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ABSTRACT

Distributed and federated learning algorithms and techniques associated primarily
with minimization problems. However, with the increase of minimax optimiza-
tion and variational inequality problems in machine learning, the necessity of
designing efficient distributed/federated learning approaches for these problems is
becoming more apparent. In this paper, we provide a unified convergence analy-
sis of communication-efficient local training methods for distributed variational
inequality problems (VIPs). Our approach is based on a general key assumption on
the stochastic estimates that allows us to propose and analyze several novel local
training algorithms under a single framework for solving a class of structured non-
monotone VIPs. We present the first local gradient descent-accent algorithms with
provable improved communication complexity for solving distributed variational
inequalities on heterogeneous data. The general algorithmic framework recovers
state-of-the-art algorithms and their sharp convergence guarantees when the set-
ting is specialized to minimization or minimax optimization problems. Finally,
we demonstrate the strong performance of the proposed algorithms compared to
state-of-the-art methods when solving federated minimax optimization problems.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017; Kairouz et al., 2021) has
become a fundamental distributed machine learning framework in which multiple clients collaborate
to train a model while keeping their data decentralized. Communication overhead is one of the
main bottlenecks in FL (Karimireddy et al., 2020), which motivates the use by the practitioners of
advanced algorithmic strategies to alleviate the communication burden. One of the most popular
and well-studied strategies to reduce the communication cost is increasing the number of local steps
between the communication rounds (McMahan et al., 2017; Stich, 2018; Assran et al., 2019; Khaled
et al., 2020a; Koloskova et al., 2020).

Towards a different objective, several recently proposed machine learning approaches have moved
from the classical optimization formulation to a multi-player game perspective, where a good model
is framed as the equilibrium of a game, as opposed to the minimizer of an objective function. Such
machine learning models are framed as games (or in their simplified form as minimax optimization
problems) and involve interactions between players, e.g., Generative Adversarial Networks (GANs)
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(Goodfellow et al., 2014), adversarial training (Madry et al., 2018), robust optimization (Namkoong
& Duchi, 2016), and multi-agent reinforcement learning (Zhang et al., 2021a).

Currently, federated learning algorithms and techniques are associated primarily with minimization
problems. However, with the increase of game-theoretical formulations in machine learning, the
necessity of designing efficient federated learning approaches for these problems is apparent. In
this work, we are interested in the design of communication-efficient federated learning algorithms
suitable for multi-player game formulations. In particular, we consider a more abstract formulation
and focus on solving the following distributed/federated variational inequality problem (VIP):

Find z∗ ∈ Rd′
, such that ⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Rd′

, (1)

where F : Rd′ → Rd′
is a structured non-monotone operator. We assume the operator F is distributed

across n different nodes/clients and written as F (z) = 1
n

∑n
i=1 fi(z). In this setting, the operator

fi : Rd′ → Rd′
is owned by and stored on client i. Since we are in the unconstrained scenario,

problem (1) can be equivalently written as finding z∗ ∈ Rd′
, such that F (z∗) = 0 (Loizou et al.,

2021; Gorbunov et al., 2022a).

Problem (1) can be seen as a more abstract formulation of several popular problems. In particular,
the selection of the operator F captures classical minimization problems minz∈Rd f(z), minimax
optimization problems with z = (x1, x2), minx1∈Rd1 maxx2∈Rd2 f(x1, x2), and multi-player games
as special cases. For example, in the minimization case, F (z) = ∇f(z), and it is easy to see that
z∗ is the solution of (1) if and only if ∇f(z∗) = 0, while in the minimax case F (z) = F (x1, x2) =
(∇x1

f(x1, x2),−∇x2
f(x1, x2)) and z∗ is the solution if and only if z∗ is a stationary point of

f . More generally, an important special case of the formulation (1) is the problem of finding the
equilibrium point in an N -players game. In this setting, each player j is simultaneously trying to find
the action x∗

j which minimizes with respect to xj ∈ Rdj their own cost function fj(xj , x−j), while
the other players are playing x−j , which represents x = (x1, . . . , xk) with the component j removed.
In this scenario, operator F (x) is the concatenation over all possible j’s of ∇xj

fj(xj , x−j).

Finally, in the distributed/federated learning setting, formulation (1) captures both classical FL
minimization (McMahan et al., 2017) and FL minimax optimization problems (Sharma et al., 2022;
Deng & Mahdavi, 2021) as special cases.

1.1 MAIN CONTRIBUTIONS

Our key contributions are summarized as follows:

• VIPs and Federated Learning: We present the first connection between regularized VIPs and
federated learning setting by explaining how one can construct a consensus reformulation of
problem(1) by appropriately selecting the regularizer term R(x) (see discussion in Section 2.1).

• Unified Framework: We provide a unified theoretical framework for the design of efficient
local training methods for solving the distributed VIP (1). For our analysis, we use a general key
assumption on the stochastic estimates that allows us to study, under a single framework, several
stochastic local variants of the proximal gradient descent-ascent (GDA) method 1.

• Communication Acceleration: In practice, local algorithms are superior in communication
complexity compared to their non-local counterparts. However, in the literature, the theoretical
communication complexity of Local GDA does not improve upon the vanilla distributed GDA (i.e.,
communication in every iteration). Here we close the gap and provide the first communication-
accelerated local GDA methods. For the deterministic strongly monotone and smooth setting,
our method requires O

(
κ ln 1

ϵ

)
communication rounds over the O

(
κ2 ln 1

ϵ

)
of vanilla GDA (and

previous analysis of Local GDA), where κ is the condition number. See Table 1 for further details .
• Heterogeneous Data: Designing algorithms for federated minimax optimization and distributed

VIPs, is a relatively recent research topic, and existing works heavily rely on the bounded het-
erogeneity assumption, which may be unrealistic in FL setting (Hou et al., 2021; Beznosikov
et al., 2020; Sharma et al., 2022). Thus, they can only solve problems with similar data between
clients/nodes. In practical scenarios, the private data stored by a user on a mobile device and the

1Throughout this work we use this suggestive name (GDA and Stochastic GDA/ SGDA) motivated by the
minimax formulation, but we highlight that our results hold for the more general VIP (1)
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Table 1: Summary and comparison of algorithms for solving strongly-convex-strongly-concave
federated minimax optimization problems (a special case of the distributed VIPs (1)).

Algorithm1 Acceleration? Variance Red.? Communication Complexity
GDA/SGDA

(Fallah et al., 2020) — ✗ O
(
max

{
κ2,

σ2
∗

µ2ϵ

}
ln 1

ϵ

)
Local GDA/SGDA

(Deng & Mahdavi, 2021) ✗ ✗ O
(√

κ2(σ2
∗+∆2)

µϵ

)
ProxSkip-GDA/SGDA-FL

(This work)
✓ ✗ O

(√
max

{
κ2,

σ2
∗

µ2ϵ

}
ln 1

ϵ

)
ProxSkip-L-SVRGDA-FL

(This work)
✓ ✓ O

(
κ ln 1

ϵ

)
1 “Acceleration” = whether the algorithm enjoys acceleration in communication compared to its non-local
counterpart, “Variance Red.?” = whether the algorithm (in stochastic setting) applies variance reduction,
“Communication Complexity” = the communication complexity of the algorithm. Here κ = L/µ denotes
the condition number where L is the Lipschitz parameter and µ is the modulus of strong convexity, σ2

∗
corresponds to the variance level at the optimum (σ2

∗ = 0 in deterministic setting), and ∆ captures the
bounded variance. For a more detailed comparison of complexities, please also refer to Table 2.

data of different users can be arbitrarily heterogeneous. Our analysis does not assume bounded
heterogeneity, and the proposed algorithms (ProxSkip-VIP-FL and ProxSkip-L-SVRGDA-FL)
guarantee convergence with an improved communication complexity.

• Sharp rates for known special cases: For the known methods/settings fitting our framework, our
general theorems recover the best rates known for these methods. For example, the convergence
results of the Proximal (non-local) SGDA algorithm for regularized VIPs (Beznosikov et al., 2022b)
and the ProxSkip algorithm for composite minimization problems (Mishchenko et al., 2022) can
be obtained as special cases of our analysis, showing the tightness of our convergence guarantees.

• Numerical Evaluation: In numerical experiments, we illustrate the most important properties of
the proposed methods by comparing them with existing algorithms in federated minimax learning
tasks. The numerical results corroborate our theoretical findings.

2 TECHNICAL PRELIMINARIES

2.1 REGULARIZED VIP AND CONSENSUS REFORMULATION

Following classical techniques from Parikh & Boyd (2014), the distributed VIP (1) can be recast into
a consensus form:

Find x∗ ∈ Rd, such that ⟨F (x∗), x− x∗⟩+R(x)−R(x∗) ≥ 0, ∀x ∈ Rd, (2)

where d = nd′ and

F (x) ≜
n∑

i=1

Fi(xi), R(x) ≜

{
0 if x1 = x2 = · · · = xn

+∞ otherwise.
(3)

Here x = (x1, x2, · · · , xn) ∈ Rd, xi ∈ Rd′
, F : Rd → Rd, Fi : Rd′ → Rd and Fi(xi) =

(0, · · · , fi(xi), · · · , 0) where [F (x)](id′+1):(id′+d′) = fi(xi). Note that the reformulation requires a
dimension expansion on the variable enlarged from d′ to d. It is well-known that the two problems
(1) and (2) are equivalent in terms of the solution, which we detail in Appendix F.3.

Having explained how the problem (1) can be converted into a regularized VIP (2), let us now present
the Stochastic Proximal Method (Parikh & Boyd, 2014; Beznosikov et al., 2022b), one of the most
popular algorithms for solving general regularized VIPs2. The update rule of the Stochastic Proximal
Method defines as follows:

xt+1 = proxγR(xt − γgt) where proxγR(x) ≜ argmin
v∈Rd

{
R(v) +

1

2γ
∥v − x∥2

}
. (4)

2We call general regularized VIPs, the problem (2) where F : Rd → Rd is an operator and R : Rd → R is
a regularization term (a proper lower semicontinuous convex function).
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Here gt is an unbiased estimator of F (xt) and γ > 0 is the step-size of the method. As explained in
(Mishchenko et al., 2022), it is typically assumed that the proximal computation (4) can be evaluated
in closed form (has exact value), and its computation it is relatively cheap. That is, the bottleneck in
the update rule of the Stochastic Proximal Method is the computation of gt. This is normally the case
when the regularizer term R(x) in general regularized VIP has a simple expression, like ℓ1-norm
(R(x) = ∥x∥1) and ℓ2-norm (R(x) = ∥x∥22). For more details on closed-form expression (4) under
simple choices of regularizers R(x), we refer readers to check Parikh & Boyd (2014).

However, in the consensus reformulation of the distributed VIP, the regularizer R(x) has a specific
expression (3) that makes the proximal computation (4) expensive compared to the evaluation of
gt. In particular, note that by following the definition of R(x) in (3), we get that x̄ = 1

n

∑n
i=1 xi

and proxγR(x) = (x̄, x̄, · · · , x̄). So evaluating proxγR(x) is equivalent to taking the average of
the variables xi (Parikh & Boyd, 2014), meaning that it involves a high communication cost in
distributed/federated learning settings. This was exactly the motivation behind the proposal of the
ProxSkip algorithm in Mishchenko et al. (2022), which reduced the communication cost by allowing
the expensive proximal operator to be skipped in most iterations.

In this work, inspired by the ProxSkip approach of Mishchenko et al. (2022), we provide a unified
framework for analyzing efficient algorithms for solving the distributed VIP (1) and its consensus
reformulation problem (2). In particular in Section 3, we provide algorithms for solving general
regularized VIPs (not necessarily a distributed setting). Later in Section 4 we explain how the
proposed algorithms can be interpreted as distributed/federated learning methods.

2.2 MAIN ASSUMPTIONS

Having presented the consensus reformulation of distributed VIPs, let us now provide the main
conditions of problem (2) assumed throughout the paper.

Assumption 2.1. We assume that Problem (2) has a unique solution x∗ and

1. The operator F is µ-quasi-strongly monotone and ℓ-star-cocoercive with µ, ℓ > 0, i.e., ∀x ∈ Rd,

⟨F (x)− F (x∗), x− x∗⟩ ≥ µ∥x− x∗∥2, ⟨F (x)− F (x∗), x− x∗⟩ ≥ 1

ℓ
∥F (x)− F (x∗)∥2.

2. The function R(·) is a proper lower semicontinuous convex function.

Assumption 2.1 is weaker than the classical strong-monotonicity and Lipschitz continuity assumptions
commonly used in analyzing methods for solving problem (2) and captures non-monotone and non-
Lipschitz problems as special cases (Loizou et al., 2021). In addition, given that the operator F is
L-Lipschitz continuous and µ-strongly monotone, it can be shown that the operator F is (κL)-star-
cocoercive where κ ≜ L/µ is the condition number of the operator (Loizou et al., 2021).

Motivated by recent applications in machine learning, in our work, we mainly focus on the case
where we have access to unbiased estimators of the operator F . Regarding the inherent stochasticity,
we further use the following key assumption, previously used in Beznosikov et al. (2022b) for the
analysis of Proximal SGDA, to characterize the behavior of the operator estimation.

Assumption 2.2 (Estimator). For all t ≥ 0, we assume that the estimator gt is unbiased (E[gt] =
F (xt)). Next, we assume that there exist non-negative constants A,B,C,D1, D2 ≥ 0, ρ ∈ (0, 1]
and a sequence of (possibly random) non-negative variables {σt}t≥0 such that for all t ≥ 0:

E∥gt − F (x∗)∥2 ≤ 2A⟨F (x)− F (x∗), x− x∗⟩+Bσ2
t +D1,

E[σ2
t+1] ≤ 2C⟨F (x)− F (x∗), x− x∗⟩+ (1− ρ)σ2

t +D2.

Variants of Assumption 2.2 have first proposed in classical minimization setting for providing
unified analysis for several stochastic optimization methods and, at the same time, avoid the more
restrictive bounded gradients and bounded variance assumptions (Gorbunov et al., 2020; Khaled
et al., 2020b). Recent versions of Assumption 2.2 have been used in the analysis of Stochastic
Extragradient (Gorbunov et al., 2022a) and stochastic gradient-descent assent (Beznosikov et al.,
2022b) for solving minimax optimization and VIP problems. To our knowledge, analysis of existing
local training methods for distributed VIPs depends on bounded variance conditions. Thus, via
Assumption 2.2, our convergence guarantees hold under more relaxed assumptions as well. Note that
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Assumption 2.2 covers many well-known conditions: for example, when σt ≡ 0 and F (x∗) = 0, it
will recover the recently introduced expected co-coercivity condition (Loizou et al., 2021) where A
corresponds to the modulus of expected co-coercivity, and D1 corresponds to the scale of estimator
variance at x∗. In Section 3.2, we explain how Assumption 2.2 is satisfied for many well-known
estimators gt, including the vanilla mini-batch estimator and variance reduced-type estimator. That
is, for the different estimators (and, as a result, different algorithms), we prove the closed-form
expressions of the parameters A,B,C,D1, D2 ≥ 0, ρ ∈ (0, 1] for which Assumption 2.2 is satisfied.

3 GENERAL FRAMEWORK: PROXSKIP-VIP
Here we provide a unified algorithm framework (Algorithm 1) for solving regularized VIPs (2). Note
that in this section, the guarantees hold under the general assumptions 2.1 and 2.2. In Section 4 we
will further specify our results to the consensus reformulation setting where (3) also holds.

Algorithm 1 is inspired by the ProxSkip proposed in Mishchenko et al. (2022) for solving composite
minimization problems. The two key elements of the algorithm are the randomized prox-skipping,
and the control variate ht. Via prox-skipping, the proximal oracle is rarely called if p is small, which
helps to reduce the computational cost when the proximal oracle is expensive. Also, for general
regularized VIPs we have F (x∗) ̸= 0 at the optimal point x∗ due to the composite structure. Thus
skipping the proximal operator will not allow the method to converge. On this end, the introduction
of ht alleviates such drift and stabilizes the iterations toward the optimal point (ht → F (x∗)).

We also highlight that Algorithm 1 is a general update rule and can vary based on the selection of
the unbiased estimator gt and the probability p. For example, if p = 1, and ht ≡ 0, the algorithm is
reduced to the Proximal SGDA algorithm proposed in Beznosikov et al. (2022b) (with the associated
theory). We will focus on further important special cases of Algorithm 1 below.

Algorithm 1 ProxSkip-VIP

Input: Initial point x0, parameters γ, p, initial control variate h0, number of iterations T
1: for all t = 0, 1, ..., T do
2: x̂t+1 = xt − γ(gt − ht)
3: Flip a coin θt, and θt = 1 w.p. p, otherwise 0
4: if θt = 1 then
5: xt+1 = prox γ

pR

(
x̂t+1 − γ

pht

)
6: else
7: xt+1 = x̂t+1

8: end if
9: ht+1 = ht +

p
γ (xt+1 − x̂t+1)

10: end for

3.1 CONVERGENCE OF PROXSKIP-VIP
Our main convergence quarantees are presented in the following Theorem and Corollary.

Theorem 3.1 (Convergence of ProxSkip-VIP). With Assumptions 2.1 and 2.2, let γ ≤
min

{
1
µ ,

1
2(A+MC)

}
, τ ≜ min

{
γµ, p2, ρ− B

M

}
, for some M > B

ρ . Denote Vt ≜ ∥xt − x∗∥2 +
(γ/p)2∥ht − F (x∗)∥2 +Mγ2σ2

t , Then the iterates of ProxSkip-VIP (Algorithm 1), satisfy:

E[VT ] ≤ (1− τ)
T
V0 +

γ2(D1 +MD2)

τ
.

Theorem 3.1 show that ProxSkip-VIP converges linearly to the neighborhood of the solution. The
neighborhood is proportional to the step-size γ and the parameters D1 and D2 of Assumption 2.2. In
addition, we highlight that if we set p = 1, and ht ≡ 0, then Theorem 3.1 recovers the convergence
guarantees of Proximal-SGDA of (Beznosikov et al., 2022b, Theorem 2.2). As a corollary of
Theorem 3.1, we can also obtain the following corresponding complexity results.
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Corollary 3.2. With the setting in Theorem 3.1, if we set M = 2B
ρ , p =

√
γµ and γ ≤

min

{
1
µ ,

1
2(A+MC) ,

ρ
2µ ,

µϵ

2(D1+
2B
ρ D2)

}
, we have E[VT ] ≤ ϵ with iteration complexity and the

number of calls to the proximal oracle prox(·) as

O

(
max

{
A+ BC

ρ

µ
,
1

ρ
,
D1 +

B
ρ
D2

µ2ϵ

}
ln

V0

ϵ

)
and O


√√√√max

{
A+ BC

ρ

µ
,
1

ρ
,
D1 +

B
ρ
D2

µ2ϵ

}
ln

V0

ϵ

.

3.2 SPECIAL CASES OF GENERAL ANALYSIS

Theorem 3.1 holds under the general key Assumption 2.2 on the stochastic estimates. In this
subsection, via Theorem 3.1, we explain how different selections of the unbiased estimator gt in
Algorithm 1 lead to various convergence guarantees. In particular, here we cover (i) ProxSkip-SGDA,
(ii) ProxSkip-GDA, and (iii)variance-reduced method ProxSkip-L-SVRGDA. To the best of our
knowledge, none of these algorithms have been proposed and analyzed before for solving VIPs.

(i) Algorithm: ProxSkip-SGDA. Let us have the following assumption:

Assumption 3.3 (Expected Cocoercivity). We assume that for all t ≥ 0, the stochastic operator
gt ≜ g(xt), which is an unbiased estimator of F (xt), satisfies expected cocoercivity, i.e., for all
x ∈ Rd there is Lg > 0 such that E∥g(x)− g(x∗)∥2 ≤ Lg⟨F (x)− F (x∗), x− x∗⟩.

The expected cocoercivity condition was first proposed in Loizou et al. (2021) to analyze SGDA and
the stochastic consensus optimization algorithms efficiently. It is strictly weaker compared to the
bounded variance assumption and “growth conditions,” and it implies the star-cocoercivity of the
operator F . Assuming expected co-coercivity allows us to characterize the estimator gt.

Lemma 3.4 (Beznosikov et al. (2022b)). Let Assumptions 2.1 and 3.3 hold and let σ2
∗ ≜

E
[
∥g(x∗)− F (x∗)∥2

]
< +∞. Then gt satisfies Assumption 2.2 with A = Lg, D1 = 2σ2

∗,
ρ = 1 and B = C = D2 = σ2

t ≡ 0.

By combining Lemma 3.4 and Corollary 3.2, we obtain the following result.

Corollary 3.5 (Convergence of ProxSkip-SGDA). With Assumption 2.1 and 3.3, if we further
set γ ≤ min

{
1

2Lg
, 1
2µ ,

µϵ
8σ2

∗

}
and p =

√
γµ, then for the iterates of ProxSkip-SGDA, we have

E[VT ] ≤ ϵ with iteration complexity and the number of calls of the proximal oracle prox(·) as

O
(
max

{
Lg

µ ,
σ2
∗

µ2ϵ

}
ln 1

ϵ

)
and O

(√
max

{
Lg

µ ,
σ2
∗

µ2ϵ

}
ln 1

ϵ

)
, respectively.

(ii) Deterministic Case: ProxSkip-GDA. In the deterministic case where g(xt) = F (xt), the
algorithm ProxSkip-SGDA is reduced to ProxSkip-GDA. Thus, Lemma 3.4 and Corollary 3.2 but with
σ2
∗ = 0. In addition, the expected co-coercivity parameter becomes Lg = ℓ by Assum. 2.1.

Corollary 3.6 (Convergence of ProxSkip-GDA). With the same setting in Corollary 3.5, if we
set the estimator gt = F (xt), and γ = 1

2ℓ the iterates of ProxSkip-GDA satisfy: E[VT ] ≤(
1−min

{
γµ, p2

})T
V0, and we get E[VT ] ≤ ϵ with iteration complexity and number of calls of

the proximal oracle prox(·) as O
(

ℓ
µ ln 1

ϵ

)
and O

(√
ℓ
µ ln 1

ϵ

)
, respectively.

Note that if we further have F to be L-Lipschitz continuous and µ-strongly monotone, then ℓ = κL
where κ = L/µ is the condition number (Loizou et al., 2021). Thus the number of iteration and calls
of the proximal oracles are O

(
κ2 ln 1

ϵ

)
and O

(
κ ln 1

ϵ

)
respectively. In the minimization setting, these

two complexities are equal to O
(
κ ln 1

ϵ

)
and O

(√
κ ln 1

ϵ

)
since Lg = ℓ = L. In this case, our result

recovers the result of the original ProxSkip method in Mishchenko et al. (2022).

(iii) Algorithm: ProxSkip-L-SVRGDA. Here, we focus on a variance-reduced variant of the
proposed ProxSkip framework (Algorithm 1). We further specify the operator F in (2) to be in a finite-
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sum formulation: F (x) = 1
n

∑n
i=1 Fi(x). We propose the ProxSkip-Loopless-SVRG (ProxSkip-L-

SVRGDA) algorithm (Algorithm 3 in Appendix) which generalizes the L-SVRGDA proposed in
Beznosikov et al. (2022b). In this setting, we need to introduce the following assumption:

Assumption 3.7. We assume that there exist a constant ℓ̂ such that for all x ∈ Rd:
1
n

∑n
i=1 ∥Fi(x)− Fi(x

∗)∥2 ≤ ℓ̂⟨F (x)− F (x∗), x− x∗⟩.

If each Fi is ℓi-cocoercive, then Assumption 3.7 holds with ℓ̂ ≤ maxi∈[n] Li. Using Assumption 3.7
we obtain the following result (Beznosikov et al., 2022b).

Lemma 3.8 (Beznosikov et al. (2022b)). With Assumption 2.1 and 3.7, we have the estimator gt
in Algorithm 3 satisfies Assumption 2.1 with A = ℓ̂, B = 2, D1 = D2 = 0, C = qℓ̂

2 , ρ = q and
σ2
t = 1

n

∑n
i=1 ∥Fi(xt)− Fi(x

∗)∥2.

By combining Lemma 3.8 and Corollary 3.2, we obtain the following result for ProxSkip-L-SVRGDA:

Corollary 3.9 (Complexities of ProxSkip-L-SVRGDA). Let Assumption 2.1 and 3.7 hold. If we
further set q = 2γµ, M = 4

q , p =
√
γµ and γ = min

{
1
µ ,

1

6ℓ̂

}
, then we obtain E[VT ] ≤ ϵ with

iteration complexity and the number of calls of the proximal oracle prox(·) as O(ℓ̂/µ ln 1
ϵ ) and

the number of calls of the proximal oracle prox(·) as O(

√
ℓ̂/µ ln 1

ϵ ).

If we further consider Corollary 3.9 in the minimization setting and assume each Fi is L-Lipschitz
and µ-strongly convex, the number of iteration and calls of the proximal oracles will be O

(
κ ln 1

ϵ

)
and O

(√
κ ln 1

ϵ

)
, which recover the results of variance-reduced ProxSkip in Malinovsky et al. (2022).

4 APPLICATION OF PROXSKIP TO FEDERATED LEARNING

In this section, by specifying the general problem to the expression of (3) as a special case of
(2), we explain how the proposed algorithmic framework can be interpreted as federated learning
algorithms. As discussed in Section 2.1, in the distributed/federated setting, evaluating the proxγR(x)
is equivalent to a communication between the n workers. In the FL setting, Algorithm 1 can be
expressed as Algorithm 2. Note that skipping the proximal operator in Algorithm 1 corresponds to
local updates in Algorithm 2. In Algorithm 2, gi,t = gi(xi,t) is the unbiased estimator of the fi(xi,t)
of the original problem (1), while the client control vectors hi,t satisfy hi,t → fi(z

∗). The probability
p in this setting shows how often a communication takes place (averaging of the workers’ models).

Algorithm 2 ProxSkip-VIP-FL

Input: Initial points {xi,0}ni=1 and {hi,0}ni=1, parameters γ, p, T
1: for all t = 0, 1, ..., T do
2: Server: Flip a coin θt, θt = 1 w.p. p, otherwise 0. Send θt to all workers
3: for each workers i ∈ [n] in parallel do
4: x̂i,t+1 = xi,t − γ(gi,t − hi,t) // Local update with control variate
5: if θt = 1 then
6: Worker: x′

i,t+1 = x̂i,t+1 − γ
phi,t, sends x′

i,t+1 to the server
7: Server: computes xi,t+1 = 1

n

∑n
i=1 x

′
i,t+1 and send to workers // Communication

8: else
9: xi,t+1 = x̂i,t+1 // Otherwise skip the communication step

10: end if
11: hi,t+1 = hi,t +

p
γ (xi,t+1 − x̂i,t+1)

12: end for
13: end for

Algorithm: ProxSkip-SGDA-FL. The first implementation of the framework we consider is
ProxSkip-SGDA-FL. Similar to ProxSkip-SGDA in the centralized setting, here we set the esti-
mator to be the vanilla estimator of F , i.e., gi,t = gi(xi,t), where gi is an unbiased estimator of fi.
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We note that if we set hi,t ≡ 0, then Algorithm 2 is reduced to the typical Local SGDA (Deng &
Mahdavi, 2021). To proceed with the analysis in FL, we require the following assumption:

Assumption 4.1. The Problem (1) attains a unique solution z∗ ∈ Rd′
. Each fi in (1), it is

µ-quasi-strongly monotone around z∗, i.e., for any xi ∈ Rd′
, ⟨fi(xi)− fi(z

∗), xi − z∗⟩ ≥
µ∥xi − z∗∥2. Operator gi(xi), is an unbiased estimator of fi(xi), and for all xi ∈ Rd′

we
have E∥gi(xi)− gi(z

∗)∥2 ≤ Lg⟨fi(xi)− fi(z
∗), xi − z∗⟩.

The assumption on the uniqueness of the solution is pretty common in the literature. For example,
in the (unconstrained) minimization case, quasi-strong monotonicity implies uniqueness z∗ (Hinder
et al., 2020). Assumption 4.1 is required as through it, we can prove that the operator F in (2)
satisfies Assumption 2.1, and its corresponding estimator satisfies Assumption 2.2, which we detail
in Appendix F.3. Let us now present the convergence guarantees.

Theorem 4.2 (Convergence of ProxSkip-SGDA-FL). With Assumption 4.1, then ProxSkip-VIP-
FL (Algorithm 2) achieves E[VT ] ≤ ϵ (where VT is defined in Theorem 3.1), with iteration

complexity O(max
{

Lg

µ ,
σ2
∗

µ2ϵ

}
ln 1

ϵ ) and communication complexity O(

√
max

{
Lg

µ ,
σ2
∗

µ2ϵ

}
ln 1

ϵ ).

Comparison with Literature. Note that Theorem 4.2 is quite general, which holds under any
reasonable, unbiased estimator. In the special case of federated minimax problems, one can use the
same (mini-batch) gradient estimator from Local SGDA (Deng & Mahdavi, 2021) in Algorithm 2 and
our results still hold. The benefit of our approach compared to Local SGDA is the communication
acceleration, as pointed out in Table 1. In addition, in the deterministic setting (gi(xi,t) = fi(xi,t))
we have σ2

∗ = 0 and Theorem 4.2 reveals O(ℓ/µ ln 1
ϵ ) iteration complexity and O(

√
ℓ/µ ln 1

ϵ )
communication complexity for ProxSkip-GDA-FL. In Table 2 of the appendix, we provide a more
detailed comparison of our Algorithm 2 (Theorem 4.2) with existing literature in FL. The proposed
approach outperforms other algorithms (Local SGDA, Local SEG, FedAvg-S) in terms of iteration
and communication complexities.

As the baseline, the distributed (centralized) gradient descent-ascent (GDA) and extragradient (EG)
algorithms achieve O(κ2 ln 1

ϵ ) and O(κ ln 1
ϵ ) communication complexities, respectively (Fallah et al.,

2020; Mokhtari et al., 2020b). We highlight that our analysis does not require an assumption on
bounded heterogeneity / dissimilarity, and as a result, we can solve problems with heterogeneous
data. Finally, as reported by Beznosikov et al. (2020), the lower communication complexity bound
for problem (1) is given by Ω(κ ln 1

ϵ ), which further highlights the optimality of our proposed
ProxSkip-SGDA-FL algorithm.

Algorithm: ProxSkip-L-SVRGDA-FL. Next, we focus on variance-reduced variants of ProxSkip-
SGDA-FL and we further specify the operator F in (2) as F (x) ≜

∑n
i=1 Fi(xi) and Fi(x) ≜

1
mi

∑mi

j=1 Fi,j(xi). The proposed algorithm, ProxSkip-L-SVRGDA-FL, is presented in the Appendix
as Algorithm 4. In this setting, we need the following assumption on Fi to proceed with the analysis.

Assumption 4.3. The Problem (1) attains a unique solution z∗. Also for each fi in (1), it
is µ-quasi-strongly monotone around z∗. Moreover we assume for all xi ∈ Rd′

we have
1
mi

∑mi

j=1 ∥Fi,j(xi)− Fi,j(z
∗)∥2 ≤ ℓ̂⟨fi(xi)− fi(z

∗), xi − z∗⟩.

Similar to the ProxSkip-SGDA-FL case, we can show that under Assumption (4.3), the operator and
unbiased estimator fit into the setting of Assumptions 2.1 and 2.2 (see derivation in Appendix F.4).
As a result, we can obtain the following complexity result.

Theorem 4.4 (Convergence of ProxSkip-L-SVRGDA-FL). Let Assumption 4.3 hold. Then the
iterates of ProxSkip-L-SVRGDA-FL achieve E[VT ] ≤ ϵ (where VT is defined in Theorem 3.1)with

iteration complexity O(ℓ̂/µ ln 1
ϵ ) and communication complexity O(

√
ℓ̂/µ ln 1

ϵ ).

In the special case of minimization problems minz∈Rd f(z), i.e., F (z) = ∇f(z), we have Theo-
rem 4.4 recovers the theoretical result of Malinovsky et al. (2022) which focuses on ProxSkip methods
for minimization problems, showing the tightness of our approach. Similar to the ProxSkip-VIP-FL,
the ProxSkip-L-SVRGDA-FL enjoys a communication complexity improvement in terms of the
condition number κ. For more details, please refer to Table 1 (and Table 2 in the appendix).
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5 NUMERICAL EXPERIMENTS

We corroborate our theory with the experiments, and test the performance of the proposed algorithms
ProxSkip-(S)GDA-FL (Algorithm 2 with gi(xi,t) = fi(xi,t) or its unbiased estimator) and ProxSkip-
L-SVRGDA-FL (Algorithm 4). We focus on two classes of problems: (i) strongly monotone quadratic
games and (ii) robust least squares. See Appendix G and H for more details and extra experiments.

To evaluate the performance, we use the relative error measure ∥xk−x∗∥2

∥x0−x∗∥2 . The horizontal axis
corresponds to the number of communication rounds. For all experiments, we pick the step-size γ
and probability p for different algorithms according to our theory. That is, ProxSkip-(S)GDA-FL
based on Corollary 3.5 and 3.6, ProxSkip-L-SVRGDA-FL by Cororllary 3.9. See also Table 3 in the
appendix for the settings of parameters. We compare our methods to Local SGDA (Deng & Mahdavi,
2021), Local SEG (Beznosikov et al., 2020) (and their deterministic variants), and FedGDA-GT, a
deterministic algorithm proposed in Sun & Wei (2022). For all methods, we use parameters based on
their theoretical convergence guarantees. For more details on our implementations and additional
experiments, see Appendix G and H.
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(b) Stochastic Case

Figure 1: Comparison of algorithms on the strongly-
monotone quadratic game (5).

0 50 100 150 200 250 300 350 400
Number of Communication Rounds

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

ProxSkip-SGDA-FL vs Local SGDA vs Local SEG

Local EG
Local GDA
FedGDA-GT
ProxSkip-GDA-FL

(a) Deterministic Case

0 50 100 150 200 250 300 350 400
Number of Communication Rounds

10 1

100

Re
la

tiv
e 

Er
ro

r

ProxSkip-SGDA-FL vs Local SGDA vs Local SEG

Local SEG
Local SGDA
ProxSkip-SGDA-FL

(b) Stochastic Case

Figure 2: Comparison of algorithms on the Robust
Least Square (6)

Strongly-monotone Quadratic Games. In the first experiment, we consider a problem of the form

min
x1∈Rd

max
x2∈Rd

1

n

n∑
i=1

1

mi

mi∑
j=1

fij(x1, x2), (5)

where fij(x1, x2) ≜ 1
2x

⊺
1Aijx1 + x⊺

1Bijx2 − 1
2x

⊺
1Cijx1 + a⊺ijx1 − c⊺ijx2. Here we set the number

of clients n = 20, mi = 100 for all i ∈ [n] and d = 20. We generate positive semidefinite matrices
Aij , Bij , Cij ∈ Rd×d such that eigenvalues of Aij , Cij lie in the interval [0.01, 1] while those of Bij

lie in [0, 1]. The vectors aij , cij ∈ Rd are generated from Nd(0, Id) distribution. This data generation
process ensures that the quadratic game satisfies the assumptions of our theory. To make the data
heterogeneous, we produce different Aij , Bij , Cij , aij , cij across the clients indexed by i ∈ [n].

We present the results in Figure 1 for both deterministic and stochastic settings. As our theory
predicted, our proposed methods are always faster in terms of communication rounds than Local
(S)GDA. The current analysis of Local EG requires the bounded heterogeneity assumption which
leads to convergence to a neighborhood even in a deterministic setting. As also expected by the
theory, our proposed variance-reduced algorithm converges linearly to the exact solution.
Robust Least Square. In the second experiment, we consider the robust least square (RLS)
problem (El Ghaoui & Lebret, 1997; Yang et al., 2020a) with the coefficient matrix A ∈ Rr×s and
noisy vector y0 ∈ Rr. We assume y0 is corrupted by a bounded perturbation δ (i.e.,∥δ∥ ≤ δ0). RLS
minimizes the worst case residual and can be formulated as follows:

min
β

max
δ:∥δ∥≤δ0

∥Aβ − y∥2 where δ = y0 − y.

In our work, we consider the following penalized version of the RLS problem:
min
β∈Rs

max
y∈Rr

∥Aβ − y∥2 − λ∥y − y0∥2 (6)

This objective function is strongly-convex-strongly-concave when λ > 1 (Thekumparampil et al.,
2022). We run our experiment on the “California Housing” dataset from scikit-learn package (Pe-
dregosa et al., 2011), using λ = 50 in (6). Please see Appendix G for further detail on the setting.

In Figure 2, we show the trajectories of our proposed algorithms compared to Local EG, Local
GDA and their stochastic variants. In both scenarios (deterministic and stochastic), our ProxSkip-
GDA/SGDA-FL algorithms outperform the other methods in terms of communication rounds.
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local gradient steps provably lead to communication acceleration! finally! In ICML, 2022.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. In AISTATS, pp.
1497–1507. PMLR, 2020a.

Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of o(1/k) for optimistic
gradient and extragradient methods in smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 30(4):3230–3251, 2020b.

Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. NeurIPS, 2016.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Arkadi Nemirovski. Mini-course on convex programming algorithms. Lecture notes, 2013.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and trends® in Optimization, 1
(3):127–239, 2014.

12



Published as a conference paper at ICLR 2024

Francesca Parise and Asuman Ozdaglar. A variational inequality framework for network games:
Existence, uniqueness, convergence and sensitivity analysis. Games and Economic Behavior, 114:
47–82, 2019.
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Supplementary Material
The Supplementary Material is organized as follows:
Section A reviews the existing literature related to our work. Section B summarizes the notational
conventions used in the main paper and appendix, while Section C includes the missing pseudocodes
of the main paper (related to variance reduced methods). Next, Sections D and E present some basic
lemmas to prove our main convergence results. We present the proofs of the main theorems and
corollaries in Section F. Finally, in section G, we add further details related to our experiments in the
main paper, while in section H, we add more related experiments to verify our theory.
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A FURTHER RELATED WORK

The references necessary to motivate our work and connect it to the most relevant literature are
included in the appropriate sections of the main body of the paper. In this section, we present a
broader view of the literature, including more details on closely related work and more references to
papers that are not directly related to our main results.

Federated Learning. One of the most popular characteristics of communication-efficient FL
algorithms is local updates, where each client/node of the network takes multiple steps of the chosen
optimization algorithm locally between the communication rounds. Many algorithms with local
updates (e.g., FedAvg, Local GD, Local SGD, etc.) have been proposed and extensively analyzed
in FL literature under various settings, including convex and nonconvex problems (McMahan et al.,
2017; Stich, 2018; Assran et al., 2019; Kairouz et al., 2021; Wang et al., 2021; Karimireddy et al.,
2020; Woodworth et al., 2020; Koloskova et al., 2020). In local FL algorithms, a big source of
variance in the convergence guarantees stems from inter-client differences (heterogeneous data).
On that end, inspired by the popular variance reduction methods from optimization literature (e.g.,
SVRG (Johnson & Zhang, 2013) or SAGA (Defazio et al., 2014)), researchers start investigating
variance reduction mechanisms to handle the variance related to heterogeneous environments (e.g.
FedSVRG (Konečnỳ et al., 2016)), resulting in the popular SCAFFOLD algorithm(Karimireddy et al.,
2020). Gradient tracking (Di Lorenzo & Scutari, 2016; Nedic et al., 2017) is another class of methods
not affected by data-heterogeneity, but its provable communication complexity scales linearly in the
condition number (Koloskova et al., 2021; Alghunaim & Yuan, 2023), even when combined with
local steps (Liu et al., 2023). Finally, Mishchenko et al. (2022) proposed a new algorithm (ProxSkip)
for federated minimization problems that guarantees acceleration of communication complexity
under heterogeneous data. As we mentioned in Section 1.1, the framework of our paper includes the
algorithm and convergence results of Mishchenko et al. (2022) as a special case, and it could be seen
as an extension of these ideas in the distributed variational inequality setting.

Minimax Optimization and Variational Inequality Problems. Minimax optimization, and more
generally, variational inequality problems (VIPs) (Hartman & Stampacchia, 1966; Facchinei & Pang,
2003) appear in various research areas, including but not limited to online learning (Cesa-Bianchi &
Lugosi, 2006), game theory (Von Neumann & Morgenstern, 1947), machine learning (Goodfellow
et al., 2014) and social and economic practices (Facchinei & Pang, 2003; Parise & Ozdaglar, 2019).
The gradient descent-ascent (GDA) method is one of the most popular algorithms for solving minimax
problems. However, GDA fails to converge for convex-concave minimax problems (Mescheder et al.,
2018) or bilinear games (Gidel et al., 2019). To avoid these issues, Korpelevich (1976) introduced
the extragradient method (EG), while Popov (1980) proposed the optimistic gradient method (OG).
Recently, there has been a surge of developments for improving the extra gradient methods for better
convergence guarantees. For example, Mokhtari et al. (2020b;a) studied optimistic and extragradient
methods as an approximation of the proximal point method to solve bilinear games, while Hsieh
et al. (2020) focused on the stochastic setting and proposed the use of a larger extrapolation step size
compared to update step size to prove convergence under error-bound conditions.

Beyond the convex-concave setting, most machine learning applications expressed as min-max
optimization problems involve nonconvex-nonconcave objective functions. Recently, Daskalakis
et al. (2021) showed that finding local solutions is intractable in the nonconvex-nonconcave regime,
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which motivates researchers to look for additional structures on problems that can be exploited to
prove the convergence of the algorithms. For example, Loizou et al. (2021) provided convergence
guarantees of stochastic GDA under expected co-coercivity, while Yang et al. (2020a) studied the
convergence stochastic alternating GDA under the PL-PL condition. Lin et al. (2020) showed that
solving nonconvex-(strongly)-concave minimax problems using GDA by appropriately maintaining
the primal and dual stepsize ratio is possible, and several follow-up works improved the computation
complexities (Yang et al., 2020b; Zhang et al., 2021b; Yang et al., 2022b; Zhang et al., 2022). Later
Diakonikolas et al. (2021) introduced the notion of the weak minty variational inequality (MVI),
which captures a large class of nonconvex-nonconcave minimax problems. Gorbunov et al. (2022b)
provided tight convergence guarantees for solving weak MVI using deterministic extragradient and
optimistic gradient methods. However, deterministic algorithms can be computationally expensive,
encouraging researchers to look for stochastic algorithms. On this end, Diakonikolas et al. (2021);
Pethick et al. (2023a); Böhm (2022) analyze stochastic extragradient and optimistic gradient methods
for solving weak MVI with increasing batch sizes. Recently, Pethick et al. (2023b) used a bias-
corrected variant of the extragradient method to solve weak MVI without increasing batch sizes.
Lately, variance reduction methods has also proposed for solving min-max optimization problems
and VIPs Alacaoglu & Malitsky (2022); Cai et al. (2022). As we mentioned in the main paper, in our
work, the proposed convergence guarantees hold for a class of non-monotone problems, i.e., the class
of is µ-quasi-strongly monotone and ℓ-star-cocoercive operators (see Assumption 2.1).

Minimax Federated Learning. Going beyond the more classical centralized setting, recent works
study the two-player federated minimax problems (Deng & Mahdavi, 2021; Beznosikov et al., 2020;
Sun & Wei, 2022; Hou et al., 2021; Sharma et al., 2022; Tarzanagh et al., 2022; Huang, 2022; Yang
et al., 2022a). For example, Deng & Mahdavi (2021) studied the convergence guarantees of Local
SGDA, which is an extension of Local SGD in the minimax setting, under various assumptions;
Sharma et al. (2022) studied furthered and improved the complexity results of Local SGDA in the
nonconvex case; Beznosikov et al. (2020) studied the convergence rate of Local SGD algorithm
with an extra step (we call it Local Stochastic Extragradient or Local SEG), under the (strongly)-
convex–(strongly)-concave setting. Multi-player games, which, as we mentioned in the main paper,
can be formulated as a special case of the VIP, are well studied in the context of game theory (Rosen,
1965; Cai & Daskalakis, 2011; Yi & Pavel, 2017; Chen et al., 2023). With our work, by studying the
more general distributed VIPs, our proposed federated learning algorithms can also solve multi-player
games.

Finally, as we mentioned in the main paper, the algorithmic design of our methods is inspired by
the proposed algorithm, ProxSkip of Mishchenko et al. (2022), for solving composite minimization
problems. However, we should highlight that since Mishchenko et al. (2022) focuses on solving
optimization problems, the function suboptimality [f(xk)− f(x∗)] is available (a concept that cannot
be useful in the VIP setting. Thus, the difference in the analysis between the two papers begins at
a deeper conceptual level. In addition, our work provides a unified algorithm framework under a
general estimator setting (Assumption 2.2) in the VIP regime that captures variance-reduced GDA
and the convergence guarantees from Beznosikov et al. (2022b) as a special case. Compared to
existing works on federated minimax optimization (Beznosikov et al., 2020; Deng & Mahdavi, 2021),
our analysis provides improved communication complexities and avoids the restrictive (uniform)
bounded heterogeneity/variance assumptions (see discussion in Section 4).

17



Published as a conference paper at ICLR 2024

B NOTATIONS

Here we present a summary of the most important notational conventions used throughout the paper.

• FL: Federated Learning
• VIP: Variational Inequality Problem
• ℓ: Modulus of star-cocoercivity

• ℓ̂: Modulus of averaged star-cocoercivity
• L: Modulus of Lipschitz continuity
• Lg: Modulus of expected cocoercivity
• µ: Modulus of (quasi-)strong monotonicity
• A,B,C,D1, D2 ≥ 0, ρ ∈ (0, 1]: Parameters of Assumption 2.2 on the estimator g

• κ = L
µ : condition number

• [x]i:j : the i-th to j-th coordinates of vector x
• [n]: the set {1, 2, · · · , n}
• z ∈ Rd′

: the variable in VIP (1), F (z) = 1
n

∑n
i=1 fi(z), fi : Rd′ → Rd′

• x ∈ Rd: the variable in regularized VIP (2), d = nd′, F (x) ≜ 1
n

∑n
i=1 Fi(xi). x =

(x1, x2, · · · , xn) ∈ Rd, xi ∈ Rd′
.

• F : Rd → Rd, Fi : Rd′ → Rd and Fi(xi) = (0, · · · , fi(xi), · · · , 0) where
[F (x)](id′+1):(id′+d′) = fi(xi).

• σ2
∗ ≜ E

[
∥g(x∗)− F (x∗)∥2

]
< +∞

• ∆: (uniform) bounded variance of operator estimator
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C FURTHER PSEUDOCODES

Here we present the pseudocodes of the algorithms that due to space limitation did not fit into the
main paper.

We present the ProxSkip-L-SVRGDA method in Algorithm 3, which can be seen as a ProxSkip
generalization of the L-SVRGDA algorithm proposed in Beznosikov et al. (2022b). For more
details, please refer to Section 3.2. Note that the unbiased estimator in this method has the form:
gt = Fjt(xt)− Fjt(wt) + F (wt).

Algorithm 3 ProxSkip-L-SVRGDA

Input: Initial point x0, h0, parameters γ, probabilities p, q ∈ [0, 1], number of iterations T
1: Set w0 = x0, compute F (w0)
2: for all t = 0, 1, ..., T do
3: Construct gt = Fjt(xt)− Fjt(wt) + F (wt), jt ∈ [n]

4: Update wt+1 =

{
xt w.p. q
wt w.p. 1− q

5: x̂t+1 = xt − γ(gt − ht)
6: Flip a coin θt, θt = 1 w.p. p, otherwise 0
7: if θt = 1 then
8: xt+1 = prox γ

pR

(
x̂t+1 − γ

pht

)
9: else

10: xt+1 = x̂t+1

11: end if
12: ht+1 = ht +

p
γ (xt+1 − x̂t+1)

13: end for
Output: xT

Moreover, we present the ProxSkip-L-SVRGDA-FL algorithm below in Algorithm 4. Similar
to the relationship between ProxSkip-SGDA and ProxSkip-SGDA-FL, here this algorithm is the
implementation of the ProxSkip-L-SVRGDA method mentioned above in the FL regime. For more
details, please check Section 4 of the main paper.
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Algorithm 4 ProxSkip-L-SVRGDA-FL

Input: Initial points x1,0, · · · , xn,0 ∈ Rd′
, γ, p ∈ R, initial control variates h1,0, · · · , hn,0 = 0 ∈

Rd′
, iteration number T

1: Set wi,0 = xi,0 for every worker i ∈ [n]
2: for all t = 0, 1, ..., T do
3: Server: Flip two coins θt and ζt, where θt = 1 w.p. p and ζt = 1 w.p. q, otherwise 0. Send θt

and ζt to all workers
4: for each workers i ∈ [n] in parallel do
5: gi,t = Fi,jt(xi,t)− Fi,jt(wi,t) + Fi(wi,t), where jt ∼ Unif([mi])

6: Update wi,t+1 =

{
xi,t if ζt = 1

wi,t otherwise
7: x̂i,t+1 = xi,t − γ(gi,t − hi,t)
8: if θt = 1 then
9: Worker: x′

i,t+1 = x̂i,t+1 − γ
phi,t, sends x′

i,t+1 to the server
10: Server: computes xi,t+1 = 1

n

∑n
i=1 x

′
i,t+1, sends xi,t+1 to workers // Communication

11: else
12: xi,t+1 = x̂i,t+1 // Otherwise skip the communication step
13: end if
14: hi,t+1 = hi,t +

p
γ (xi,t+1 − x̂i,t+1)

15: end for
16: end for
Output: xT

D USEFUL LEMMAS
Lemma D.1 (Young’s Inequality).

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 (7)

Lemma D.2. For any optimal solution x∗ of (2) and any α > 0, we have

x∗ = proxαR(x
∗ − αF (x∗)). (8)

Lemma D.3 (Firm Nonexpansivity of the Proximal Operator (Beck, 2017)). Let f be a proper
closed and convex function, then for any x, y ∈ Rd we have〈

x− y,proxf (x)− proxf (y)
〉
≥
∥∥proxf (x)− proxf (y)

∥∥2, (9)

or equivalently,∥∥(x− proxf (x)
)
−
(
y − proxf (y)

)∥∥2 + ∥∥proxf (x)− proxf (y)
∥∥2 ≤ ∥x− y∥2. (10)
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E PROOFS OF LEMMAS 3.4 AND 3.8

As we mentioned in the main paper, the Lemmas 3.4 and 3.8 have been proved in Beznosikov et al.
(2022b). We include the proofs of these results using our notation for completeness.

Proof of Lemma 3.4. Note that

E ∥gt − F (x∗)∥2
(7)
≤ 2E ∥gt − g(x∗)∥2 + 2E ∥g(x∗)− F (x∗)∥2

≤ 2Lg⟨F (xt)− F (x∗), xt − x∗⟩+ 2σ2
∗,

where the second inequality uses Assumption 3.3. The statement of Lemma 3.4 is obtained by
comparing the above inequality with the expression of Assumption 2.2.

Proof of Lemma 3.8. For the property of gt, it is easy to find that the unbiasedness holds. Then note
that

E∥gt − F (x∗)∥2

= E∥Fjt(xt)− Fjt(wt) + F (wjt)− F (x∗)∥2

=
1

n

n∑
i=1

∥Fi(xt)− Fjt(wt) + F (wjt)− F (x∗)∥2

(7)
≤ 2

n

n∑
i=1

∥Fi(xt)− Fi(x
∗)∥2 + ∥Fi(x

∗)− Fi(wt)− (F (x∗)− F (wt))∥2

≤ 2

n

n∑
i=1

∥Fi(xt)− Fi(x
∗)∥2 + ∥Fi(x

∗)− Fi(wt)∥2

≤ 2ℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ 2

n

n∑
i=1

∥Fi(x
∗)− Fi(wt)∥2

= 2ℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ 2σ2
t ,

here the second inequality comes from the fact that Var(X) ≤ E(X2), and the third inequality comes
from Assumption 3.7. Then for the second term above, we have

E
[
σ2
t+1

]
=

1

n

n∑
i=1

∥Fi(wt+1)− Fi(x
∗)∥2

=
1

n

n∑
i=1

(
q∥Fi(xt)− Fi(x

∗)∥2 + (1− q)∥Fi(wt)− Fi(x
∗)∥2

)
≤ qℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ 1− q

n

n∑
i=1

∥Fi(wt)− Fi(x
∗)∥2

= qℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ (1− q)σ2
t ,

here the second equality applies the definition of wt+1, and the first inequality is implied by As-
sumption 3.3. The statement of Lemma 3.8 is obtained by comparing the above inequalities with the
expressions of Assumption 2.2.
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F PROOFS OF MAIN CONVERGENCE RESULTS

F.1 PROOF OF THEOREM 3.1

Here the proof originates from that of ProxSkip (Mishchenko et al., 2022), while we extend it to the
variational inequality setting, and combines it with the more general setting on the stochastic oracle.

Proof. Note that following Algorithm 1, we have with probability p:xt+1 = prox γ
pR

(
x̂t+1 − γ

pht

)
ht+1 = ht +

p
γ

(
prox γ

pR

(
x̂t+1 − γ

pht

)
− x̂t+1

)
and with probability 1− p: {

xt+1 = x̂t+1

ht+1 = ht,

and set

Vt ≜ ∥xt − x∗∥2 +
(
γ

p

)2

∥ht − F (x∗)∥2 +Mγ2σ2
t ,

For simplicity, we denote P (xt) ≜ prox γ
pR

(
x̂t+1 − γ

pht

)
, so we have

E[Vt+1] = p

(
∥P (xt)− x∗∥2 +

(
γ

p

)2∥∥∥∥ht +
p

γ
(P (xt)− x̂t+1)− F (x∗)

∥∥∥∥2
)

+(1− p)

(
∥x̂t+1 − x∗∥2 +

(
γ

p

)2

∥ht − F (x∗)∥2
)

+Mγ2σ2
t+1

= p

(
∥P (xt)− x∗∥2 +

∥∥∥∥P (xt)− (x̂t+1 −
γ

p
ht)−

γ

p
F (x∗)

∥∥∥∥2
)

+(1− p)

(
∥x̂t+1 − x∗∥2 +

(
γ

p

)2

∥ht − F (x∗)∥2
)

+Mγ2σ2
t+1

next note that x∗ = prox γ
pR

(
x∗ − γ

pF (x∗)
)

, we have∥∥∥∥P (xt)− (x̂t+1 −
γ

p
ht)−

γ

p
F (x∗)

∥∥∥∥2
=

∥∥∥∥P (xt)− (x̂t+1 −
γ

p
ht)−

[
prox γ

pR

(
x∗ − γ

p
F (x∗)

)
− (x∗ − γ

p
F (x∗))

]∥∥∥∥2
so by Lemma D.3, we have

E[Vt+1]
(10)
≤ p

∥∥∥∥x̂t+1 −
γ

p
ht − x∗ +

γ

p
F (x∗)

∥∥∥∥2 + (1− p)

(
∥x̂t+1 − x∗∥2 +

(
γ

p

)2

∥ht − F (x∗)∥2
)

+Mγ2σ2
t+1

= ∥x̂t+1 − x∗∥2 +
(
γ

p

)2

∥ht − F (x∗)∥2 − 2
γ

p
p⟨x̂t+1 − x∗, ht − F (x∗)⟩+Mγ2σ2

t+1,

let
wt ≜ xt − γg(xt), w∗ ≜ x∗ − γF (x∗),

so we have
∥x̂t+1 − x∗∥2 − 2

γ

p
p⟨x̂t+1 − x∗, ht − F (x∗)⟩

= ∥wt − w∗ + γ(ht − F (x∗))∥2 − 2γ⟨wt − w∗ + γ(ht − F (x∗)), ht − F (x∗)⟩
= ∥wt − w∗∥2 − γ2∥ht − F (x∗)∥2

= ∥wt − w∗∥2 − p2
(
γ

p

)2

∥ht − F (x∗)∥2,
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so we have

E[Vt+1] ≤ ∥wt − w∗∥2 +
(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2 +Mγ2σ2
t+1. (11)

Then by the standard analysis on GDA, we have

∥wt − w∗∥2 = ∥xt − x∗ − γ(g(xt)− F (x∗))∥2

= ∥xt − x∗∥2 − 2γ⟨g(xt)− F (x∗), xt − x∗⟩+ γ2∥g(xt)− F (x∗)∥2,

take the expectation, by Assumption 2.2, we have

E
[
∥wt − w∗∥2

]
= ∥xt − x∗∥2 − 2γ⟨F (xt)− F (x∗), xt − x∗⟩+ γ2E

[
∥g(xt)− F (x∗)∥2

]
≤ ∥xt − x∗∥2 − 2γ(1− γA)⟨F (x)− F (x∗), x− x∗⟩+ γ2

(
Bσ2

t +D1

)
,

substitute the above result into (11), we have

E[Vt+1]
(11)
≤ E

[
∥wt − w∗∥2 +

(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2 +Mγ2σ2
t+1

]
≤ E

[
∥xt − x∗∥2 − 2γ(1− γA)⟨F (x)− F (x∗), x− x∗⟩+ γ2

(
Bσ2

t +D1

)
+
(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2 +Mγ2σ2
t+1

]
≤ E

[
∥xt − x∗∥2 − 2γ(1− γ(A+MC))⟨F (x)− F (x∗), x− x∗⟩+Mγ2(1− ρ)σ2

t

+γ2
(
Bσ2

t +D1 +MD2

)
+
(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2
]

≤ E
[
(1− 2γµ(1− γ(A+MC)))∥xt − x∗∥2 +

(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2

+Mγ2

(
1− ρ+

B

M

)
σ2
t + γ2(D1 +MD2)

]
,

here the third inequality comes from Assumption 2.2 on σ2
t+1, and the fourth inequality comes from

quasi-strong monotonicity in Assumption 2.1. Recall that γ ≤ 1
2(A+MC) , we have

E[Vt+1]

≤ E

[
(1− γµ)∥xt − x∗∥2 +

(
1− p2

)(γ

p

)2

∥ht − F (x∗)∥2 +
(
1− ρ+

B

M

)
Mγ2σ2

t + γ2(D1 +MD2)

]

≤ E
[(

1−min

{
γµ, p2, ρ− B

M

})
Vt

]
+ γ2(D1 +MD2),

by taking the full expectation and telescoping, we have

E[VT ] ≤
(
1−min

{
γµ, p2, ρ− B

M

})
E[VT−1] + γ2(D1 +MD2)

=

(
1−min

{
γµ, p2, ρ− B

M

})T

V0 + γ2(D1 +MD2)

T−1∑
i=0

(
1−min

{
γµ, p2, ρ− B

M

})i

≤
(
1−min

{
γµ, p2, ρ− B

M

})T

V0 +
γ2(D1 +MD2)

min
{
γµ, p2, ρ− B

M

} ,
the last inequality comes from the computation of a geometric series. which concludes the proof.
Note that here we implicitly require that γ ≤ 1

µ and M > B
ρ .
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F.2 PROOF OF COROLLARY 3.2

Proof. With the above setting, we know that

min

{
γµ, p2, ρ− B

M

}
= γµ,

and

E[VT ] ≤ (1− γµ)
T
V0 +

γ
(
D1 +

2B
ρ D2

)
µ

,

so it is easy to see that by setting

T ≥ 1

γµ
ln

(
2V0

ϵ

)
, γ ≤ µϵ

2
(
D1 +

2B
ρ D2

) ,
we have

E[VT ] ≤ ϵ,

which induces the iteration complexity to be

T ≥ max

1,
2(A+ 2BC/ρ)

µ
,
2

ρ
,
2
(
D1 +

2B
ρ D2

)
µ2ϵ

 ln

(
2V0

ϵ

)
,

and the corresponding number of calls to the proximal oracle is

pT ≥

√√√√√max

1,
2(A+ 2BC/ρ)

µ
,
2

ρ
,
2
(
D1 +

2B
ρ D2

)
µ2ϵ

 ln

(
2V0

ϵ

)
,

which concludes the proof.

F.3 PROPERTIES OF OPERATORS IN VIPS

To make sure that the consensus form Problem (2) fits with Assumption 2.1, and the corresponding
operator estimators satisfies Assumption 2.2, we provide the following results.

Proposition F.1. If Problem (1) attains an unique solution z∗ ∈ Rd′
, then Problem (2) attains an

unique solution x∗ ≜ (z∗, z∗, · · · , z∗) ∈ Rd, and vice versa.

Proof. Note that each fi is µ-quasi-strongly monotone and z∗ is the unique solution to Problem (1).
So for the operator F in the reformulation (2), first we check the point x∗ = (z∗, z∗, · · · , z∗), note
that for any x = (x1, x2, · · · , xn) ∈ Rd, we have

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) =

〈
n∑

i=1

Fi(x
∗), x− x∗

〉
+R(x)

=

n∑
i=1

⟨Fi(x
∗), x− x∗⟩+R(x)

=

n∑
i=1

⟨fi(z∗), xi − z∗⟩+R(x),

here the first equation incurs the definition of R, the third equation is due to the definition that Fi.
Then for any x ∈ Rd, if ∃ xi ̸= xj for some i, j ∈ [n], we have R(x) = +∞, so the RHS above is
always positive. Then if x1 = x2 = · · · = xn = x′ ∈ Rd′

, we have
n∑

i=1

⟨fi(z∗), xi − z∗⟩+R(x) =

n∑
i=1

⟨fi(z∗), x′ − z∗⟩ =

〈
n∑

i=1

fi(z
∗), x′ − z∗

〉
≥ 0,
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where the last inequality comes from the fact that z∗ is the solution to Problem (1). So x∗ is the
solution to Problem (2). It is easy to show its uniqueness by contradiction and the uniqueness of z∗,
which we do not detail here.

On the opposite side, first it is easy to see that the solution to (2) must come with the form x∗ =
(z∗, z∗, · · · , z∗), then we have for any x = (x1, x2, · · · , xn) ∈ Rd

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) =

n∑
i=1

⟨fi(z∗), xi − z∗⟩+R(x),

then we select x = (x′, x′, · · · , x′) for any x′ ∈ Rd′
, so we have

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) =

n∑
i=1

⟨fi(z∗), x′ − z∗⟩ = ⟨F (z∗), x′ − z∗⟩ ≥ 0,

which corresponds to the solution of (1), and concludes the proof.

Proposition F.2. With Assumption 4.1, the Problem (2) attains an unique solution x∗ ≜
(z∗, z∗, · · · , z∗) ∈ Rd, the operator F is µ-quasi-strongly monotone, and the operator g(x) ≜
(g1(x1), g2(x2), · · · , gn(xn)) is an unbiased estimator of F , and it satisfies Lg-expected cocoer-
civity defined in Assumption 2.2.

Proof. The uniqueness result comes from the above proposition. Then note that

⟨F (x)− F (x∗), x− x∗⟩ =

〈
n∑

i=1

(Fi(x)− Fi(x
∗)), x− x∗

〉

=

n∑
i=1

⟨Fi(x)− Fi(x
∗), x− x∗⟩

=

n∑
i=1

⟨fi(xi)− fi(z
∗), xi − z∗⟩

≥
n∑

i=1

µ∥xi − z∗∥2

= µ∥x− x∗∥2,
which verifies the second statement. For the last statement, following the definition of the estimator g,

Eg(x∗) = E


g1(z

∗)
g2(z

∗)
...

gn(z
∗)

 =


f1(z

∗)
f2(z

∗)
...

fn(z
∗)

 =

n∑
i=1

Fi(x
∗) = F (x∗),

which implies that it is an unbiased estimator of F . Then note that for any x ∈ Rd,

E∥g(x)− g(x∗)∥2 = E
n∑

i=1

∥(gi(xi)− gi(z
∗))∥2

=

n∑
i=1

E∥gi(xi)− gi(z
∗)∥2

≤
n∑

i=1

Lg⟨fi(xi)− fi(z
∗), xi − z∗⟩

= Lg

n∑
i=1

⟨Fi(x)− Fi(x
∗), x− x∗⟩

= Lg⟨F (x)− F (x∗), x− x∗⟩,
here the inequality comes from the expected cocoercivity of each gi in Assumption 4.1, which
concludes the proof.

25



Published as a conference paper at ICLR 2024

F.4 PROPERTIES OF OPERATORS IN FINITE-SUM VIPS
Proposition F.3. With Assumption 4.3, the problem defined above attains an unique solution
x∗ ≜ (z∗, z∗, · · · , z∗) ∈ Rd, the operator F is µ

n -quasi-strongly monotone, and the operator
gt ≜ (g1,t, g2,t, · · · , gn,t) satisfies Assumption 2.2 with

A = ℓ̂, B = 2, C =
qℓ̂

2
, ρ = q, D1 = D2 = 0, σ2

t =

n∑
i=1

1

mi

mi∑
j=1

∥Fi,j(z
∗)− Fi,j(wi,t)∥2.

Proof. Here the proof is similar to that of Lemma 3.8. The conclusions on the solution x∗ and the
quasi-strong monotonicity follow the same argument in the proof of Proposition F.2. For the property
of gt, it is easy to find that the unbiasedness holds. Then note that

E∥gt − F (x∗)∥2

=

n∑
i=1

E∥gi,t − Fi(x
∗)∥2

=
n∑

i=1

E∥Fi,jt(xi,t)− Fi,jt(wi,t) + Fi(wi,jt)− Fi(z
∗)∥2

=

n∑
i=1

 1

mi

mi∑
j=1

∥Fi,j(xi,t)− Fi,j(wi,t) + Fi(wi,t)− Fi(z
∗)∥2


(7)
≤

n∑
i=1

 2

mi

mi∑
j=1

∥Fi,j(xi,t)− Fi,j(z
∗)∥2 + ∥Fi,j(z

∗)− Fi,j(wi,t)− (Fi(z
∗)− Fi(wi,t))∥2


≤ 2

n∑
i=1

 1

mi

mi∑
j=1

∥Fi,j(xi,t)− Fi,j(z
∗)∥2 + ∥Fi,j(z

∗)− Fi,j(wi,t)∥2


≤ 2ℓ̂

n∑
i=1

⟨fi(xi,t)− fi(z
∗), xi,t − z∗⟩+ 2

n∑
i=1

1

mi

mi∑
j=1

∥Fi,j(z
∗)− Fi,j(wi,t)∥2

= 2ℓ̂

n∑
i=1

⟨Fi(xi,t)− Fi(z
∗), xt − x∗⟩+ 2

n∑
i=1

1

mi

mi∑
j=1

∥Fi,j(z
∗)− Fi,j(wi,t)∥2

= 2ℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ 2σ2
t ,

the second inequality comes from the fact that Var(X) ≤ E(X2), and the third inequality is implied
by Assumption 4.3. Then for the second term above, we have

E
[
σ2
t+1

]
=

n∑
i=1

1

mi

mi∑
j=1

E∥Fi,j(wi,t+1)− Fi,j(z
∗)∥2

=

n∑
i=1

1

mi

mi∑
j=1

(
q∥Fi,j(xi,t)− Fi,j(z

∗)∥2 + (1− q)∥Fi,j(wi,t)− Fi,j(z
∗)∥2

)
≤

n∑
i=1

qℓ̂⟨fi(xi,t)− fi(z
∗), xi,t − z∗⟩+ (1− q)

n∑
i=1

1

mi

mi∑
j=1

∥Fi,j(wi,t)− Fi,j(z
∗)∥2

= qℓ̂⟨F (xt)− F (x∗), xt − x∗⟩+ (1− q)σ2
t ,

here the second equality comes from the definition of wi,t+1, and the inequality comes from Assump-
tion 4.3. So we conclude the proof.

F.5 FURTHER COMPARISON OF COMMUNICATION COMPLEXITIES

In Table 2, following the discussion (“Comparison with Literature”) in Section 4, we compare our
convergence results to closely related works on stochastic local training methods. The Table shows the
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improvement in terms of communication and iteration complexities of our proposed ProxSkip-VIP-FL
algorithms over methods like Local SGDA (Deng & Mahdavi, 2021), Local SEG (Beznosikov et al.,
2020) and FedAvg-S (Hou et al., 2021).

Table 2: Comparison of federated learning algorithms for solving VIPs with strongly monotone and
Lipschitz operator. Comparison is in terms of both iteration and communication complexities.

Algorithm Setting1 # Communication2 # Iteration

Local SGDA
(Deng & Mahdavi, 2021) SM, LS O

(√
κ2σ2

∗
µϵ

)
O
(

κ2σ2
∗

µnϵ

)
Local SEG

(Beznosikov et al., 2020)
SM, LS O

(
max

(
κ ln 1

ϵ
, p∆2

µ2nϵ
, κξ
µ
√
ϵ
,
√
pκ∆

µ
√
ϵ

))
O
(
max

(
κ
p
ln 1

ϵ
, ∆2

µ2nϵ
, κξ
pµ

√
ϵ
, κ∆
µ
√

pϵ

))
FedAvg-S

(Hou et al., 2021)
SM, LS Õ

(
p∆2

nµ2ϵ
+

√
pκ∆

µ
√
ϵ

+ κξ
µ
√
ϵ

)
Õ
(

∆2

nµ2ϵ
+ κ∆

µ
√
pϵ

+ κξ
pµ

√
ϵ

)
ProxSkip-VIP-FL

(This work)
SM, LS3 O

(√
max

{
κ2,

σ2
∗

µ2ϵ

}
ln 1

ϵ

)
O
(
max

{
κ2,

σ2
∗

µ2ϵ

}
ln 1

ϵ

)
ProxSkip-L-SVRGDA-FL

(This work)4 SM, LS O
(
κ ln 1

ϵ

)
O
(
κ2 ln 1

ϵ

)
1 SM: strongly monotone, LS: (Lipschitz) smooth. κ ≜ L/µ, L and µ are the modulus of SM and LS. σ2

∗ < +∞ is
an upper bound of the variance of the stochastic operator at x∗. ∆ is an (uniform) upper bound of the variance of the
stochastic operator. ξ2 represents the bounded heterogeneity, i.e., gi(x; ξi) is an unbiased estimator of fi(x) for any
i ∈ {1, . . . , n}, and ξ2i (x) ≜ supx∈Rd ∥fi(x)− F (x)∥2 ≤ ξ2 ≤ +∞.
2 p is the probability of synchronization, we can take p = O(

√
ϵ), which recovers O(1/

√
ϵ) communication complexity

dependence on ϵ in our result. Õ(·) hides the logarithmic terms.
3 Our algorithm works for quasi-strongly monotone and star-cocoercive operators, which is more general than the SM and
LS setting, note that an L-LS and µ-SM operator can be shown to be (κL)-star-cocoercive (Loizou et al., 2021).
4 When we further consider the finite-sum form problems, we can turn to this algorithm.
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G DETAILS ON NUMERICAL EXPERIMENTS

In experiments, we examine the performance of ProxSkip-VIP-FL and ProxSkip-L-SVRGDA-FL.
We compare ProxSkip-VIP-FL and ProxSkip-L-SVRGDA-FL algorithm with Local SGDA (Deng &
Mahdavi, 2021) and Local SEG (Beznosikov et al., 2020), and the parameters are chosen according to
corresponding theoretical convergence guarantees. Given any function f(x1, x2), the ℓ co-coercivity
parameter of the operator (

∇x1
f(x1, x2)

−∇x2
f(x1, x2)

)
is given by 1

ℓ = minλ∈Sp(J) R
(
1
λ

)
(Loizou et al., 2021). Here, Sp denotes spectrum of the Jacobian

matrix

J =

(
∇2

x1,x1
f ∇2

x1,x2
f

−∇2
x1,x2

f −∇2
x2,x2

f

)
.

In our experiment, for the min-max problem of the form

min
x1

max
x2

1

n

n∑
i=1

1

mi

mi∑
j=1

fij(x1, x2), (12)

we use stepsizes according to the following Table.

Algorithm Stepsize γ Value of p

ProxSkip-VIP-FL
(deterministic) γ = 1

2maxi∈[n] ℓi
p =

√
γµ

ProxSkip-VIP-FL
(stochastic) γ = 1

2maxi,j ℓij
p =

√
γµ

ProxSkip-L-SVRGDA-FL
(finite-sum) γ = 1

6maxi,j ℓij
p =

√
γµ

Table 3: Parameter settings for each algorithm. Here ℓi is the co-coercivity parameter corre-
sponding to 1

mi

∑mi

j=1 fij(x1, x2) and ℓij is the co-coercivity parameter corresponding to fij .

The parameters in Table 3 are selected based on our theoretical convergence guarantees, presented
in the main paper. In particular, for ProxSkip-VIP-FL, we use the stepsizes suggested in Theorem
4.2, which follows the setting of Corollary 3.5. Note that the full-batch estimator (deterministic
setting) of (12) satisfies Assumption 4.1 when Lg = maxi∈[n] ℓi. Similarly, the stochastic estimators
of (12) satisfies Assumption 4.1 with Lg = maxi,j ℓij . For the variance reduced method, ProxSkip-
L-SVRGDA-FL, we use the stepsizes as suggested in Theorem 4.4 (which follows the setting in
Corollary 3.9) with ℓ̂ = maxi,j ℓij for (12). For all methods, the probability of making the proximal
update (communication in the FL regime) equals p =

√
γµ. For the ProxSkip-L-SVRGDA-FL,

following Corollary 3.9 we set q = 2γµ.

G.1 DETAILS ON ROBUST LEAST SQUARES

The objective function of Robust Least Square is given by

G(β, y) = ∥Aβ − y∥2 − λ∥y − y0∥2,
for λ > 0. Note that

∇2
βG(β, y) = 2A⊤A, ∇2

yG(β, y) = 2(λ− 1)I.
Therefore, for λ > 1, the objective function G is strongly monotone with parameter
min{2λmin(A⊤A), 2(λ − 1)}. Moreover, G can be written as a finite sum problem, similar to
(5), by decomposing the rows of matrix A i.e.

G(β, y) =

r∑
i=1

(A⊤
i β − yi)

2 − λ(yi − y0i)
2.
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Here A⊤
i denotes the ith row of the matrix A. Now we divide the r rows among n nodes where each

node will have m = r/n rows. Then we use the canonical basis vectors ei (vector with i-th entry 1
and 0 for other coordinates) to rewrite the above problem as follow

G(β, y) =

n∑
i=1

m∑
j=1

(
A⊤

(i−1)m+jβ − y(i−1)m+j

)2
− λ

(
y(i−1)m+j − y0((i−1)m+j)

)2
=

n∑
i=1

m∑
j=1

β⊤A(i−1)m+jA
⊤
(i−1)m+jβ − 2y(i−1)m+jA

⊤
(i−1)m+jβ + y2(i−1)m+j

−λy2(i−1)m+j − λy20((i−1)m+j) + 2λy0((i−1)m+j)y((i−1)m+j)

=

n∑
i=1

m∑
j=1

β⊤
(
A(i−1)m+jA

⊤
(i−1)m+j

)
β − y⊤

(
2e(i−1)m+jA

⊤
(i−1)m+j

)
β

−y⊤
(
(λ− 1)e(i−1)m+je

⊤
(i−1)m+j

)
y +

(
2λy0((i−1)m+j)e

⊤
((i−1)m+j)

)
y

−λy20((i−1)m+j)

=
nm

n

n∑
i=1

1

m

m∑
j=1

β⊤
(
A(i−1)m+jA

⊤
(i−1)m+j

)
β − y⊤

(
2e(i−1)m+jA

⊤
(i−1)m+j

)
β

−y⊤
(
(λ− 1)e(i−1)m+je

⊤
(i−1)m+j

)
y +

(
2λy0((i−1)m+j)e

⊤
((i−1)m+j)

)
y

−λy20((i−1)m+j).

Therefore G is equivalent to (5) with n nodes, mi = m = r/n, x1 = β, x2 = y and

fij(x1, x2) = x⊤
1

(
A(i−1)m+jA

⊤
(i−1)m+j

)
x1 − x⊤

2

(
2e(i−1)m+jA

⊤
(i−1)m+j

)
x1

−x⊤
2

(
(λ− 1)e(i−1)m+je

⊤
(i−1)m+j

)
x2 +

(
2λy0((i−1)m+j)e

⊤
((i−1)m+j)

)
x2

−λy20((i−1)m+j).

In Figure 2, we run our experiment on the ”California Housing” dataset from scikit-learn package
(Pedregosa et al., 2011). This data consists of 8 attributes of 200 houses in the California region
where the target variable y0 is the price of the house. To implement the algorithms, we divide the
data matrix A among 20 nodes, each node having an equal number of rows of A. Similar to the last
example, here we also choose our ProxSkip-VIP-FL algorithm, Local SGDA, and Local SEG for
comparison in the experiment, also we use λ = 50, and the theoretical stepsize choice is similar to
the previous experiment.

In Figure 3, we reevaluate the performance of ProxSkip on the Robust Least Square problem with
synthetic data. For generating the synthetic dataset, we set r = 200 and s = 20. Then we sample
A ∼ N (0, 1), β0 ∼ N (0, 0.1), ϵ ∼ N (0, 0.01) and set y0 = Aβ0 + ϵ. In both deterministic
(Figure 3a) and stochastic (Figure 3b) setting, ProxSkip outperforms Local GDA and Local EG.

0 50 100 150 200 250 300 350 400
Number of Communication Rounds

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

ProxSkip vs Local GDA vs Local EG

Local EG
Local GDA
ProxSkip

(a) Deterministic Algorithms
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Figure 3: Comparison of algorithms on the Robust Least Square (6) using synthetic dataset.
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H ADDITIONAL EXPERIMENTS

Following the experiments presented in the main paper, we further evaluate the performance of the
proposed methods in different settings (problems and stepsize selections).

H.1 FINE-TUNED STEPSIZE

In Figure 4, we compare the performance of ProxSkip against that of Local GDA and Lo-
cal EG on the strongly monotone quadratic game (5) with heterogeneous data using tuned
stepsizes. For tuning the stepsizes, we did a grid search on the set of 1

rL where r ∈
{1, 2, 4, 8, 16, 64, 128, 256, 512, 1024, 2048} and L is the Lipschitz constant of F . ProxSkip outper-
forms the other two methods in the deterministic setting while it has a comparable performance in
the stochastic setting.
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(a) Deterministic Setting.
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(b) Stochastic Setting.

Figure 4: Comparison of ProxSkip-VIP-FL vs Local SGDA vs Local SEG on Heterogeneous Data with tuned
stepsizes.

H.2 PROXSKIP-VIP-FL VS. PROXSKIP-L-SVRGDA-FL

In Figure 5, we compare the stochastic version of ProxSkip-VIP-FL with ProxSkip-L-SVRGDA-
FL. In Figure 5a, we implement the methods with tuned stepsizes while in Figure 5b we use the
theoretical stepsizes. For the theoretical stepsizes of ProxSkip-L-SVRGDA-FL, we use the stepsizes
from Corollary 3.9. We observe that ProxSkip-L-SVRGDA-FL performs better than ProxSkip-VIP-
FL with both tuned and theoretical stepsizes.
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Figure 5: Comparison of ProxSkip-VIP-FL and ProxSkip-L-SVRGDA-FL using the tuned and theoretical
stepsizes.
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H.3 LOW VS HIGH HETEROGENEITY

We conduct a numerical experiment on a toy example to verify the efficiency of our proposed
algorithm. Following the setting in (Tarzanagh et al., 2022), we consider the minimax objective
function

min
x1∈Rd

max
x2∈Rd

1

n

n∑
i=1

fi(x1, x2)

where fi are given by

fi(x1, x2) = −
[
1

2
∥x2∥2 − b⊤i x2 + x⊤

2 Aix1

]
+

λ

2
∥x1∥2

Here we set the number of clients n = 100, d1 = d2 = 20 and λ = 0.1. We generate bi ∼
N (0, s2i Id2) and Ai = tiId1×d2 . For Figure 6a, we set si = 10 and ti = 1 for all i while in Figure
6b, we generate si ∼ Unif(0, 20) and ti ∼ Unif(0, 1).

We implement Local GDA, Local EG, and ProxSkip-VIP-FL with tuned stepsizes (we use grid
search to tune stepsizes Appendix G). In Figure 6c, we observe that Local EG performs better than
ProxSkip-VIP-FL in homogeneous data. However, in Figure 6d, the performance of Local GDA
(Deng & Mahdavi, 2021) and Local EG deteriorates for heterogeneous data, and ProxSkip-VIP-FL
outperforms both of them in this case. To get stochastic estimates, we add Gaussian noise (Beznosikov
et al., 2022a) (details in Appendix G). We repeat this experiment in the stochastic settings in Figure
6c and 6d. We observe that ProxSkip-VIP-FL has a comparable performance with Local SGDA
(Deng & Mahdavi, 2021) and Local SEG in homogeneous data. However, ProxSkip-VIP-FL is faster
on heterogeneous data.
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(b) uniformly generated si, ti
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(c) constant si, ti
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(d) uniformly generated si, ti

Figure 6: Comparison of ProxSkip-VIP-FL vs Local GDA vs Local EG on Homogeneous vs Heterogeneous
Data. In (a) and (b), we run the deterministic algorithms, while in (c) and (d), we run the stochastic versions.
For (a) and (c), we set si = 10, ti = 1 for all i ∈ [n] and for (b) and (d), we generate si, ti uniformly from
si ∼ Unif(0, 20), ti ∼ Unif(0, 1).
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H.4 PERFORMANCE ON DATA WITH VARYING HETEROGENEITY

In this experiment, we consider the operator F given by

F (x) :=
1

2
F1(x) +

1

2
F2(x)

where

F1(x) := M(x− x∗
1), F2(x) := M(x− x∗

2)

with M ∈ R2×2 and x∗
1, x

∗
2 ∈ R2. For this experiment we choose

M := I2, x∗
1 = (δ, 0), x∗

2 = (0, δ).

Note that, in this case, x∗ = 1
2 (x

∗
1 + x∗

2). Then the quantity maxi∈[2] ∥Fi(x
∗) − F (x∗)∥2, which

quantifies the amount of heterogeneity in the model, is equal to δ2

2 . Therefore, increasing the value of
δ increases the amount of heterogeneity in the data across the clients.

We compare the performances of ProxSkip-VIP-FL, Local GDA, and Local EG when δ = 0 and
δ = 106 in Figure 7. In either case, ProxSkip-VIP-FL outperforms the other two methods with the
theoretical stepsizes.
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Figure 7: Comparison of ProxSkip-VIP-FL, Local GDA and Local EG with theoretical stepsizes for δ = 0 (left)
and δ = 106 (right).

H.5 EXTRA EXPERIMENT: POLICEMEN BURGLAR PROBLEM

In this experiment, we compare the perforamnce of ProxSkip-GDA-FL, Local GDA and Local EG on
a Policemen Burglar Problem (Nemirovski, 2013) (a particular example of matrix game) of the form:

min
x1∈∆

max
x2∈∆

f(x1, x2) =
1

n

n∑
i=1

x⊤
1 Aix2

where ∆ =
{
x ∈ Rd | 1⊤x = 1, x ≥ 0

}
is a (d− 1) dimensional standard simplex. We generate the

(r, s)-th element of the matrix Ai as follow

Ai(r, s) = wr (1− exp {−0.8|r − s|}) ∀i ∈ [n]

where wr = |w′
r| with w′

r ∼ N (0, 1). This matrix game is a constrained monotone problem and
we use duality gap to measure the performance of the algorithms. Note that the duality gap for the
problem minx∈∆ maxy∈∆ f(x, y) at (x̂, ŷ) is defined as maxy∈∆ f(x̂, y)−minx∈∆ f(x, ŷ).
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Figure 8: Comparison of ProxSkip-GDA-FL, Local EG and Local GDA on Policemen Burglar Problem after
5000 communication rounds.

In Figure 8, we plot the duality gap (on the y-axis) with respect to the moving average of the iterates,
i.e. 1

K+1

∑K
k=0 xk (here xk is the output after k many communication rounds). As we can observe in

Figure 8, our proposed algorithm ProxSkip-GDA-FL clearly outperforms Local EG and Local GDA
in this experiment.
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