-regularized
world models significantly enhance policy performance. Notably, this results in an inverse
correlation between model accuracy and policy performance.

2. Efficiency of First-Order Gradient (FoG) Optimization: We show that combining FoG
optimization with well-regularized world models enables more efficient policy learning
compared to zeroth-order methods. Furthermore, policies learned from world models asymp-
totically outperform those trained with ground-truth simulation dynamics, emphasizing the
importance of the tight relationship between FoG optimization and world model design.

3. Scalable Multi-Task Algorithm: Instead of training a single multi-task policy model, we
propose PWM, a framework where a multi-task world model is first pre-trained on offline
data. Then per-task expert policies are extracted in <10 minutes per task, offering a clear
and scalable alternative to existing methods focused on unified multi-task models.

2 BACKGROUND

We focus on discrete-time and infinite horizon Reinforcement Learning (RL) scenarios characterized
by system states s ∈ Rn = S , actions a ∈ Rm = A, dynamics function f : S×A → S and a reward
function r : S ×A → R. Combined, these form a Markov Decision Problem (MDP) summarized by
the tuple (S,A, f, r, γ) where γ is the discount factor. Actions at each timestep t are sampled from
a stochastic policy at ∼ πθ(·|st), parameterized by θ. The goal of the policy is to maximize the
cumulative discounted rewards:

max
θ

J(θ) := max
θ

E s1∼ρ(·)
at∼πθ(·|st)

[∞∑
t=1

γtr(st,at)

]
(1)

where ρ(s1) is the initial state distribution. Since this maximization over an infinite sum is intractable,
in practice we often maximize over a value estimate. The value of a state st is defined as the expected
reward follow the policy πθ

V π
ψ (st) := Eah∼πθ(·|sh)

[∞∑
h=t

γhr(sh,ah)

]
(2)

When V is approximated with a learned model with parameters ψ and πθ attempts to maximize some
function of V , we arrive at the popular and successful actor-critic architecture Konda & Tsitsiklis
(1999). Additionally, in MBRL it is common to also learn approximations of f and r, which we
denote as Fϕ and Rϕ, respectively. It has also been shown to be beneficial to encode the true state

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑤

ℎ
𝜃

(a) Ball-wall visualization.

2 0 2

20

0

20
J()
ReLU
SimNorm

(b) Problem landscape.

Model Model
error

Opt.
gap

True 0.0 16.85
ReLU 0.71 16.05
SimNorm 1.13 3.47

(c) Model error and optimality gap.

Figure 2: Ball-wall pedagogical example. The left figure visualizes the problem. The middle figure shows the
problem landscape induced by each model. J(θ) shows the true underlying function and the two other are MLPs
with different activation functions. We minimize each of these problems using gradient descent and starting at
θ = −π (marker ×). The colored crosses represent the solutions converged to for each model. The right table
shows the model approximation error during training and the optimality gap |J(θ∗)− J(θ̂)| between the global
minimum θ∗ and the solution found for each model θ̂.

Hafner et al., 2023). Putting together all of these components we can define a model-based actor-critic
algorithm to consist of the tuple (πθ, Vψ, Eϕ, Fϕ, Rϕ) which can describe popular approaches such
as Dreamer (Hafner et al., 2019; 2023) and TD-MPC2 (Hansen et al., 2024). Notably, we make an
important distinction between the types of components. We refer to Eϕ, Fϕ and Rϕ as the world
model components since they are a supervised learning problem with fixed targets. On the other hand,
πθ and Vψ optimize for moving targets which is fundamentally more challenging and we refer to
them as the policy components.

3 POLICY OPTIMIZATION THROUGH WORLD MODELS

This paper builds on the insight that since access to Fϕ and Rϕ is assumed through a pre-trained
world-model, we have the option to optimize Eq. 1 via First-order Gradient (FoG) optimization which
exhibit lower gradient variance, more optimal solutions and improved sample efficiency (Mohamed
et al., 2020). In our setting, these types of gradients are obtained by directly differentiating the
expected terms of Eq. 1 as shown in Eq. 3. Note that this gradient estimator is also known as
reparameterized gradient (Kingma et al., 2015) and pathwise derivative (Schulman et al., 2015).
While we use the explicit ∇[1] notation below, we later drop it for simplicity as all gradient types in
this work are first-order gradients.

∇[1]
θ J(θ) := E s1∼ρ(·)

ah∼πθ(·|sh)

[
∇θ

(∞∑
t=1

γtr(st,at)

)]
(3)

As∇[1]
θ J(θ) in itself is a random variable, we need to estimate it. A popular way to do that in practice

is via Monte-Carlo approximation where we are interested in two properties - bias and variance. In
Sections 3.1 and 3.2 we tackle each aspect with toy robotic control problem to build intuition. In
Section 3.3 we combine our findings to propose a new algorithm.

3.1 LEARNING THROUGH CONTACT

FoGs are unbiased E
[
∇̄[1]J(θ)

]
:= E

[∑N
n=1 ∇̂

[1]
n J(θ)

]
= ∇J(θ), only if both the dynamics f

and rewards r are Lipschitz-smooth (Suh et al., 2022). However, many robotic problems involving
contact are inherently non-smooth, which breaks these conditions and results in gradient sample error
where E

[
∇̄[1]J(θ)

]
̸= ∇J(θ) under finite number of samples N . Instead of directly optimizing the

true, discontinuous objective, it is advantageous to optimize a smooth surrogate, such as a model
learned by a regularized deep neural network.

To illustrate this concept, we use a toy problem where a ball is thrown toward a wall at a fixed velocity
as shown in Figure 2a. The objective is to find the optimal initial angle θ such that we maximize
forward distance. In this simplified pedagogical example, we assume that the ball "sticks" to the

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑤

ℎ
𝜃

(a) Ball-wall visualization.

2 0 2

20

0

20
J()
ReLU
SimNorm

(b) Problem landscape.

Model Model
error

Opt.
gap

True 0.0 16.85
ReLU 0.71 16.05
SimNorm 1.13 3.47

(c) Model error and optimality gap.

Figure 2: Ball-wall pedagogical example. The left figure visualizes the problem. The middle figure shows the
problem landscape induced by each model. J(θ) shows the true underlying function and the two other are MLPs
with different activation functions. We minimize each of these problems using gradient descent and starting at
θ = −π (marker ×). The colored crosses represent the solutions converged to for each model. The right table
shows the model approximation error during training and the optimality gap |J(θ∗)− J(θ̂)| between the global
minimum θ∗ and the solution found for each model θ̂.

s into a latent state z using a learned encoder Eϕ Hafner et al. (2019); Hansen et al. (2022; 2024);
Hafner et al. (2023). Putting together all of these components we can define a model-based actor-critic
algorithm to consist of the tuple (πθ, Vψ, Eϕ, Fϕ, Rϕ) which can describe popular approaches such
as Dreamer Hafner et al. (2019; 2023) and TD-MPC2 Hansen et al. (2024). Notably, we make an
important distinction between the types of components. We refer to Eϕ, Fϕ and Rϕ as the world
model components since they are a supervised learning problem with fixed targets. On the other hand,
πθ and Vψ optimize for moving targets which is fundamentally more challenging and we refer to
them as the policy components.

3 POLICY OPTIMIZATION THROUGH WORLD MODELS

This paper builds on the insight that since access to Fϕ and Rϕ is assumed through a pre-trained
world-model, we have the option to optimize Eq. 1 via First-order Gradient (FoG) optimization which
exhibit lower gradient variance, more optimal solutions and improved sample efficiency Mohamed
et al. (2020). In our setting, these types of gradients are obtained by directly differentiating the
expected terms of Eq. 1 as shown in Eq. 3. Note that this gradient estimator is also known as
reparameterized gradient Kingma et al. (2015) and pathwise derivative Schulman et al. (2015). While
we use the explicit ∇[1] notation below, we later drop it for simplicity as all gradient types in this
work are first-order gradients.

∇[1]
θ J(θ) := E s1∼ρ(·)

ah∼πθ(·|sh)

[
∇θ

(∞∑
t=1

γtr(st,at)

)]
(3)

As∇[1]
θ J(θ) in itself is a random variable, we need to estimate it. A popular way to do that in practice

is via Monte-Carlo approximation where we are interested in two properties - bias and variance. In
Sections 3.1 and 3.2 we tackle each aspect with toy robotic control problem to build intuition. In
Section 3.3 we combine our findings to propose a new algorithm.

3.1 LEARNING THROUGH CONTACT

FoGs are unbiased E
[
∇̄[1]J(θ)

]
:= E

[∑N
n=1 ∇̂

[1]
n J(θ)

]
= ∇J(θ), only if both the dynamics f and

rewards r are Lipschitz-smooth Suh et al. (2022). However, many robotic problems involving contact
are inherently non-smooth, which breaks these conditions and results in gradient sample error where
E
[
∇̄[1]J(θ)

]
̸= ∇J(θ) under finite number of samples N . Instead of directly optimizing the true,

discontinuous objective, it is advantageous to optimize a smooth surrogate, such as a model learned
by a regularized deep neural network.

To illustrate this concept, we use a toy problem where a ball is thrown toward a wall at a fixed velocity
as shown in Figure 2a. The objective is to find the optimal initial angle θ such that we maximize

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑞!"

𝑞!#

0 20 40
H

10 12

10 7

10 2

Va
r[

J(
)]

True
MLP H=3
MLP H=16

0 20 40
H

10 2

101

104

ES
NR

(
J(

))

True
MLP H=3
MLP H=16

Figure 3: Double pendulum pedagogical example. The middle figure evaluates the variance of policy gradient
estimates over N = 100 Monte-Carlo samples for varying horizons H . The right figure shows the same data but
plots the Expected Signal-to-Noise ratio (ESNR) with higher values translating to more useful gradients. These
results suggests that world models trained over long horizon trajectories provide more useful gradients. Note
that H = 3 and H = 16 in the figure legends refer to the training horizon of the models.

wall, creating a discontinuous optimization landscape (Figure 2b). We compare the performance of
two models in approximating this objective: a 2-layer Multi-Layer Perceptron (MLP) with ReLU
activation and another MLP with SimNorm activation (Hansen et al., 2024) in the intermediate layers.
SimNorm normalizes a latent vector z by projecting it into simplices with dimension V using a
softmax operator. Given an input vector z, SimNorm can be expressed as a mapping into L vectors:

SimNorm(z) := [g1, ..., gL], gi = Softmax(zi:i+V) (4)

We train the MLPs and observe the smoothing effects of the learned models in Figure 2b. While
the MLP smooths the problem landscape, it also introduces a local minimum when attempting
to optimize with gradient descent starting from (e.g.) θ = −π, leading to a large optimality gap
(difference between the solution and the optimal solution: ∥θ̂ − θ∗∥). In contrast, the SimNorm MLP
has additional regularization which reduces the optimality hap, at the expense of model accuracy
(Table 2c). This inverse correlation between the optimality gap and model error is known as objective
mismatch (Lambert et al., 2020). Therefore, we believe that regularized learned models can reduce
gradient sample error, and thus the optimality gap, enabling more efficient FoG optimization in
non-smooth environments. Further details in Appendix A.

3.2 LEARNING WITH CHAOTIC DYNAMICS

While FoGs have lower variance per step, they can accumulate significant variance over long-horizon
rollouts (Metz et al., 2021). (Suh et al., 2022) link this variance to the smoothness of models and
the length of the prediction horizon: Var

[
∇J [1]

]
∝ ∥∇f(s, a)∥2H . At sufficiently high H , the

high variance renders FoGs ineffective in chaotic systems. Chaotic systems are characterized by
their sensitivity to initial conditions, where small perturbations can lead to exponentially divergent
trajectories, making long-term prediction particularly challenging. The double pendulum, also known
as the Acrobot (Murray & Hauser, 1991), is a classic example of such a system (Figure 3).

We analyze the variance of gradient estimators in the double pendulum using both the true dynamics
and a SimNorm-activated MLP model. The MLP model was trained for auto-regressive prediction
horizons of H = 3 and H = 16 until convergence on a large dataset. Figure 3 shows that both learned
models exhibit reduced variance compared to the true dynamics. However, as noted by (Parmas et al.,
2023), variance alone is insufficient for drawing definitive conclusions about gradient quality. Instead,
they propose analyzing gradients via their Expected Signal-to-Noise Ratio (ESNR), defined as:

ESNR(∇J(θ)) = E

[∑
E
[
∇[1]J(θ)

]2∑
Var

[
∇[1]J(θ)

]] (5)

In Figure 3, we observe that learned models exhibit higher ESNR than the true dynamics, providing
more useful gradients. Notably, the training horizon plays a critical role, with the H = 16 model
sustaining a higher ESNR over higher H . We conclude that learned world models offer more
informative policy gradients than the true system dynamics. Further details in Appendix B.

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑞!"

𝑞!#

0 20 40
H

10 12

10 7

10 2

Va
r[

J(
)]

True
MLP H=3
MLP H=16

0 20 40
H

10 2

101

104

ES
NR

(
J(

))

True
MLP H=3
MLP H=16

Figure 3: Double pendulum pedagogical example. The middle figure evaluates the variance of policy gradient
estimates over N = 100 Monte-Carlo samples for varying horizons H . The right figure shows the same data but
plots the Expected Signal-to-Noise ratio (ESNR) with higher values translating to more useful gradients. These
results suggests that world models trained over long horizon trajectories provide more useful gradients. Note
that H = 3 and H = 16 in the figure legends refer to the training horizon of the models.

forward distance. In this simplified pedagogical example, we assume that the ball "sticks" to the
wall, creating a discontinuous optimization landscape (Figure 2b). We compare the performance of
two models in approximating this objective: a 2-layer Multi-Layer Perceptron (MLP) with ReLU
activation and another MLP with SimNorm activation Hansen et al. (2024) in the intermediate layers.
SimNorm normalizes a latent vector z by projecting it into simplices with dimension P using a
softmax operator. Given an input vector z, SimNorm can be expressed as a mapping into L vectors:

SimNorm(z) := [g1, ..., gL], gi = Softmax(zi:i+P) (4)

We trained both MLPs and observed their effects on smoothing the optimization landscape (Figure 2b).
The ReLU-activated MLP smooths the landscape but introduces a local minimum that hinders gradient
descent, particularly when starting from θ = −π, resulting in a large optimality gap (difference
between the solution and the optimal solution: ∥θ̂ − θ∗∥). In contrast, the SimNorm-activated MLP
has additional regularization which reduces the optimality gap, at the expense of model accuracy
(Table 2c). This example highlights that more accurate models do not always lead to better policies,
as noted by Lambert et al. (2020). Our findings extend this by showing that for FoG optimization,
prioritizing smoothness over accuracy can lead to improved results. Further details are provided in
Appendix A.

3.2 LEARNING WITH CHAOTIC DYNAMICS

While FoGs have lower variance per step, they can accumulate significant variance over long-horizon
rollouts Metz et al. (2021). Suh et al. (2022) link this variance to the smoothness of models and
the length of the prediction horizon: Var

[
∇J [1]

]
∝ ∥∇f(s, a)∥2H . At sufficiently high H , the

high variance renders FoGs ineffective in chaotic systems. Chaotic systems are characterized by
their sensitivity to initial conditions, where small perturbations can lead to exponentially divergent
trajectories, making long-term prediction particularly challenging. The double pendulum, also known
as the Acrobot Murray & Hauser (1991), is a classic example of such a system (Figure 3).

We analyze the variance of gradient estimators in the double pendulum using both the true dynamics
and a SimNorm-activated MLP model. The MLP model was trained for auto-regressive prediction
horizons of H = 3 and H = 16 until convergence on a large dataset. Figure 3 shows that both
learned models exhibit reduced variance compared to the true dynamics. However, as noted by
Parmas et al. (2023), variance alone is insufficient for drawing definitive conclusions about gradient
quality. Instead, they propose analyzing gradients via their Expected Signal-to-Noise Ratio (ESNR),
defined as:

ESNR(∇J(θ)) = E

[∑
E
[
∇[1]J(θ)

]2∑
Var

[
∇[1]J(θ)

]] (5)

In Figure 3, we observe that learned models exhibit higher ESNR than the true dynamics, providing
more useful gradients. Notably, the training horizon plays a critical role, with the H = 16 model
sustaining a higher ESNR over higher H . We conclude that learned world models offer more
informative policy gradients than the true system dynamics. Further details in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 PWM: POLICY LEARNING WITH MULTI-TASK WORLD MODELS

Algorithm 1: PWM: Policy learning with
multi-task World Models
Given: Multi-task dataset B
Given: γ: discount rate
Given: αθ, αψ, αϕ: learning rates
Initialize learnable parameters θ,ψ,ϕ
▷ Pre-train world model once
for N epochs do

s1:H ,a1:H , r1:H , e ∼ B
ϕ← ϕ− αϕLwm(ϕ) ▷ Eq. 10

end
▷ Train policy on task
embedding e

for M epochs do
s1 ∼ B
z1 = Eϕ(s1, e)
for h=[1, ..., H] do ▷ Rollout

ah ∼ πθ(·|zh)
rh = Rϕ(zh,ah, e)
zh+1 = Fϕ(zh,ah, e)

end
θ ← θ + αθLπ(θ) ▷ Eq. 6
ψ ← ψ − αψLV (ψ) ▷ Eq. 7-9

end

Given the results from the previous subsection,
we propose to view world models not as com-
ponents of RL methods but instead as scalable
differentiable physics simulators which provide
gradients with low sample error and variance.
It is worth noting that approaches such as TD-
MPC2 (Hansen et al., 2024) do not exploit these
properties but rather choose to optimize policies
via DDPG-style gradients:
∇θJ(θ) ≈ Ea∼π(·|s)[∇θQ(s,a)].

We propose a new method and framework for ef-
ficiently learning policies from large multi-task
world models.
Framework. Assuming availability of data
from multiple tasks, we first train a multi-task
world model to predict future states and rewards.
Then for each task we want to solve, we learn a
single policy in minutes using FoG optimization.
The policy is then deployed to solve the task and
optionally finetune its world model and policy.
Method. For policy learning, we propose on-
policy actor-critic approach inspired by dif-
ferentiable simulation approaches (Xu et al.,
2022) where the actor is trained via FoG back-
propagated through the world model, while the
critic is trained via TD(λ). The key to our approach is that training is done in a batched fashion where
multiple trajectories are imagined in parallel. The actor loss function is akin to Eq. 1 but features
rewards over a fixed horizon H , terminal value bootstrapping and usage of the learned world model
components:

Lπ(θ) := E s1∼ρ(·)
ah∼πθ(·|zh)

[
H−1∑
h=1

γhRϕ(zh,ah) + γHVψ(zH)

]
where z1=Eϕ(s1)

zt+1=Fϕ(zt,at)
(6)

The critic is trained in a model-free fashion using TD(λ) over an H-step rollout in latent space z as
seen in other similar on-policy methods (Sutton & Barto, 2018; Hafner et al., 2019; Xu et al., 2022):

Vh(zt) :=
t+h−1∑
n=t

γn−tRϕ(zn,an) + γt+hVψ(zt+h) (7)

V̂ (zt) := (1− λ)

[H−t−1∑
h=1

λh−1Vh(zt)

]
+ λH−t−1VH(zt) (8)

LV (ψ) :=
t+H∑
h=t

∥∥∥Vψ(zh)− V̂ (zh)
∥∥∥2
2

(9)

We use an ensemble of 3 critics to reduce variance. To enable FoG optimization, it is important to use
a well-regularized world model. We use the

(
Eϕ(s, e), Fϕ(s,a, e), Rϕ(s,a, e)

)
model proposed by

TD-MPC2 (Hansen et al., 2024) with learnable task embeddings e. It is trained in an auto-regressive
fashion by sampling data from a buffer with loss function:

Lwm(ϕ) = E(s,a,r,s′,e)0:H∼B

[
H∑
t=0

γt
(
∥zt+1 − sg(Eϕ(st+1, e))∥22 + CE(r̂t, rt)

)]
(10)

where sg(·) is the stop-gradient operator and CE is the cross-entropy loss function. Reward prediction
is formulated as a discrete regression problem in log-transformed space. Furthermore, Eϕ and Fϕ
use SimNorm activation (Eq. 4) in their output layers. All trainable models are fully-connected MLPs
with LayerNorm (Ba et al., 2016) and Mish activation (Misra, 2019). The complete algorithm is
shown in Algorithm 1. Further implementation details can be found in Appendix C.

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 PWM: POLICY LEARNING WITH MULTI-TASK WORLD MODELS

Algorithm 1: PWM: Policy learning with
multi-task World Models
Given: Multi-task dataset B
Given: γ: discount rate
Given: αθ, αψ, αϕ: learning rates
Initialize learnable parameters θ,ψ,ϕ
▷ Pre-train world model once
for N epochs do

s1:H ,a1:H , r1:H , e ∼ B
ϕ← ϕ− αϕ∇Lwm(ϕ) ▷ Eq. 10

end
▷ Train policy on task
embedding e

for M epochs do
s1 ∼ B
z1 = Eϕ(s1, e)
for h=[1, ..., H] do ▷ Rollout

ah ∼ πθ(·|zh)
rh = Rϕ(zh,ah, e)
zh+1 = Fϕ(zh,ah, e)

end
θ ← θ + αθ∇Lπ(θ) ▷ Eq. 6
ψ ← ψ − αψ∇LV (ψ) ▷ Eq. 7-9

end

Given the results from the previous subsection,
we propose to view world models not as com-
ponents of RL methods but instead as scalable
differentiable physics simulators which provide
gradients with low sample error and variance.
It is worth noting that approaches such as TD-
MPC2 Hansen et al. (2024) do not exploit these
properties but rather choose to optimize policies
via DDPG-style gradients:
∇θJ(θ) ≈ Ea∼π(·|s)[∇θQ(s,a)].

We propose a new method and framework for ef-
ficiently learning policies from large multi-task
world models.
Framework. Assuming availability of data
from multiple tasks, we first train a multi-task
world model to predict future states and rewards.
Then for each task we want to solve, we learn a
single policy in minutes using FoG optimization.
The policy is then deployed to solve the task and
optionally finetune its world model and policy.
Method. For policy learning, we propose on-
policy actor-critic approach inspired by dif-
ferentiable simulation approaches Xu et al.
(2022) where the actor is trained via FoG back-
propagated through the world model, while the
critic is trained via TD(λ). The key to our approach is that training is done in a batched fashion where
multiple trajectories are imagined in parallel. The actor loss function is akin to Eq. 1 but features
rewards over a fixed horizon H , terminal value bootstrapping and usage of the learned world model
components:

Lπ(θ) := E s1∼ρ(·)
ah∼πθ(·|zh)

[
H−1∑
h=1

γhRϕ(zh,ah) + γHVψ(zH)

]
where z1=Eϕ(s1)

zt+1=Fϕ(zt,at)
(6)

The critic is trained in a model-free fashion using TD(λ) over an H-step rollout in latent space z as
seen in other similar on-policy methods Sutton & Barto (2018); Hafner et al. (2019); Xu et al. (2022):

Vh(zt) :=
t+h−1∑
n=t

γn−tRϕ(zn,an) + γt+hVψ(zt+h) (7)

V̂ (zt) := (1− λ)

[H−t−1∑
h=1

λh−1Vh(zt)

]
+ λH−t−1VH(zt) (8)

LV (ψ) :=
t+H∑
h=t

∥∥∥Vψ(zh)− V̂ (zh)
∥∥∥2
2

(9)

We use an ensemble of 3 critics to reduce variance. To enable FoG optimization, it is important to use
a well-regularized world model. We use the

(
Eϕ(s, e), Fϕ(s,a, e), Rϕ(s,a, e)

)
model proposed by

TD-MPC2 Hansen et al. (2024) with learnable task embeddings e. It is trained in an auto-regressive
fashion by sampling data from a buffer with loss function:

Lwm(ϕ) = E(s,a,r,s′,e)0:H∼B

[
H∑
t=0

γt
(
∥zt+1 − sg(Eϕ(st+1, e))∥22 + CE(r̂t, rt)

)]
(10)

where sg(·) is the stop-gradient operator and CE is the cross-entropy loss function. Reward prediction
is formulated as a discrete regression problem in log-transformed space. Furthermore, Eϕ and Fϕ
use SimNorm activation (Eq. 4) in their output layers. All trainable models are fully-connected MLPs
with LayerNorm Ba et al. (2016) and Mish activation Misra (2019). The complete algorithm is shown
in Algorithm 1. Further implementation details can be found in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: High-dimensional single-task environments (left to right): Hopper, Ant, Anymal, Humanoid and SNU
Humanoid. Our method successfully learns tasks with up to m = 152 continuous action dimensions. Additional
80 multi-task environments used in this paper are listed in Appendix E

4 EXPERIMENTAL RESULTS

4.1 CONTACT-RICH SINGLE TASKS

We first assess our proposed method on complex continuous control tasks with up to A = R152

using the differentiable simulator dflex (Xu et al., 2022). Hopper, Ant, Anymal, Humanoid and
muscle-actuated (SNU) Humanoid (Figure 4) are tasked to maximize forward velocity. We compare
against SHAC (Xu et al., 2022), a method with a similar actor-critic architecture as PWM but uses
ground-truth dynamics and rewards from the simulation, instead of learning them. This allows us
to understand whether world models induce better landscapes for policy learning. Furthermore, we
compare against TD-MPC2 which uses the same world model but learns a policy in a model-free
fashion and actively plans at inference time. This comparison allows us to understand whether
first-order gradients can learn better policies. We additionally include prominent model-free baselines
PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018).

We conduct this experiment across 5 tasks with 5 seeds each where PWM and TD-MPC2 use the same
pre-trained world models and are left to learn a policy and finetune their world models online. This is
done to enable fair comparison to SHAC which directly has access to the simulation model and does
not require any training. The results in Figure 5 reveal that (1) PWM is able to learn policies with
higher reward than SHAC asymptotically, indicating that regularized world models induce smooth
optimization landscapes than the true (discontinuous) dynamics. Furthermore (2) our method is able
to learn policies with higher rewards than TD-MPC2 without the need for online planning and with
the same compute time budget. However, PWM does not scale well to the highest dimensional task.
More experiment details and results are included in Appendix D.

0.8 0.9 1.0 1.1 1.2 1.3
PPO-normalized Reward

0.6 0.8 1.0 1.2 1.4 1.6
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
w

ith
 s

co
re

 >

PPO SAC SHAC TD-MPC2 PWM (ours)

Figure 5: Aggregate results from high-dimensional locomotion tasks where each agent is trained to solve
just that task (i.e. specialist). The left figure summarizes rewards achieved at the end of training using 50% IQM
for the solid lines and 95% CI as suggested by (Agarwal et al., 2021), as well as mean for the dashed lines. We
see that PWM achieves higher rewards than our main baselines TD-MPC2 and SHAC. The right figure shows
score distributions across all tasks which lets us understand the performance variability of each approach. PWM
exhibits a similar curve to SHAC but different than TD-MPC2, due to the policy learning approach.

6

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: High-dimensional single-task environments (left to right): Hopper, Ant, Anymal, Humanoid and SNU
Humanoid. Our method successfully learns tasks with up to m = 152 continuous action dimensions. Additional
80 multi-task environments used in this paper are listed in Appendix E

4 EXPERIMENTAL RESULTS

4.1 CONTACT-RICH SINGLE TASKS

The aim of this section is to understand whether smooth world models create better optimization
landscapes than ground-truth dynamics, facilitating efficient FoG optimization. We study this on
5 continuous control tasks (Figure 4 with up to A = R152 using the differentiable simulator dflex
Xu et al. (2022). Comparisons include SHAC Xu et al. (2022), which uses ground-truth dynamics
and rewards with a similar actor-critic architecture to PWM. Furthermore, we compare against two
world model approaches. DreamerV3 Hafner et al. (2023) learns its world model via reconstruction,
its actor via ZoG optimization and critic via Model-based Value Expansion (MVE) Feinberg et al.
(2018). TD-MPC2 Hansen et al. (2024) uses the same world model as PWM but learns a policy
in a model-free fashion and actively plans at inference time. We additionally include model-free
baselines PPO Schulman et al. (2017) and SAC Haarnoja et al. (2018). This comparison allows us
to understand whether (1) FoG-based optimization can learn better policies asymptotically and (2)
whether smooth world models induce better optimization landscapes for FoG optimization.

We conduct this experiment across 5 tasks with 5 seeds each where PWM and TD-MPC2 use the same
pre-trained world models and are left to learn a policy and finetune their world models online. This is
done to enable fair comparison to SHAC which directly has access to the simulation model and does
not require any training. The results in Figure 5 reveal that (1) PWM is able to learn policies with
higher reward than SHAC asymptotically, indicating that regularized world models induce smooth
optimization landscapes than the true (discontinuous) dynamics. Furthermore (2) our method is able
to learn policies with higher rewards than TD-MPC2 without the need for online planning and with
the same compute time budget. However, PWM does not scale well to the highest dimensional task.
More experiment details and results are included in Appendix D.

0.8 0.9 1.0 1.1 1.2 1.3
PPO-normalized Reward

0.6 0.8 1.0 1.2 1.4 1.6
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
w

ith
 s

co
re

 >

PPO SAC SHAC TD-MPC2 DreamerV3 PWM (ours)

Figure 5: Aggregate results from high-dimensional locomotion tasks where each agent is trained to solve
just that task (i.e. specialist). The left figure summarizes rewards achieved at the end of training using 50%
IQM for the solid lines and 95% CI as suggested by Agarwal et al. (2021), as well as mean for the dashed lines.
We see that PWM achieves higher rewards than our main baselines TD-MPC2 and SHAC. The right figure
shows score distributions across all tasks which lets us understand the performance variability of each approach.
DreamerV3 results are incomplete.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.25 0.50 0.75
Normalized score

Multi-task models comparison

0 50
World model training (ms)

0.6 0.8 1.0
Normalized score

Multi-task vs single-task experts

0 50
Inference time (ms)

M
T3

0
M

T8
0

SAC DreamerV3 TD-MPC2 PWM (ours)

Figure 6: Multi-task results. The left figure shows results of multi-task agents in the 30 and 80 task set settings
which include environments from dm_control (Tunyasuvunakool et al., 2020) and MetaWorld (Yu et al., 2020).
The results show 50% IQM with the solid lines and mean with the dashed lines. The bars represent 95% CI. In
both settings PWM achieves higher reward than TD-MPC2 without the need for online planning. The middle
figure compares the training and inference times of TD-MPC2 and PWM for the 48M parameter model. PWM
has significantly lower inference time as it does not plan online. The right figure shows a comparison between
multi-task PWM and TD-MPC2 and single-task experts SAC and DreamerV3 on the MT30 task set. Notably,
PWM is able to match the performance of SAC and DreamerV3.

4.2 MULTI-TASK WORLD-MODEL

We analyze the scalability of our proposed framework and method to large multi-task pre-trained world
models. We evaluate on two settings: (1) 30 continuous control dm_control tasks (Tunyasuvunakool
et al., 2020) ranging from m = 1 to m = 6 and (2) 80 tasks which include 50 additional manipulation
tasks from MetaWorld (Yu et al., 2020) with n = 39 and m = 4. These two multi-task settings
were introduced as MT30 and MT80 by (Hansen et al., 2024). In conducting our experiments, we
harness the same data and world model architecture as TD-MPC2. The data consists of 120k and
40k trajectories per dm_control and MetaWorld task, respectively generated by 3 random seeds of
TD-MPC2 runs. The world models we use are the 48M parameter models introduced in (Hansen
et al., 2024) with slight modifications to make them differentiable (Appendix C).

To train PWM, we first pre-train the world models on the dataset in a similar fashion to TD-MPC2
but with training H = 16 and γ = 0.99 for better first-order gradients as highlighted in Section 3.2.
Then we train a PWM policy on each particular task using the offline datasets for 10k gradient steps
which take 9.3 minutes on an Nvidia RTX6000 GPU. We evaluate task performance for 10 seeds for
each task and aggregate results in Figure 6. We compare against TD-MPC2 which learns a multi-task
policy while pre-training its world model and relies on online planning at inference. We can see
that PWM learns behavior achieving higher reward than TD-MPC2 while also being significantly
faster at inference time. While the fast per-task training is enabled by FoG optimization, we also find
that training a single multi-task policy produces poor results as shown in Appendix F. We further
compare our multi-task PWM policy to online-trained single-task experts SAC (Haarnoja et al., 2018)
and DreamerV3 (Hafner et al., 2023). Figure 6 reveals that multi-task PWM, while disadvantaged,
performs comparably to the single-task experts without requiring any environment interaction and
only training policies for ≤ 10 minutes per task. Additional results in Appendix E.

4.3 ABLATIONS

We perform 4 ablations on the complex single task experiments in order to understand the nuances of
first-order optimization through world models with PWM.

We increase the contact stiffness to be more realistic but also more stiff contact gives gradients
with high sample error (Suh et al., 2022). We run the same experiment as Section 4.1, but only
for the Hopper task and present the aggregate results from 5 random seeds in Figure 7a where we
normalize rewards by the maximum reward achieved by PPO in Section 4.1. We see that while PPO
and PWM rewards remain similar to prior results, while SHAC performance decreases by 48%. This
shows that regularized world models are robust to stiff contact models and thus more generalizble the
differentiable simulations.

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.6 0.7 0.8 0.9
Normalized score

Multi-task models comparison

0 50
World model training (ms)

0.6 0.8 1.0
Normalized score

Multi-task vs single-task experts

0 50
Inference time (ms)

M
T3

0
M

T8
0

SAC DreamerV3 TD-MPC2 PWM (ours)

Figure 6: Multi-task results. The left figure shows results of multi-task agents in the 30 and 80 task set settings
which include environments from dm_control Tunyasuvunakool et al. (2020) and MetaWorld Yu et al. (2020).
The results show 50% IQM with the solid lines and mean with the dashed lines. The bars represent 95% CI. In
both settings PWM achieves higher reward than TD-MPC2 without the need for online planning. The middle
figure compares the training and inference times of TD-MPC2 and PWM for the 48M parameter model. PWM
has significantly lower inference time as it does not plan online. The right figure shows a comparison between
multi-task PWM and TD-MPC2 and single-task experts SAC and DreamerV3 on the MT30 task set. Notably,
PWM is able to match the performance of SAC and DreamerV3.

4.2 MULTI-TASK WORLD-MODEL

We analyze the scalability of our proposed framework and method to large multi-task pre-trained world
models. We evaluate on two settings: (1) 30 continuous control dm_control tasks Tunyasuvunakool
et al. (2020) ranging from m = 1 to m = 6 and (2) 80 tasks which include 50 additional manipulation
tasks from MetaWorld Yu et al. (2020) with n = 39 and m = 4. These two multi-task settings
were introduced as MT30 and MT80 by Hansen et al. (2024). In conducting our experiments, we
harness the same data and world model architecture as TD-MPC2. The data consists of 120k and
40k trajectories per dm_control and MetaWorld task, respectively generated by 3 random seeds of
TD-MPC2 runs. The world models we use are the 48M parameter models introduced in Hansen et al.
(2024) with slight modifications to make them differentiable (Appendix C).

To train PWM, we first pre-train the world models on the dataset in a similar fashion to TD-MPC2
but with training H = 16 and γ = 0.99 for better first-order gradients as highlighted in Section 3.2.
Then we train a PWM policy on each particular task using the offline datasets for 10k gradient steps
which take 9.3 minutes on an Nvidia RTX6000 GPU. We evaluate task performance for 10 seeds for
each task and aggregate results in Figure 6. We compare against TD-MPC2 which learns a multi-task
policy while pre-training its world model and relies on online planning at inference. We can see
that PWM learns behavior achieving higher reward than TD-MPC2 while also being significantly
faster at inference time. While the fast per-task training is enabled by FoG optimization, we also find
that training a single multi-task policy produces poor results as shown in Appendix F. We further
compare our multi-task PWM policy to online-trained single-task experts SAC Haarnoja et al. (2018)
and DreamerV3 Hafner et al. (2023). Figure 6 reveals that multi-task PWM, while disadvantaged,
performs comparably to the single-task experts without requiring any environment interaction and
only training policies for ≤ 10 minutes per task. Additional results in Appendix E.

4.3 ABLATIONS

We perform 4 ablations on the complex single task experiments in order to understand the nuances of
first-order optimization through world models with PWM.

We increase the contact stiffness to be more realistic but also more stiff contact gives gradients with
high sample error Suh et al. (2022). We run the same experiment as Section 4.1, but only for the
Hopper task and present the aggregate results from 5 random seeds in Figure 7a where we normalize
rewards by the maximum reward achieved by PPO in Section 4.1. We see that while PPO and PWM
rewards remain similar to prior results, while SHAC performance decreases by 48%. This shows
that regularized world models are robust to stiff contact models and thus more generalizable the
differentiable simulations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2 M 4 M 6 M 8 M 10 M
Steps

0.0

0.5

1.0

P
P

O
-n

or
m

. R
ew

ar
d PPO

SHAC
PWM

(a) Contact stiffness ablation.

0 50 100 150 200
Time (m)

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d 32

512
2048

(b) Policy batch size ablation.

Figure 7: Left figure shows contact stiffness ablation where we increase contact stiffness on the Hopper task
and analyze the effects on policy learning. The results indicate that stiff (but realistic) contact has adverse effects
on SHAC which uses the simulation model to learn. Meanwhile, PPO and PWM remain unaffected with PWM
still obtaining 17% more reward than PPO asymptotically. The right figure shows a policy batch size ablation
on the Any task where we vary only the batch size used to train the policy components of PWM. Unfortunately
we observe that PWM provides best result within a unit of time by using small batch sizes. Both figures show
50% IQM and 95% CI over 5 random seeds.

0 10 M 20 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

ReLU
Mish
SimNorm

0.04

0.05

W
or

ld
 M

od
el

 L
os

s

(a) World model ablation.

50 k 100 k 250 k
World model training steps

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 R
ew

ar
d

TD-MPC2
PWM

(b) World model vs policy sample efficiency.

Figure 8: The left figure ablates the activation functions of the world model used to learn policies on the Ant
task. We progressively add more regularization to the world model via changes to the activation function and
observe an inverse correlation between world model loss and policy reward. This indicates that we should not
construct world models for accuracy but for policy learning. The right figure investigates the policy sample
efficiency on 5 dm_control tasks. We use the same data to pre-train world models for varying amount of gradient
steps and then train the policy for 50k gradient steps and compare against TD-MPC2 (without planning). The
results indicate that PWM policies are significantly more sample efficient but also require better trained world
models. All results shown are 50% IQM with 95% CI across 5 random seeds.

The second ablation explores batch sizes for policy learning with first-order gradients. Contrary
to model-free methods which can scale to large batch sizes, we find that FoG techniques like PWM
benefit from smaller batch sizes. We explore this on the Ant task in Figure 7b where we plot 50%
IQM rewards over 5 random seeds. While larger batch sizes allow us to generate more data within a
unit of time, that does not necessarily translate to learning better policies.

Next we ablate the world model regularization. We perform the same experiment as Section 4.1 on
the Ant task but now pre-train 3 different world models. (1) with ReLU activation func., (2) with
Mish activation func. and (3) with Mish activation func. and SimNorm activation func. at the output
layers of Eϕ and Fϕ. Figure 8a reveals that while less regularization results in lower world model
error, that does not translate to learning better policies. Surprisingly, less regularized world models
enable policies to start faster (up to 1M steps) but plateau to a suboptimal policy. Additional results
in Appendix F.

To understand the policy sample efficiency of PWM while controlling for the world model, we
perform an ablation where we pre-train the same world model for [50k, 100k, 250k] gradient steps
on an offline dataset. Then we fix the world model and train only the policy components on the

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2 M 4 M 6 M 8 M 10 M
Steps

0.0

0.5

1.0

P
P

O
-n

or
m

. R
ew

ar
d PPO

SHAC
PWM

(a) Contact stiffness ablation.

0 50 100 150 200
Time (m)

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d 32

512
2048

(b) Policy batch size ablation.

Figure 7: Left figure shows contact stiffness ablation where we increase contact stiffness on the Hopper task
and analyze the effects on policy learning. The results indicate that stiff (but realistic) contact has adverse effects
on SHAC which uses the simulation model to learn. Meanwhile, PPO and PWM remain unaffected with PWM
still obtaining 17% more reward than PPO asymptotically. The right figure shows a policy batch size ablation
on the Any task where we vary only the batch size used to train the policy components of PWM. Unfortunately
we observe that PWM provides best result within a unit of time by using small batch sizes. Both figures show
50% IQM and 95% CI over 5 random seeds.

0 10 M 20 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

ReLU
Mish
SimNorm

0.04

0.05

W
or

ld
 M

od
el

 L
os

s

(a) World model ablation.

50 k 100 k 250 k
World model training steps

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 R
ew

ar
d

TD-MPC2
PWM

(b) World model vs policy sample efficiency.

Figure 8: The left figure ablates the activation functions of the world model used to learn policies on the Ant
task. We progressively add more regularization to the world model via changes to the activation function and
observe an inverse correlation between world model loss and policy reward. This indicates that we should not
construct world models for accuracy but for policy learning. The right figure investigates the policy sample
efficiency on 5 dm_control tasks. We use the same data to pre-train world models for varying amount of gradient
steps and then train the policy for 50k gradient steps and compare against TD-MPC2 (without planning). The
results indicate that PWM policies are significantly more sample efficient but also require better trained world
models. All results shown are 50% IQM with 95% CI across 5 random seeds.

The second ablation explores batch sizes for policy learning with first-order gradients. Contrary
to model-free methods which can scale to large batch sizes, we find that FoG techniques like PWM
benefit from smaller batch sizes. We explore this on the Ant task in Figure 7b where we plot 50%
IQM rewards over 5 random seeds. While larger batch sizes allow us to generate more data within a
unit of time, that does not necessarily translate to learning better policies.

Next we ablate the world model regularization. We perform the same experiment as Section 4.1 on
the Ant task but now pre-train 3 different world models. (1) with ReLU activation func., (2) with
Mish activation func. and (3) with Mish activation func. and SimNorm activation func. at the output
layers of Eϕ and Fϕ. Figure 8a reveals that while less regularization results in lower world model
error, that does not translate to learning better policies. Surprisingly, less regularized world models
enable policies to start faster (up to 1M steps) but plateau to a suboptimal policy. Additional results
in Appendix F.

To understand the policy sample efficiency of PWM while controlling for the world model, we
perform an ablation where we pre-train the same world model for [50k, 100k, 250k] gradient steps
on an offline dataset. Then we fix the world model and train only the policy components on the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

same dataset for 50k gradient steps and measure the reward. We do this for 3 random seeds and 5
dm_control tasks. We repeat the same experiment for TD-MPC2 but disable its planning component
in order to understand the learning dynamics of each methods’ policy components. The results
in Figure 8b show that the PWM policy components are significantly more sample efficient than
TD-MPC2 but also require better trained world models in order to obtain high reward.

5 RELATED WORK

Reinforcement learning (RL) strategies are divided into model-based and model-free approaches,
with the latter not assuming a model of the environment (Arulkumaran et al., 2017). Model-free
approaches, such as PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018) do not require
a model of the environment and represent on-policy and off-policy methods respectively. These
algorithms use an actor-critic structure, where the critic assesses the policy while the actor updates it
through gradient-based optimization to maximize rewards (Konda & Tsitsiklis, 1999).

Gradient estimator types. In the absence of direct access to dynamics and reward functions, it is
common to use the Policy Gradients Theorem (Sutton et al., 1999), a zeroth-order method, to estimate
gradients. Although robust to discontinuities, this method exhibits high variance, leading to sample
inefficiency (Mohamed et al., 2020). In contrast, first-order gradients (FoG) offer lower variance by
differentiating through the objective but struggle with discontinuities (Suh et al., 2022). Differentiable
simulations have risen as a tool to study the properties of gradient estimators (Howell et al., 2022;
Metz et al., 2021) and have produced model-based algorithms which use FoG optimization through
physics to learn high-performing policies (Xu et al., 2022; Georgiev et al., 2024).

Multi-task models. While traditional RL focuses on single-task policies, the broader robotics field is
increasingly adopting large multi-task models through behavior cloning (Firoozi et al., 2023). Recent
efforts like Open X (Padalkar et al., 2023) and Octo (Octo Model Team et al., 2024) have demonstrated
improved performance across various tasks and embodiments by leveraging large models and datasets.
However, the potential of these large-scale approaches in RL remains largely unexplored. While
GATO (Reed et al., 2022) attempted to scale model-free RL across multiple tasks, it faced challenges
with sample inefficiency and required significant fine-tuning. Conversely, TD-MPC2 (Hansen et al.,
2024) successfully scaled a 317M parameter world model for online planning across 80 tasks. While
showing impressive multi-task scalability, it failed to solve all tasks and exhibits limited scalability
due to online planning. Our work builds on the world model architecture proposed by TD-MPC2 but
employs FoG optimization for policy learning and extracts per-tasks policies. DreamerV3 (Hafner
et al., 2023) also integrates world models with FoG but focuses on online learning without addressing
multi-task scenarios. Our work delves deeper into the relationship between world models and policy
learning, exploring the essential characteristics of world models that facilitate efficient optimization.

6 CONCLUSION

In this study, we analyzed world models through policy gradient estimation and identified an inverse
correlation between the accuracy of world models and episode rewards. We concluded that world
models should prioritize smoothness and a smaller optimality gap over accuracy to enhance policy
performance. Building on these insights, we propose Policy learning through Multi-task World
Models (PWM), a MBRL algorithm that integrates smooth world models with first-order gradient
(FoG) optimization. Our evaluations showed that PWM can outperform existing methods, including
those with access to ground-truth simulation dynamics, in learning high-reward policies for high-
dimensional tasks. To scale to a multi-task settings, we propose a framework where world models
are pre-trained offline and treated as differentiable simulations. Our results demonstrate that PWM
can be used to learn expert policies in <10 minutes per task, achieving higher rewards without the
need for expensive online planning. With ample data and large, smooth world models, we believe
this approach has significant potential for scalability.

Limitations. Despite its demonstrated efficacy, PWM has notable limitations. Firstly, performance
relies heavily on the availability of substantial pre-existing data to train the world model, which might
not always be feasible, especially in novel or low-data environments. Secondly, although PWM
facilitates fast and cost-effective policy training, it necessitates re-training for each new task, which
could limit its applicability in scenarios requiring rapid adaptation to diverse tasks. Lastly, the current
TD-MPC2 world models used are difficult to train at scale due to their auto-regressive formulation.

9

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

same dataset for 50k gradient steps and measure the reward. We do this for 3 random seeds and 5
dm_control tasks. We repeat the same experiment for TD-MPC2 but disable its planning component
in order to understand the learning dynamics of each methods’ policy components. The results
in Figure 8b show that the PWM policy components are significantly more sample efficient than
TD-MPC2 but also require better trained world models in order to obtain high reward.

5 RELATED WORK

Reinforcement learning (RL) strategies are divided into model-based and model-free approaches,
with the latter not assuming a model of the environment Arulkumaran et al. (2017). Model-free
approaches, such as PPO Schulman et al. (2017) and SAC Haarnoja et al. (2018) do not require
a model of the environment and represent on-policy and off-policy methods respectively. These
algorithms use an actor-critic structure, where the critic assesses the policy while the actor updates it
through gradient-based optimization to maximize rewards Konda & Tsitsiklis (1999).

Gradient estimator types. In the absence of direct access to dynamics and reward functions, it is
common to use the Policy Gradients Theorem Sutton et al. (1999), a zeroth-order method, to estimate
gradients. Although robust to discontinuities, this method exhibits high variance, leading to sample
inefficiency Mohamed et al. (2020). In contrast, first-order gradients (FoG) offer lower variance by
differentiating through the objective but struggle with discontinuities Suh et al. (2022). Differentiable
simulations have risen as a tool to study the properties of gradient estimators Howell et al. (2022);
Metz et al. (2021) and have produced model-based algorithms which use FoG optimization through
physics to learn high-performing policies Xu et al. (2022); Georgiev et al. (2024).

Multi-task models. While traditional RL focuses on single-task policies, the broader robotics field is
increasingly adopting large multi-task models through behavior cloning Firoozi et al. (2023). Recent
efforts like Open X Padalkar et al. (2023) and Octo Octo Model Team et al. (2024) have demonstrated
improved performance across various tasks and embodiments by leveraging large models and datasets.
However, the potential of these large-scale approaches in RL remains largely unexplored. While
GATO Reed et al. (2022) attempted to scale model-free RL across multiple tasks, it faced challenges
with sample inefficiency and required significant fine-tuning. Conversely, TD-MPC2 Hansen et al.
(2024) successfully scaled a 317M parameter world model for online planning across 80 tasks. While
showing impressive multi-task scalability, it failed to solve all tasks and exhibits limited scalability
due to online planning. Our work builds on the world model architecture proposed by TD-MPC2 but
employs FoG optimization for policy learning and extracts per-tasks policies. DreamerV3 Hafner
et al. (2023) also integrates world models with FoG but focuses on online learning without addressing
multi-task scenarios. Our work delves deeper into the relationship between world models and policy
learning, exploring the essential characteristics of world models that facilitate efficient optimization.

6 CONCLUSION

In this study, we analyzed world models through policy gradient estimation and identified an inverse
correlation between the accuracy of world models and episode rewards. We concluded that world
models should prioritize smoothness and a smaller optimality gap over accuracy to enhance policy
performance. Building on these insights, we propose Policy learning through Multi-task World
Models (PWM), a MBRL algorithm that integrates smooth world models with first-order gradient
(FoG) optimization. Our evaluations showed that PWM can outperform existing methods, including
those with access to ground-truth simulation dynamics, in learning high-reward policies for high-
dimensional tasks. To scale to a multi-task settings, we propose a framework where world models
are pre-trained offline and treated as differentiable simulations. Our results demonstrate that PWM
can be used to learn expert policies in <10 minutes per task, achieving higher rewards without the
need for expensive online planning. With ample data and large, smooth world models, we believe
this approach has significant potential for scalability.

Limitations. Despite its demonstrated efficacy, PWM has notable limitations. Firstly, performance
relies heavily on the availability of substantial pre-existing data to train the world model, which might
not always be feasible, especially in novel or low-data environments. Secondly, although PWM
facilitates fast and cost-effective policy training, it necessitates re-training for each new task, which
could limit its applicability in scenarios requiring rapid adaptation to diverse tasks. Lastly, the current
TD-MPC2 world models used are difficult to train at scale due to their auto-regressive formulation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Reproducibility statement. Code, training data and checkpoints are made available at
policy-world-model.github.io. We rely on dflex, MetaWorld, DMControl and MuJoCo
for simulation which are publicly available under MIT and Apache 2.0 licenses. We use multi-task
data from TD-MPC2 which is publicly available. Implementation details and full list of hyper-
parameters are available in Appendix C.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Applica-
tions, challenges, and the future. arXiv preprint arXiv:2312.07843, 2023.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learningin contact-rich differentiable simulation. In International Conference
on Machine Learning. PMLR, 2024.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. 2024.

Taylor A Howell, Simon Le CleacâĂŹh, J Zico Kolter, Mac Schwager, and Zachary Manchester.
Dojo: A differentiable simulator for robotics. arXiv preprint arXiv:2203.00806, 9, 2022.

Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vassilios Tsounis,
Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, et al. Anymal-a highly mobile
and dynamic quadrupedal robot. In 2016 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pp. 38–44. IEEE, 2016.

10

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Reproducibility statement. Code, training data and checkpoints are made available at
policy-world-model.github.io. We rely on dflex, MetaWorld, DMControl and MuJoCo
for simulation which are publicly available under MIT and Apache 2.0 licenses. We use multi-task
data from TD-MPC2 which is publicly available. Implementation details and full list of hyper-
parameters are available in Appendix C.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value expansion for efficient model-free reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), 2018.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Applica-
tions, challenges, and the future. arXiv preprint arXiv:2312.07843, 2023.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learningin contact-rich differentiable simulation. In International Conference
on Machine Learning. PMLR, 2024.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. 2024.

Taylor A Howell, Simon Le CleacâĂŹh, J Zico Kolter, Mac Schwager, and Zachary Manchester.
Dojo: A differentiable simulator for robotics. arXiv preprint arXiv:2203.00806, 9, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International conference on learning representations, 2021.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Minji Lee, Jeongmin Lee, and Dongjun Lee. Differentiable dynamics simulation using invariant
contact mapping and damped contact force. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 11683–11689. IEEE, 2023.

Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you
need. arXiv preprint arXiv:2111.05803, 2021.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

Richard M Murray and John Edmond Hauser. A case study in approximate linearization: The acrobat
example. Electronics Research Laboratory, College of Engineering, University of âĂę, 1991.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Paavo Parmas, Takuma Seno, and Yuma Aoki. Model-based reinforcement learning with scalable
composite policy gradient estimators. In International Conference on Machine Learning, pp.
27346–27377. PMLR, 2023.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–20696.
PMLR, 2022.

11

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vassilios Tsounis,
Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, et al. Anymal-a highly mobile
and dynamic quadrupedal robot. In 2016 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pp. 38–44. IEEE, 2016.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International conference on learning representations, 2021.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Minji Lee, Jeongmin Lee, and Dongjun Lee. Differentiable dynamics simulation using invariant
contact mapping and damped contact force. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 11683–11689. IEEE, 2023.

Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you
need. arXiv preprint arXiv:2111.05803, 2021.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

Richard M Murray and John Edmond Hauser. A case study in approximate linearization: The acrobat
example. Electronics Research Laboratory, College of Engineering, University of âĂę, 1991.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Paavo Parmas, Takuma Seno, and Yuma Aoki. Model-based reinforcement learning with scalable
composite policy gradient estimators. In International Conference on Machine Learning, pp.
27346–27377. PMLR, 2023.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. In International
Conference on Learning Representations, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong Tran, Radu Soricut,
Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk Michalewski, Yao Lu,
Sergey Levine, Lisa Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov,
Ryan Julian, Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Herzog, Karol
Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Florence, Chelsea Finn, Kumar Avinava
Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebotar,
Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and Kehang Han.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Jie Tan, Marc
Toussaint, and Kourosh Darvish (eds.), Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Research, pp. 2165–2183. PMLR, 06–09 Nov
2023. URL https://proceedings.mlr.press/v229/zitkovich23a.html.

12

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–20696.
PMLR, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. In International
Conference on Learning Representations, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong Tran, Radu Soricut,
Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk Michalewski, Yao Lu,
Sergey Levine, Lisa Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov,
Ryan Julian, Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Herzog, Karol
Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Florence, Chelsea Finn, Kumar Avinava
Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebotar,
Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and Kehang Han.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Jie Tan, Marc
Toussaint, and Kourosh Darvish (eds.), Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Research, pp. 2165–2183. PMLR, 06–09 Nov
2023. URL https://proceedings.mlr.press/v229/zitkovich23a.html.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

0 250 500 750 1000
Iteration

0

50

100

150

Lo
ss

2 0 2

20

0

20
J()
ReLU
SimNorm

0 50 100
Iterations

10

0

J(
)

ReLU
SimNorm

Figure 10: Extended ball-wall toy example results. The left figure shows the model losses as they are trained
to approximate the target function J(θ. The middle figure shows the output of the trained model across the
spectrum of θ as well as the true target. This is the function we attempt to minimize in the right figure. We can
see that when using the MLP with ReLU activation functions, the optimizer quickly gets stuck in local minima
while the model using SimNorm activation function is able to find a solution closer to the true one.

A BALL-WALL EXAMPLE DETAILS

This section provides more details on the ball-wall example used to showcase the issues of optimizing
through contact in Section 3.1. In constructing this toy example we chose a simple physical system
that exhibits contact discontinuities. Inspired by Suh et al. (Suh et al., 2022), we constructed a
simple problem of a point mass (ball) being thrown forward (x direction) at a fixed velocity v. The
optimization parameter of interest is the initial angle θ and the goal is to maximize forward distance
traveled (in 2D). For simplicity we assume that the ball sticks to the wall (without complex contact)
which can be expressed as:

x = f(θ) =

{
x0 + v cos(θ)t+

1

2
gt2 if ycontact > h

w else
(11)

where g = 9.81 is gravity, h and w are the height and width of the wall, (x0, y0) is the starting
position, v = 10 is the starting velocity and t = 2 is time. ycontact is the height at the time of contact
tcontact which are both given by solving Eq. 11 for f(θ) = w:

tcontact =
−vcos(θ) +

√
v2 cos2(θ) + aw

a
ycontact = y0 + v sin(θ)t+

1

2
gt2

𝑤

ℎ
𝜃

Figure 9: Pedagogical ball-wall toy
problem visualized.

We visualize the toy example in Figure 9 to aid reading. With
f(θ) defined, we attempt to learn it with two Multi-Layer Per-
ceptrons (MLPs). We configure them to have 2 hidden layers
of 32 neurons each. The first MLP uses ReLU activation func-
tions, while the latter uses SimNorm activation functions as
defined in Eq. 4. Both models are initialized with identical
random parameters and are trained with the ADAM optimizer
with learning rate α = 2× 10−3 for 100 epochs using a batch
size of B = 50. The data we use to train the models was 1000
uniform samples of f(θ) within θ ∈ [−π, π]. Figure 9 shows
the training losses of the models, induced optimization land-
scapes and the losses when attempting to maximize the models
as you would do in an RL setting.

13

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

0 250 500 750 1000
Iteration

0

50

100

150

Lo
ss

2 0 2

20

0

20
J()
ReLU
SimNorm

0 50 100
Iterations

10

0

J(
)

ReLU
SimNorm

Figure 10: Extended ball-wall toy example results. The left figure shows the model losses as they are trained
to approximate the target function J(θ). The middle figure shows the output of the trained model across the
spectrum of θ as well as the true target. This is the function we attempt to minimize in the right figure. We can
see that when using the MLP with ReLU activation functions, the optimizer quickly gets stuck in local minima
while the model using SimNorm activation function is able to find a solution closer to the true one.

A BALL-WALL EXAMPLE DETAILS

This section provides more details on the ball-wall example used to showcase the issues of optimizing
through contact in Section 3.1. In constructing this toy example we chose a simple physical system
that exhibits contact discontinuities. Inspired by Suh et al. (Suh et al., 2022), we constructed a
simple problem of a point mass (ball) being thrown forward (x direction) at a fixed velocity v. The
optimization parameter of interest is the initial angle θ and the goal is to maximize forward distance
traveled (in 2D). For simplicity we assume that the ball sticks to the wall (without complex contact)
which can be expressed as:

J(θ) = xt = f(θ) =

{
x0 + v cos(θ)t+

1

2
gt2 if ycontact > h

w else
(11)

where g = 9.81 is gravity, h and w are the height and width of the wall, (x0, y0) is the starting
position, v = 10 is the starting velocity and t = 2 is time. ycontact is the height at the time of contact
tcontact which are both given by solving Eq. 11 for f(θ) = w:

tcontact =
−vcos(θ) +

√
v2 cos2(θ) + aw

a
ycontact = y0 + v sin(θ)t+

1

2
gt2

𝑤

ℎ
𝜃

Figure 9: Pedagogical ball-wall toy
problem visualized.

We visualize the toy example in Figure 9 to aid reading. With
f(θ) defined, we attempt to learn it with two Multi-Layer Per-
ceptrons (MLPs). We configure them to have 2 hidden layers
of 32 neurons each. The first MLP uses ReLU activation func-
tions, while the latter uses SimNorm activation functions as
defined in Eq. 4. Both models are initialized with identical
random parameters and are trained with the ADAM optimizer
with learning rate α = 2× 10−3 for 100 epochs using a batch
size of B = 50. The data we use to train the models was 1000
uniform samples of f(θ) within θ ∈ [−π, π]. Figure 10 shows
the training losses of the models, induced optimization land-
scapes and the losses when attempting to maximize the models
as you would do in an RL setting.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

𝑞!"

𝑞!# 0 20 40
H

10 12

10 7

10 2

Va
r[

J(
)]

True
MLP H=3
MLP H=16

0 20 40
H

10 2

101

104

ES
NR

(
J(

))

True
MLP H=3
MLP H=16

Figure 11: Double pendulum pedagogical example. The middle figure evaluates the variance of policy
gradient estimates over N = 100 Monte-Carlo samples for varying horizons H . The right figure shows the same
data but plots the Expected Signal-to-Noise ratio (ESNR) with higher values translating to more useful gradients.
These results suggests that world models trained over long horizon trajectories provide more useful gradients.

B DOUBLE PENDULUM EXAMPLE DETAILS

The double pendulum (also known as Acrobot (Murray &
Hauser, 1991)) is a classic under-actuated chaotic system. It is characterized by its sensitivity
to initial conditions where even small perturbations result in large gradient variance with long horizon
(> 20) trajectories. We chose this system to analyze variance and expected signal-to-noise ratio
(ENSR) in Section 3.2 as it is the easiest problem exhibiting chaosness. We model this toy problem
similar to DMControl (Tunyasuvunakool et al., 2020) in our differentiable simulator, dflex as we
need ground truth gradients for comparison. The first link with angle θ1 is fixed to the base and not
actuated. The second link with angle θ2 is the only control input via θ̇2. The state of the system id
calculated as:

s = [cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2]

The objective of this toy example is to bring and balance the pendulum upwards which we achieve by
formulating a reward:

r(s,a) = −θ21 − θ22 − 0.1θ̇22
Next we train world models to approximate the dynamics and reward above. For this we collect data
with the SHAC algorithm (Xu et al., 2022) over 3 different runs for a total of 24,000 episodes of
length 240 timesteps. Maximum episode reward achieved during data collection was -942.95. Then
we train two TDMPC2 (Hansen et al., 2024) world models on the collected data. We use the 5M
parameter model which features a latent state of dimension of 512, encoder Eϕ with one hidden
dimension of 256, dynamics model MLP with 2 hidden layers with 512 neurons and a rewards model
of the same design. We keep the same hyper-parameters as per the origin work by Hensen et al. but
use γ = 0.99 which we found to reduce variance substantially. We train two models with different
training horizons H = 3 and H = 16 for 100k batch samples and a batch size of 1024.

With the trained models, we now compare the variance of stochastic gradients provided by the true
dynamics of the simulation and the two trained models. We do this by loading the best policy learned
by SHAC during data collection and executing a H = 50 rollout across the 3 models. We ensure
that the same actions are taken for each evaluated models and collect 100 Monte Carlo samples. In
addition to variance, we report ESNR as suggested by (Parmas et al., 2023) and defined in 5. Higher
ESNR translate to more useful gradients and we naturally should expect values to decrease with
increased H . We reported the results in Figure 3 but also duplicate them in Figure 11 for convenience
and ease of reading.

14

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

𝑞!"

𝑞!# 0 20 40
H

10 12

10 7

10 2

Va
r[

J(
)]

True
MLP H=3
MLP H=16

0 20 40
H

10 2

101

104

ES
NR

(
J(

))

True
MLP H=3
MLP H=16

Figure 11: Double pendulum pedagogical example. The middle figure evaluates the variance of policy
gradient estimates over N = 100 Monte-Carlo samples for varying horizons H . The right figure shows the same
data but plots the Expected Signal-to-Noise ratio (ESNR) with higher values translating to more useful gradients.
These results suggests that world models trained over long horizon trajectories provide more useful gradients.

B DOUBLE PENDULUM EXAMPLE DETAILS

The double pendulum (also known as Acrobot (Murray &
Hauser, 1991)) is a classic under-actuated chaotic system. It is characterized by its sensitivity
to initial conditions where even small perturbations result in large gradient variance with long horizon
(> 20) trajectories. We chose this system to analyze variance and expected signal-to-noise ratio
(ENSR) in Section 3.2 as it is the easiest problem exhibiting chaosness. We model this toy problem
similar to DMControl (Tunyasuvunakool et al., 2020) in our differentiable simulator, dflex as we
need ground truth gradients for comparison. The first link with angle θ1 is fixed to the base and not
actuated. The second link with angle θ2 is the only control input via θ̇2. The state of the system id
calculated as:

s = [cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2]

The objective of this toy example is to bring and balance the pendulum upwards which we achieve by
formulating a reward:

r(s,a) = −θ21 − θ22 − 0.1θ̇22
Next we train world models to approximate the dynamics and reward above. For this we collect data
with the SHAC algorithm (Xu et al., 2022) over 3 different runs for a total of 24,000 episodes of
length 240 timesteps. Maximum episode reward achieved during data collection was -942.95. Then
we train two TDMPC2 (Hansen et al., 2024) world models on the collected data. We use the 5M
parameter model which features a latent state of dimension of 512, encoder Eϕ with one hidden
dimension of 256, dynamics model MLP with 2 hidden layers with 512 neurons and a rewards model
of the same design. We keep the same hyper-parameters as per the origin work by Hensen et al. but
use γ = 0.99 which we found to reduce variance substantially. We train two models with different
training horizons H = 3 and H = 16 for 100k batch samples and a batch size of 1024.

With the trained models, we now compare the variance of stochastic gradients provided by the true
dynamics of the simulation and the two trained models. We do this by loading the best policy learned
by SHAC during data collection and executing a H = 50 rollout across the 3 models. We ensure
that the same actions are taken for each evaluated models and collect 100 Monte Carlo samples. In
addition to variance, we report ESNR as suggested by (Parmas et al., 2023) and defined in 5. Higher
ESNR translate to more useful gradients and we naturally should expect values to decrease with
increased H . We reported the results in Figure 3 but also duplicate them in Figure 11 for convenience
and ease of reading.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

The section details several implementation details of PWM that we thought are not crucial for
understanding the proposed approach in Section 3.3 but are important for replicating the results.

1. Reward binning - the reward model we use in PWM is formulated as a discrete regression
problem where R rewards are discretized into a predefined number of bins. Similar to
(Hansen et al., 2024; Lee et al., 2023), we do this to enable robustness to reward scale and
multi-task-ness. In particular, we perform two-hot encoding using SymLog and SymExp
operators which are mathematically defined as:

SymLog(x) = sign(x) log(1 + |x|) SymExp(x) = sign(x)(e|x| − 1)

Two-hot encoding is then performed with:

def two_hot(x):
x = clamp(symlog(x), vmin, vmax)
bin_idx = floor((x - vmin) / bin_size)
bin_offset = (x - vmin) / bin_size - bin_idx
soft_two_hot = zeros(x.size(0), num_bins)
soft_two_hot[bin_idx] = 1 - bin_offset
soft_two_hot[bin_odx + 1] = bin_offset
return soft_two_hot

Inverting this operation to get back to scalar rewards would usually involve SymExp(x)
but note that the sign(x) operator is not differentiable and would therefore not work for
FoG. Instead, we chose to omit the SymExp(x) operation which technically now returns
pseudo-rewards but also gradients which we found sufficient for policy learning:

def two_hot_inversion(x):
vals = linspace(vmin, vmax, num_bins)
x = softmax(x)
x = torch.sum(x * vals, dim=-1)
return x

2. Critic training - while Algorithm 1 function to similar results as presented in 4, we found
it beneficial to split the critic training data from a single rollout into several smaller mini-
batches and over them for multiple gradient steps. In our implementation we split the data
into 4 mini-batches and perform 8 gradient steps over them with uniform sampling. With a
H = 16 and batch size 64, this translates to a critic batch size of 256.

3. Minimum policy noise - Due to the larger amount of gradient steps needed, we noticed
that PWM’s actor tends to collapse to a deterministic policy rapidly. As such, we found it
beneficial to include a lower bound on the standard deviation of the action distribution in
order to maintain stochasticity in the optimization process. We have used 0.24 throughout
this paper. While similar results would be possible by adding an entropy term (Schulman
et al., 2017), we found our current solution sufficient

4. World model fine-tuning - Throughout all of our experiments we found that the offline
data used to train PWM’s world model to be crucial to learning a good policy. In very
high-dimensional tasks such as Humanoid SNU, collecting extensive data is a difficult task.
As such, in these tasks we found it beneficial to online fine-tune the world model. We do
this on all single-task experiments of Section 4.1 using the default hyper-parameters and a
replay buffer of size 1024.

15

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

The section details several implementation details of PWM that we thought are not crucial for
understanding the proposed approach in Section 3.3 but are important for replicating the results.

1. Reward binning - the reward model we use in PWM is formulated as a discrete regression
problem where R rewards are discretized into a predefined number of bins. Similar to
(Hansen et al., 2024; Lee et al., 2023), we do this to enable robustness to reward scale and
multi-task-ness. In particular, we perform two-hot encoding using SymLog and SymExp
operators which are mathematically defined as:

SymLog(x) = sign(x) log(1 + |x|) SymExp(x) = sign(x)(e|x| − 1)

Two-hot encoding is then performed with:

def two_hot(x):
x = clamp(symlog(x), vmin, vmax)
bin_idx = floor((x - vmin) / bin_size)
bin_offset = (x - vmin) / bin_size - bin_idx
soft_two_hot = zeros(x.size(0), num_bins)
soft_two_hot[bin_idx] = 1 - bin_offset
soft_two_hot[bin_odx + 1] = bin_offset
return soft_two_hot

Inverting this operation to get back to scalar rewards would usually involve SymExp(x)
but note that the sign(x) operator is not differentiable and would therefore not work for
FoG. Instead, we chose to omit the SymExp(x) operation which technically now returns
pseudo-rewards but also gradients which we found sufficient for policy learning:

def two_hot_inversion(x):
vals = linspace(vmin, vmax, num_bins)
x = softmax(x)
x = torch.sum(x * vals, dim=-1)
return x

2. Critic training - while Algorithm 1 function to similar results as presented in 4, we found
it beneficial to split the critic training data from a single rollout into several smaller mini-
batches and over them for multiple gradient steps. In our implementation we split the data
into 4 mini-batches and perform 8 gradient steps over them with uniform sampling. With a
H = 16 and batch size 64, this translates to a critic batch size of 256.

3. Minimum policy noise - Due to the larger amount of gradient steps needed, we noticed
that PWM’s actor tends to collapse to a deterministic policy rapidly. As such, we found it
beneficial to include a lower bound on the standard deviation of the action distribution in
order to maintain stochasticity in the optimization process. We have used 0.24 throughout
this paper. While similar results would be possible by adding an entropy term (Schulman
et al., 2017), we found our current solution sufficient

4. World model fine-tuning - Throughout all of our experiments we found that the offline
data used to train PWM’s world model to be crucial to learning a good policy. In very
high-dimensional tasks such as Humanoid SNU, collecting extensive data is a difficult task.
As such, in these tasks we found it beneficial to online fine-tune the world model. We do
this on all single-task experiments of Section 4.1 using the default hyper-parameters and a
replay buffer of size 1024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyper-parameter Value

Policy components
Horizon (H) 16
Batch size 64
αθ 5× 10−4

αψ 5× 10−4

Actor grad norm 1
Critic grad norm 100
Actor hidden layers [400, 200, 100]
Critic hidden layers [400, 200]
Number of critics 3
λ 0.95
γ 0.99
Critic batch split 4
Critic iterations 8
World model components (48M)
Latent state (z) dimension 768
Horizon (H) 16
Batch size 1024
αϕ 3× 10−4

World model grad norm 20.0
SimNorm V 8
Reward bins 101
Encoder Eϕ hidden layers [1792, 1792, 1792]
Dynamics Fϕ hidden layers [1792, 1792]
Reward Rϕ hidden layers [1792, 1792]
Task encoding dimension 96

Table 1: Table of hyper-parameters used in PWM, shared across all tasks.

Figure 12: Locomotion environments (left to right): Hopper, Ant, Anymal, Humanoid and SNU Humanoid.

D CONTACT-RICH SINGLE TASK EXPERIMENT DETAILS

In Section 4.1, we explore 5 locomotion tasks with increasing complexity. They are described below
and shown in Figure 4.

1. Hopper, a single-legged robot jumping only in one axis with n = 11 and m = 3.

2. Ant, a four-legged robot with n = 37 and m = 8.

3. Anymal, a more sophisticated quadruped with n = 49 and m = 12 modeled after (Hutter et al.,
2016).

4. Humanoid, a classic contact-rich environment with n = 76 and m = 21 which requires extensive
exploration to find a good policy.

5. SNU Humanoid, a version of Humanoid lower body where instead of joint torque control, the
robot is controlled via m = 152 muscles intended to challenge the scaling capabilities of algorithms.

All tasks share the same common main objective - maximize forward velocity vx:

16

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyper-parameter Value

Policy components
Horizon (H) 16
Batch size 64
αθ 5× 10−4

αψ 5× 10−4

Actor grad norm 1
Critic grad norm 100
Actor hidden layers [400, 200, 100]
Critic hidden layers [400, 200]
Number of critics 3
λ 0.95
γ 0.99
Critic batch split 4
Critic iterations 8
World model components (48M)
Latent state (z) dimension 768
Horizon (H) 16
Batch size 1024
αϕ 3× 10−4

World model grad norm 20.0
SimNorm V 8
Reward bins 101
Encoder Eϕ hidden layers [1792, 1792, 1792]
Dynamics Fϕ hidden layers [1792, 1792]
Reward Rϕ hidden layers [1792, 1792]
Task encoding dimension 96

Table 1: Table of hyper-parameters used in PWM, shared across all tasks.

Figure 12: Locomotion environments (left to right): Hopper, Ant, Anymal, Humanoid and SNU Humanoid.

D CONTACT-RICH SINGLE TASK EXPERIMENT DETAILS

In Section 4.1, we explore 5 locomotion tasks with increasing complexity. They are described below
and shown in Figure 4.

1. Hopper, a single-legged robot jumping only in one axis with n = 11 and m = 3.

2. Ant, a four-legged robot with n = 37 and m = 8.

3. Anymal, a more sophisticated quadruped with n = 49 and m = 12 modeled after (Hutter et al.,
2016).

4. Humanoid, a classic contact-rich environment with n = 76 and m = 21 which requires extensive
exploration to find a good policy.

5. SNU Humanoid, a version of Humanoid lower body where instead of joint torque control, the
robot is controlled via m = 152 muscles intended to challenge the scaling capabilities of algorithms.

All tasks share the same common main objective - maximize forward velocity vx:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 M 10 M
Simulation steps

0

1

E
pi

so
de

 re
w

ar
d

Hopper

0 10 M 20 M
Simulation steps

Ant

0 10 M
Simulation steps

Anymal

0 10 M 20 M
Simulation steps

Humanoid

0 10 M 20 M
Simulation steps

SNU Humanoid

PPO SAC SHAC TD-MPC2 PWM (ours)

Figure 13: Learning curves for each environment. This figure shows 50% IQM and 95% CI across 5 random
seeds for each task in the dflex simulation suite. Rewards are normalized by the maximum reward achieved by
PPO (usually ≥ 100M steps). While PWM remains competitive with SHAC for most tasks, it does not scale
well to the 152 action dimension SNU Humanoid.

Environment Reward

Hopper vx +Rheight +Rangle − 0.1∥a∥22
Ant vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Anymal vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Humanoid vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22
Humanoid STU vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22

Table 2: Rewards used for each task bench-marked in Section 4

We additionally use auxiliary rewards Rheight to incentivise the agent to, Rangle to keep the agents’
normal vector point up, Rheading to keep the agent’s heading pointing towards the direction of
running and a norm over the actions to incentivise energy-efficient policies. For most algorithms,
none of these rewards apart from the last one are crucial to succeed in the task. However, all of them
aid learning policies faster.

Rheight =

{
h− hterm ifh ≥ hterm
−200(h− hterm)2 ifh < hterm

Rangle = 1−
(

θ

θterm

)2

Rangle = ∥qforward − qagent∥22 is the difference between the heading of the agent qagent and the
forward vector qagent. h is the height of the CoM of the agent and θ is the angle of its normal vector.
hterm and θterm are parameters that we set for each environment depending on the robot morphology.
Similar to other high-performance RL applications in simulation, we find it crucial to terminate
episode early if the agent exceeds these termination parameters. However, it is worth noting that
AHAC is still capable of solving all tasks described in the paper without these termination conditions,
albeit slower.

All results presented in Figure 13 are for 5 random seeds using the simulator in a vectorized fashion
with 64 parallel environments for all approaches, except PPO which uses 1024. We note that while
simulation steps appear high, all of these experiments are executed ≤ 2 hours on an Nvidia RTX6000
GPU. In addition the the learning curves of Figure 13, we also present tabular results below:

We note that TDMPC2 and PWM use pre-trained world models on 20480 episodes of each task. The
world models are trained for 100k gradient steps and the same world models (specific to each task)
are loaded into both approaches. The data consists of trajectories of varying policy quality generated
with the SHAC algorithm. Trajectories include near-0 episode rewards as well as the highest reward
achieved by SHAC. Note that we also run an early termination mechanism in these tasks which is
done to accelerate learning and iteration.

17

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 M 10 M
Simulation steps

0

1

E
pi

so
de

 re
w

ar
d

Hopper

0 10 M 20 M
Simulation steps

Ant

0 10 M
Simulation steps

Anymal

0 10 M 20 M
Simulation steps

Humanoid

0 10 M 20 M
Simulation steps

SNU Humanoid

PPO SAC SHAC TD-MPC2 DreamerV3 PWM (ours)

Figure 13: Learning curves for each environment. This figure shows 50% IQM and 95% CI across 5 random
seeds for each task in the dflex simulation suite. Rewards are normalized by the maximum reward achieved by
PPO (usually ≥ 100M steps). While PWM remains competitive with SHAC for most tasks, it does not scale well
to the 152 action dimension SNU Humanoid. Note that SHAC uses gradients from the differentiable simulation
directly and converges in fewer samples, explaining the truncated curves. DreamerV3 results are incomplete.

Environment Reward

Hopper vx +Rheight +Rangle − 0.1∥a∥22
Ant vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Anymal vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Humanoid vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22
Humanoid STU vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22

Table 2: Rewards used for each task bench-marked in Section 4

We additionally use auxiliary rewards Rheight to incentivise the agent to, Rangle to keep the agents’
normal vector point up, Rheading to keep the agent’s heading pointing towards the direction of
running and a norm over the actions to incentivise energy-efficient policies. For most algorithms,
none of these rewards apart from the last one are crucial to succeed in the task. However, all of them
aid learning policies faster.

Rheight =

{
h− hterm ifh ≥ hterm
−200(h− hterm)2 ifh < hterm

Rangle = 1−
(

θ

θterm

)2

Rangle = ∥qforward − qagent∥22 is the difference between the heading of the agent qagent and the
forward vector qagent. h is the height of the CoM of the agent and θ is the angle of its normal vector.
hterm and θterm are parameters that we set for each environment depending on the robot morphology.
Similar to other high-performance RL applications in simulation, we find it crucial to terminate
episode early if the agent exceeds these termination parameters. However, it is worth noting that
AHAC is still capable of solving all tasks described in the paper without these termination conditions,
albeit slower.

All results presented in Figure 13 are for 5 random seeds using the simulator in a vectorized fashion
with 64 parallel environments for all approaches, except PPO which uses 1024. We note that while
simulation steps appear high, all of these experiments are executed ≤ 2 hours on an Nvidia RTX6000
GPU. In addition the the learning curves of Figure 13, we also present tabular results below:

We note that TDMPC2 and PWM use pre-trained world models on 20480 episodes of each task. The
world models are trained for 100k gradient steps and the same world models (specific to each task)
are loaded into both approaches. The data consists of trajectories of varying policy quality generated
with the SHAC algorithm. Trajectories include near-0 episode rewards as well as the highest reward
achieved by SHAC. Note that we also run an early termination mechanism in these tasks which is
done to accelerate learning and iteration.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hopper Ant Anymal Humanoid SNU Humanoid

PPO 1.00± 0.11 1.00± 0.12 1.00± 0.03 1.00± 0.05 1.00± 0.09
SAC 0.87± 0.16 0.95± 0.08 0.98± 0.06 1.04± 0.04 0.88± 0.11

TDMPC2 0.85± 0.37 1.0± 0.49 0.98± 0.48 1.03± 0.45 0.26± 0.12
SHAC 1.02± 0.03 1.16± 0.13 1.26± 0.04 1.15± 0.04 1.44± 0.08
PWM 1.20± 0.29 1.46± 0.31 1.16± 0.24 1.19± 0.025 1.36± 0.56

Table 3: Tabular results of the asymptotic rewards achieved by each algorithm across all tasks. The results
presented are PPO-normalised 50 % IQM and standard deviation across 5 random seeds. Most algorithms have
been trained until convergence.

Hopper Ant Anymal Humanoid SNU Humanoid

PPO 4742± 521 6605± 793 12029± 360 7293± 365 4114± 370
SAC 4126± 759 6275± 528 11788± 722 7285± 292 3620± 453

TDMPC2 4027± 1768 6591± 2708 11787± 4702 7476± 3268 1121± 525

SHAC 4837± 142 7662± 859 15157± 481 8387± 292 5924± 329
PWM 5680± 2303 9672± 2012 13927.74± 2882 8661± 1792 5767± 2394

Table 4: Tabular results of the asymptotic (end of training) rewards achieved by each algorithm across all tasks.
The results presented are 50 % IQM and standard deviation across 10 random seeds. All algorithms have been
trained until convergence.

E MULTI-TASK EXPERIMENTS ADDITIONAL RESULTS

In this section we provide additional results on multi-task experiments. While we find it beneficial
to train the world model at the same horizon as the policy learning, it is not strictly necessary to
achieve good performance. In Figure 14 we present an ablation where we compare PWM world
models pre-trained on horizons H = 3 and H = 16 and policies trained only with H = 16. These
results reveal that H = 16 trained world models have only marginally higher scores. On deeper
inspection, most of increased scores come form dm_control tasks which are harder than MetaWorld
tasks on average. Therefore if training new world models, we advise using higher H; however if
other pre-trained world models exist with suboptimal H , they will probably be also useful.

0.6 0.7 0.8 0.9
Normalized score

M
T3

0
M

T8
0

TD-MPC2 PWM H=3 PWM H=16

Figure 14: Horizon ablation of the world model

Figures 15 and 16 give scores for individual tasks for TDMPC2 and PWM across both the MT30 and
MT80 task sets. We can observe that most of the increased performance of PWM is in dm_control
tasks which are on average more difficult than MetaWorld.

18

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hopper Ant Anymal Humanoid SNU Humanoid

PPO 1.00± 0.11 1.00± 0.12 1.00± 0.03 1.00± 0.05 1.00± 0.09
SAC 0.87± 0.16 0.95± 0.08 0.98± 0.06 1.04± 0.04 0.88± 0.11

DreamerV3 1.12± 0.56
TDMPC2 0.85± 0.37 1.07± 0.44 0.98± 0.48 1.05± 0.46 0.26± 0.12

SHAC 1.02± 0.03 1.16± 0.13 1.26± 0.04 1.15± 0.04 1.44± 0.08
PWM 1.20± 0.29 1.46± 0.31 1.16± 0.24 1.19± 0.025 1.36± 0.56

Table 3: Tabular results of the asymptotic rewards achieved by each algorithm across all tasks. The results
presented are PPO-normalised 50 % IQM and standard deviation across 5 random seeds. Most algorithms have
been trained until convergence.

Hopper Ant Anymal Humanoid SNU Humanoid

PPO 4742± 521 6605± 793 12029± 360 7293± 365 4114± 370
SAC 4126± 759 6275± 528 11788± 722 7285± 292 3620± 453

DreamerV3 5321± 2664
TDMPC2 4027± 1768 7080± 2885 11787± 4702 7634± 3317 1121± 525

SHAC 4837± 142 7662± 859 15157± 481 8387± 292 5924± 329
PWM 5680± 2303 9672± 2012 13927± 2882 8661± 1792 5767± 2394

Table 4: Tabular results of the asymptotic (end of training) rewards achieved by each algorithm across all tasks.
The results presented are 50 % IQM and standard deviation across 10 random seeds. All algorithms have been
trained until convergence.

E MULTI-TASK EXPERIMENTS ADDITIONAL RESULTS

In this section we provide additional results on multi-task experiments. While we find it beneficial
to train the world model at the same horizon as the policy learning, it is not strictly necessary to
achieve good performance. In Figure 14 we present an ablation where we compare PWM world
models pre-trained on horizons H = 3 and H = 16 and policies trained only with H = 16. These
results reveal that H = 16 trained world models have only marginally higher scores. On deeper
inspection, most of increased scores come form dm_control tasks which are harder than MetaWorld
tasks on average. Therefore if training new world models, we advise using higher H; however if
other pre-trained world models exist with suboptimal H , they will probably be also useful.

0.6 0.7 0.8 0.9
Normalized score

M
T3

0
M

T8
0

TD-MPC2 PWM H=3 PWM H=16

Figure 14: Horizon ablation of the world model

Figures 15 and 16 give scores for individual tasks for TDMPC2 and PWM across both the MT30 and
MT80 task sets. We can observe that most of the increased performance of PWM is in dm_control
tasks which are on average more difficult than MetaWorld.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Normalized score

acrobot-swingup
cartpole-balance

cartpole-balance-sparse
cartpole-swingup

cartpole-swingup-sparse
cheetah-jump

cheetah-run
cheetah-run-back

cheetah-run-backwards
cheetah-run-front

cup-catch
cup-spin

finger-spin
finger-turn-easy
finger-turn-hard

fish-swim
hopper-hop

hopper-hop-backwards
hopper-stand

pendulum-spin
pendulum-swingup

reacher-easy
reacher-hard

reacher-three-easy
reacher-three-hard

walker-run
walker-run-backwards

walker-stand
walker-walk

walker-walk-backwards

TD-MPC2
PWM

Figure 15: Individual task results for MT30 task set.

19

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Normalized score

acrobot-swingup
cartpole-balance

cartpole-balance-sparse
cartpole-swingup

cartpole-swingup-sparse
cheetah-jump

cheetah-run
cheetah-run-back

cheetah-run-backwards
cheetah-run-front

cup-catch
cup-spin

finger-spin
finger-turn-easy
finger-turn-hard

fish-swim
hopper-hop

hopper-hop-backwards
hopper-stand

pendulum-spin
pendulum-swingup

reacher-easy
reacher-hard

reacher-three-easy
reacher-three-hard

walker-run
walker-run-backwards

walker-stand
walker-walk

walker-walk-backwards

TD-MPC2
PWM

Figure 15: Individual task results for MT30 task set.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Normalized score

acrobot-swingup
cartpole-balance

cartpole-balance-sparse
cartpole-swingup

cartpole-swingup-sparse
cheetah-jump

cheetah-run
cheetah-run-back

cheetah-run-backwards
cheetah-run-front

cup-catch
cup-spin

finger-spin
finger-turn-easy
finger-turn-hard

fish-swim
hopper-hop

hopper-hop-backwards
hopper-stand
mw-assembly

mw-basketball
mw-bin-picking
mw-box-close

mw-button-press
mw-button-press-topdown

mw-button-press-topdown-wall
mw-button-press-wall

mw-coffee-button
mw-coffee-pull

mw-coffee-push
mw-dial-turn

mw-disassemble
mw-door-close

mw-door-lock
mw-door-open

mw-door-unlock
mw-drawer-close
mw-drawer-open
mw-faucet-close
mw-faucet-open

TD-MPC2
PWM

0.00 0.25 0.50 0.75 1.00
Normalized score

mw-hammer
mw-hand-insert

mw-handle-press
mw-handle-press-side

mw-handle-pull
mw-handle-pull-side

mw-lever-pull
mw-peg-insert-side

mw-peg-unplug-side
mw-pick-out-of-hole

mw-pick-place
mw-pick-place-wall

mw-plate-slide
mw-plate-slide-back

mw-plate-slide-back-side
mw-plate-slide-side

mw-push
mw-push-back
mw-push-wall

mw-reach
mw-reach-wall

mw-shelf-place
mw-soccer

mw-stick-pull
mw-stick-push

mw-sweep
mw-sweep-into

mw-window-close
mw-window-open

pendulum-spin
pendulum-swingup

reacher-easy
reacher-hard

reacher-three-easy
reacher-three-hard

walker-run
walker-run-backwards

walker-stand
walker-walk

walker-walk-backwards

TDMPC2
PWM

Figure 16: Individual task results for MT80 task set.

F ADDITIONAL ABLATION RESULTS

F.1 WORLD MODEL REGULARIZATION ABLATION

We extend our world model regularization ablation from Section 4.3 to 3 additional dflex locomotion
tasks - Hopper, Anymal and Humanoid. The complete results are presented in Figure 17 and follow
the same format as the original results in Figure 8a - 50% IQM with 95% CI across 3 seeds. From
the results we can observe that progressively adding more regularization, results in higher policy
rewards. This follows the ablation results in our paper and the one of the core contribution of work -
more accurate world models, do not results in better rewards. Instead of building world models for
accuracy, we should build them to enable better policy optimization and thus higher rewards.

F.2 TRAINING A MULTI-TASK POLICY

One of the contributions of our work is the multi-task learning framework of PWM. Instead of
training a single multi-task policy, we propose training a single multi-task world model with a
supervised objective and then extracting RL policies from it very efficiently. In this section we
justify this empirically by reproducing the MT30 experiment of Section 4.2 with two additional
baselines - TD-MPC2 without planning and PWM with a single multi-task policy. This strips down
both algorithms to be very similar, the major difference being that TD-MPC2 features an off-policy
SAC-like policy while PWM features an on-policy SHAC-like policy. Both are fed the same one-hot

20

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Normalized score

acrobot-swingup
cartpole-balance

cartpole-balance-sparse
cartpole-swingup

cartpole-swingup-sparse
cheetah-jump

cheetah-run
cheetah-run-back

cheetah-run-backwards
cheetah-run-front

cup-catch
cup-spin

finger-spin
finger-turn-easy
finger-turn-hard

fish-swim
hopper-hop

hopper-hop-backwards
hopper-stand
mw-assembly

mw-basketball
mw-bin-picking
mw-box-close

mw-button-press
mw-button-press-topdown

mw-button-press-topdown-wall
mw-button-press-wall

mw-coffee-button
mw-coffee-pull

mw-coffee-push
mw-dial-turn

mw-disassemble
mw-door-close

mw-door-lock
mw-door-open

mw-door-unlock
mw-drawer-close
mw-drawer-open
mw-faucet-close
mw-faucet-open

TD-MPC2
PWM

0.00 0.25 0.50 0.75 1.00
Normalized score

mw-hammer
mw-hand-insert

mw-handle-press
mw-handle-press-side

mw-handle-pull
mw-handle-pull-side

mw-lever-pull
mw-peg-insert-side

mw-peg-unplug-side
mw-pick-out-of-hole

mw-pick-place
mw-pick-place-wall

mw-plate-slide
mw-plate-slide-back

mw-plate-slide-back-side
mw-plate-slide-side

mw-push
mw-push-back
mw-push-wall

mw-reach
mw-reach-wall

mw-shelf-place
mw-soccer

mw-stick-pull
mw-stick-push

mw-sweep
mw-sweep-into

mw-window-close
mw-window-open

pendulum-spin
pendulum-swingup

reacher-easy
reacher-hard

reacher-three-easy
reacher-three-hard

walker-run
walker-run-backwards

walker-stand
walker-walk

walker-walk-backwards

TDMPC2
PWM

Figure 16: Individual task results for MT80 task set.

F ADDITIONAL ABLATION RESULTS

F.1 WORLD MODEL REGULARIZATION ABLATION

We extend our world model regularization ablation from Section 4.3 to 3 additional dflex locomotion
tasks - Hopper, Anymal and Humanoid. The complete results are presented in Figure 17 and follow
the same format as the original results in Figure 8a - 50% IQM with 95% CI across 3 seeds. From
the results we can observe that progressively adding more regularization, results in higher policy
rewards. This follows the ablation results in our paper and the one of the core contribution of work -
more accurate world models, do not results in better rewards. Instead of building world models for
accuracy, we should build them to enable better policy optimization and thus higher rewards.

F.2 TRAINING A MULTI-TASK POLICY

One of the contributions of our work is the multi-task learning framework of PWM. Instead of
training a single multi-task policy, we propose training a single multi-task world model with a
supervised objective and then extracting RL policies from it very efficiently. In this section we
justify this empirically by reproducing the MT30 experiment of Section 4.2 with two additional
baselines - TD-MPC2 without planning and PWM with a single multi-task policy. This strips down
both algorithms to be very similar, the major difference being that TD-MPC2 features an off-policy
SAC-like policy while PWM features an on-policy SHAC-like policy. Both are fed the same one-hot

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 5 M 10 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

Hopper

0 5 M 10 M 15 M
Steps

Ant

0 5 M 10 M 15 M
Steps

Anymal

0 5 M 10 M 15 M
Steps

Humanoid

ReLU Mish SimNorm

Figure 17: World model regularization ablation. This figure extends the ablation results of Figure 8a with
additional tasks. The figure shows 50 % IQM with 95% CI over 5 seeds per task.

0 2.5 M 5 M 7.5 M 10 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

Hopper

0 10 M 20 M 30 M
Steps

Ant

0 5 M 10 M 15 M
Steps

Anymal

TD() PWM

Figure 19: TD(λ) ablation. This figure compares vanilla PWM with a version that uses a TD(λ) actor objective.
Results shown are 50% IQM with 95% CI over 3 seeds.

task embeddings. The results in 18 show that both fail at solving the MT30 benchmark. In the case of
TD-MPC2, this reveals its reliance on planning and in the case of PWM, this reveals the need to train
policies per-task. We believe this is due to the unstable optimization objective of the RL problem.

F.3 TD(λ) ABLATION

0.2 0.4 0.6 0.8
Normalized score

Multi-task MT30

TD-MPC2 (no planning)
TD-MPC2

PWM (single-policy)
PWM

Figure 18: Framework ablation ablation. Extends
the results of Figure 6 with two additional baselines:
TD-MPC2 without planning and PWM with a single
multi-task policy learned over all embeddings. The
figure shows 50% IQM results with solid lines, mean
with dashed lines and 95 % CI.

Here we replace the actor objective of PWM with
TD(λ) similar to Dreamer (Hafner et al., 2019).
We evaluate this on 3 single-task experiments -
Hopper, Ant and Anymal and show the results in
19. We can see that PWM overall achieves higher
rewards, which we believe is to more simple and
less noisy gradients obtained via TD(N). Addi-
tionally, we found that TD(λ) uses approx. 10%
more computation due to having to compute more
gradients. However, it is worth noting that TD(λ)
learning curves appear more stable with higher
dimensional tasks such as Anymal and we believe
this ablation requires more large-scale studying.

21

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 5 M 10 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

Hopper

0 5 M 10 M 15 M
Steps

Ant

0 5 M 10 M 15 M
Steps

Anymal

0 5 M 10 M 15 M
Steps

Humanoid

ReLU Mish SimNorm

Figure 17: World model regularization ablation. This figure extends the ablation results of Figure 8a with
additional tasks. The figure shows 50 % IQM with 95% CI over 5 seeds per task.

0 2.5 M 5 M 7.5 M 10 M
Steps

0.0

0.5

1.0

1.5

P
P

O
-n

or
m

. R
ew

ar
d

Hopper

0 10 M 20 M 30 M
Steps

Ant

0 5 M 10 M 15 M
Steps

Anymal

TD() PWM

Figure 19: TD(λ) ablation. This figure compares vanilla PWM with a version that uses a TD(λ) actor objective.
Results shown are 50% IQM with 95% CI over 3 seeds.

task embeddings. The results in 18 show that both fail at solving the MT30 benchmark. In the case of
TD-MPC2, this reveals its reliance on planning and in the case of PWM, this reveals the need to train
policies per-task. We believe this is due to the unstable optimization objective of the RL problem.

F.3 TD(λ) ABLATION

0.2 0.4 0.6 0.8
Normalized score

Multi-task MT30

TD-MPC2 (no planning)
TD-MPC2

PWM (single-policy)
PWM

Figure 18: Framework ablation ablation. Extends
the results of Figure 6 with two additional baselines:
TD-MPC2 without planning and PWM with a single
multi-task policy learned over all embeddings. The
figure shows 50% IQM results with solid lines, mean
with dashed lines and 95 % CI.

Here we replace the actor objective of PWM with
TD(λ) similar to Dreamer (Hafner et al., 2019).
We evaluate this on 3 single-task experiments -
Hopper, Ant and Anymal and show the results in
19. We can see that PWM overall achieves higher
rewards, which we believe is to more simple and
less noisy gradients obtained via TD(N). Addi-
tionally, we found that TD(λ) uses approx. 10%
more computation due to having to compute more
gradients. However, it is worth noting that TD(λ)
learning curves appear more stable with higher
dimensional tasks such as Anymal and we believe
this ablation requires more large-scale studying.

21

