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This appendix provides additional details for the ICLR 2026, titled “One Patch, One Text: Sparse
Alignment for Closing CLIP’s Modality Gap for Compositional Zero-Shot Learning”. It is orgnized
as follows:

* §A|Detailed Experiment Settings.

* §B|More Ablation Experiments.

* §C|More Qualitative Experiments.

* §D|Pseudo-code.

+ §E] Statement for Using Large Language Models.

A DETAILED EXPERIMENT SETTINGS

Detailed Dataset Split Statistics. We conduct experiments on three widely-used datasets: UT-
Zappos, MIT-States, and C-GQA. UT-Zappos is a fine-grained dataset composed of 50,025 shoes
images with 16 attributes (e.g., Cotton, Nylon), 12 objects (e.g., Shoes.Heels, Boots.Ankle) and
116 compositions. MIT-States contains 53,753 natural images with 115 attributes (e.g., Ancient,
Broken), 245 objects (e.g., Computer, Tree) and 1962 compositions. C-GQA is the most extensive
dataset containing 39,298 images with 453 attributes, 870 objects and more than 9,500 compositions.
Following the standard split, we divide the compositions into train / validation / test splits. The
detailed splits are shown in Tab. |Cs| indicates the number of seen compositions, |C,| is the
number of unseen compositions, X’ represents the number of samples in the corresponding splits.

Table 7: Detail of data split statistics.

Dataset ‘ Compositions Train ‘ Val Test
Al O] JA[x|O] | Ics|  |X] |Cs1/1Cu] X1 |G |/1Cul X
UT-Zappos 16 12 192 83 22998 15715 3214 18/18 2914
MIT-States | 115 245 28175 1262 30338 300 /300 10420 | 400/400 12995
C-GQA 413 674 278362 5592 26920 | 1252/1040 7280 | 888/923 5098

Detailed Evaluation Metrics. Following the generalized CZSL evaluation protocol (Naeem et al.,
2021;|Liu et al.}|[2023)), our method is evaluated on both seen and unseen compositions. We report the
four widely used metrics for a comprehensive evaluation. Seen Accuracy (S) and Unseen Accuracy
(U) are computed to evaluate the best classification performance on seen and unseen compositions.
Using Seen Accuracy as x-axis and Unseen Accuracy as y-axis, we calibrate a bias scalar (Naecem
et al.l2021)) on Unseen Accuracy and obtain a seen-unseen accuracy curve. Then, we compute and
report the Area Under the Curve (AUC). Meanwhile, we compute the best Harmonic Mean (HM)
between Seen Accuracy and Unseen Accuracy at a specific bias scalar.

More Implementation Details. For network initialization, we load the weights of CLIP (Rad-
ford et al., [2021)) and tune the image encoder with LoRA (Zanella & Ben Ayed, 2024). The
Sparse Alignment suppresses semantically irrelevant regions to achieve information balance in
image-text pairs. The overall pipeline of Sparse Alignment 1is illustrated in Fig. The
Visual Adaptive condensation module is implemented with K blocks composed of multi-head at-
tention and feed-forward network. The number of blocks K is set to 3, 3 and 1 for UT-Zappos,
MIT-States and C-GQA, respectively. The Dynamically Updated Memory Bank does not introduce
additional parameters, as the retrieval and prediction processes are calculated on the condensed
visual representations without transformation. The coefficient « for distillation loss in Eq. [§] is
set to 0.5, 0.9 and 0.5 for three datasets. The coefficient 5 in Eq. is set to 0.3, 0.7 and
0.7. The coefficient v in Eq. is set to 0.5, 0.4 and 0.1. For the number of stored samples
in Dynamically Updated Memory Bank is set to 16, 24 and 16. We train our model for 15, 10
and 15 epochs with Adam Optimizer (Kingma & Bal 2014). The learning rates are initialized at
2e —4, 5e — b5 and 5e — 4, where the learning rate is scheduled by the StepLR (PyTorch,|2025)). Dur-
ing training, we set batch size to 64, 64 and 16 for three datasets. All the experiments are conducted
on a single NVIDIA RTX 3090 GPU. More ablation experiments on hyper-parameters is presented
in Sec.
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Figure 7: Pipeline of sparse alignment.

B MORE ABLATION EXPERIMENTS

More Comparison with SOTA Methods. Due to space limitations, we report here a more compre-
hensive comparison of experiments, in which we additionally include more impressive CLIP-based
methods.

Table 8: The experimental results on closed-world settings.

Method | UT-Zappos MIT-States C-GQA

S U HMAUC| S U HM AUC| S U HM AUC
CLIPjicvi2iy (Radford et al., |2021) |[15.8 49.1 15.6 5.0 |30.2 46.0 26.1 11.0| 7.5 250 8.6 14
CoOpjijcvi2o) (Zhou et al.|2022) 52.1 49.3 34.6 18.8 [34.4 47.6 29.8 13.5|20.5 26.8 17.1 4.4
PCVL Aiv201 (Xu et al.}[2022) 64.4 64.0 46.1 32.2 |48.5 47.2 353 183 | - - - -
HPL,;car23 (Wang et al.,[2023a) 63.0 68.8 48.2 35.0|47.5 50.6 37.3 20.2 |30.8 28.4 224 7.2
CSPicir23) (Nayak et al.}[2023) 64.2 66.2 46.6 33.0 |46.6 49.9 36.3 19.4 |28.8 26.8 20.6 6.2
DFSP cvpr 23 (Lu et al.[|2023) 66.7 71.7 47.2 36.0 |46.9 52.0 37.3 20.6 |38.2 32.0 27.1 10.5
PLIDgccvo41 (Bao et al.L|2023) 67.3 68.8 52.4 38.7|49.7 52.4 39.0 22.1 |38.8 33.0 279 11.0
CDS/cvrr24) (L1 et al.;[2024) 63.9 74.8 52.7 39.5(50.3 52.9 39.2 22.4 |38.3 34.2 28.1 11.1
Troikajcver4) (Huang et al.| [2024) |66.8 73.8 54.6 41.7 |49.0 53.0 39.3 22.1 |41.0 35.7 294 12.4
CAILA wacv 24 (Zheng et al.[[2024)|67.8 74.0 57.0 44.1 |51.0 53.9 39.9 23.4|43.9 38.5 32.7 14.8
RAPR | aaa124) (Jing et al.| [2024) 69.4 72.8 56.5 44.5(50.0 53.3 39.2 22.5 |45.6 36.0 32.0 144
LogiCzsljcvpros) (Wu et al,[2025) |69.6 74.9 57.8 45.8 |50.8 53.9 40.5 23.4 |44.4 394 33.3 153
ClusProjicrs) (Qu et al.|[2025) 70.7 76.0 58.5 46.6 |52.1 54.0 40.7 23.8 |44.3 37.8 32.8 14.9
SAC ‘73.3 76.8 62.0 50.0 ‘53.2 53.0 40.8 24.0 ‘45.8 39.5 34.8 16.2

More Ablation Study on Hyper-Parameteres. We further study the impact of hyper-parameters
on performance, including weight coefficient « in distillation loss Eq. [7} weight coefficient 3, -y in
inference Eq.[I2]and number of blocks K in VAC.

Influence of Loss Coefficient Weight «. First, we conduct experiments on « to investigate the
impact of the distillation loss in Eq.[8]on the Visual Adaptive Condensation module and the results
are reported in Fig.[8] According to the analysis, we set the cvas 0.5, 0.9 and 0.5 for UT-Zappos, MIT-
States and C-GQA, respectively. As we can see, the distillation loss provides a clear performance
gain for the VAC module. Ablating this loss (e.g., setting the weight to 0) reduces the VAC objective
to a standard classification loss, resulting in notably poorer performance.

Influence of Inference Weight of 3 and ~. Then, we conduct experiments on inference weight 3
and ~y in Eq. [T2]and the results are reported in Fig.[9]and Fig. [T0] respectively. We observe that the
optimal parameter settings differ across benchmarks. We hypothesize that this arises from varying
dataset characteristics, including differences in object or attribute contamination from surrounding
regions. Consequently, adjusting the contribution of our modules yields different levels of perfor-
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Table 9: The experimental results on open-world settings.

Method | UT-Zappos MIT-States C-GOA
S U HMAUC| S U HMAUC| S U HM AUC

CLIPjicvr 21y (Radford et al., [2021) (157 20.6 11.2 2.2 |30.1 143 128 3.0 | 7.5 46 4.0 03
CoOpjicviao) (Zhou et al | [2022) 52.1 31.5 289 132346 93 123 2.8 |21.0 46 55 0.7
PCVL Awxiv22) (Xu et al.}2022) 64.6 44.0 37.1 21.6 |48.5 16.0 17.7 6.1

HPLjjcar03 (Wang et al[[2023a)  |63.4 48.1 40.2 24.6 |46.4 189 19.8 69 |30.1 58 75 14
CSPjicLr23) (Nayak et al.l[2023) 64.1 44.1 389 22.7 |46.3 157 17.4 5.7 |287 52 69 1.2

DFSP cvpr3) (Lu et al., [2023) 66.8 60.0 44.0 30.3 |47.5 185 193 6.8 |383 7.2 104 24
PLIDtccvo4; (Bao et al.l[2023) 67.6 55.5 46.6 30.8 |49.1 18.7 20.0 7.3 |39.1 7.5 10.6 2.5
CDS|cvpr24) (L1 et al.l[2024) 64.7 61.3 48.2 323|494 21.8 22.1 85 |37.6 82 11.6 2.7

Troikajcvpr4) (Huang et all 2024) 166.4 61.2 47.8 33.0 |48.8 18.7 20.1 7.2 |40.8 7.9 109 2.7
CAILA wacv~4) (Zheng et al.[[2024) |67.8 59.7 49.4 32.8 |51.0 20.2 21.6 8.2 |43.9 8.0 11.5 3.1
RAPR aaa124) (Jing et al [2024) 69.4 59.4 479 333|499 20.1 21.8 82 |455 11.2 146 4.4
LogiCzsljcyvpros) (Wu et al.,[2025) [69.6 63.7 50.8 36.2 |50.7 21.4 22.4 8.7 |43.7 93 12.6 3.4
ClusProjicrr 251 (Qu et al., [2025) 71.0 66.2 54.1 39.5|51.2 22.1 23.0 9.3 |41.6 83 11.6 3.0

SAC |72.9 66.7 54.8 42.3 [52.9 21.2 23.1 9.4 [45.5 11.5 15.3 4.6

mance gain. Therefore, based on our experimental results, we set /3 as 0.3, 0.7 and 0.7, and set -y as
0.5, 0.4 and 0.1 for UT-Zappos, MIT-States and C-GQA, respectively.

Influence of Number of Blocks in VAC. In addition, we report the ablation study for K, number of
blocks in Visual Adaptive Condensation module. After a comprehensive evaluation, we ultimately
set K as 3, 3 and 1 for UT-zappos, MIT-States and C-GQA, respectively. The detailed performance
are reported in Tab. [T0]

Influence of Number of Stored Samples in Memory Bank. We empirically investigate the impact
of the number of stored samples per composition in the memory bank. As illustrated in Tab.
we observe that a small memory size leads to suboptimal and unstable performance due to limited
sample diversity, and the performance becomes consistent as the memory size increases. However,
continually increasing the memory size (e.g., by initializing new slots as zero vectors) may dilute
retrieval weights in Eq.[I0] Based on this analysis, we set the number of samples to 16, 24, and 16
for datasets UT-Zappos, MIT-States, and C-GQA, respectively, and set the temperature 7,,,; as 0.1
in Eq.[I0[to sharpen the weight of effective samples.
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Figure 8: Impact of « across three datasets.

C MORE QUALITATIVE EXPERIMENTS

More Qualitative Results. Here, we report more qualitative results in UT-Zappos, MIT-States and
C-GQA datasets. As shown in Fig. [C] our method can predict accurate results where the baseline
makes mistakes. For example, baseline is struggle to distinguish similar objects, e.g., “countertop”
and “drawer”, “box” and “cooler”. Meanwhile, without filtering redundant information, base-
line is misled by extraneous visual content, e.g., baseline focuses on object “iron fence”, not
“calm water”. These results demonstrate the effectiveness of our method: by suppressing redun-
dant information, our method is able to make more accurate predictions.
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Figure 9: Impact of 3 across three datasets.
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Figure 10: Impact of «y across three datasets.

More Visualization Results. As shown in Fig. [I2] we present more visualization results of
Visual Adaptive Condensation (VAC) module in C-GQA dataset. We can observe that our pro-
posed VAC is capable of excavating critical visual information without disturbing by redundant
visual cues, such as, “bear” in “green lea f”, “wall” in “mess fence” and “cat” in “gray seat”,
where the main objects are more salient and occupy greater space. These results demonstrate the

effectiveness of our proposed VAC.

Table 10: Impact of K in VAC across three datasets.

(a) UT-Zappos (b) MIT-States (c) C-GQA

|'S U HM AUC |'S U HM AUC |'S U HM AUC

K=1|67.6 74.1 57.0 43.7 K=1|50.3 52.1 38.6 22.0 K=1[45.6 38.6 34.1 15.7
K=3|71.2 76.2 58.9 46.7 K=3(50.6 52.1 39.3 224 K=2|452 39.1 339 15.7
K=5|69.5 76.0 57.7 45.5 K=5|50.6 51.9 39.1 22.2 K=3|45.7 37.8 33.6 154

D PSEUDO-CODE

Training Scheme for SAC. In this section, we provide a detailed training scheme for our pro-
posed SAC framework, which can be divided into three stages. Stage I: Sparse Alignment, we
conduct sparse alignment between textual representations and patch visual representations. Lever-
aging this information-balanced training data, we optimize LoRA (Zanella & Ben Ayed, [2024) for
the visual encoder in CLIP. Stage II: Visual Adaptive Condensation, with the reduced visual in-
formation in the above alignment, the module is guided to adaptively excavate critical visual infor-
mation within the image, which preserves potential discarded yet valuable information in stage I.
Stage I1I: Dynamically Updated Memory Bank, we first initialize memory bank through training
data and dynamicall update the memory bank during inference.

E STATEMENT FOR USING LARGE LANGUAGE MODELS.

In this section, we illustrate the contributions of author contributions and LLMs tools.
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Table 11: Impact of N in memory bank across three datasets.

(a) UT-Zappos (b) MIT-States (c) C-GQA
\ S U HM AUC \ S U HM AUC \ S U HM AUC
N=2|72.3 76.2 61.1 48.6 N=4 |50.5 52.6 38.7 22.2 N=2 (43.9 38.8 33.5 15.2
N=4 |72.6 76.2 61.1 48.8 N=8 |51.4 52.6 39.3 22.6 N=4 |44.7 38.8 33.6 15.4
N=8 |72.3 76.2 60.9 48.8 N=16|51.5 52.6 39.3 22.6 N=8 (44.9 38.8 33.9 15.5
N=1673.1 76.2 61.0 49.2 N=2451.9 52.6 39.2 22.7 N=16|45.1 38.8 34.0 15.6
N=24/72.9 76.2 60.9 49.0 N=24|51.9 52.6 39.0 22.7 N=2445.0 38.8 34.0 15.6
/ Successful Cases / Failure Cases 0
liges \/
Groung Truth  canvas shoes.oxfords cotton sandals canvas boots.ankle leather sandals suede loafers suede sneakers
Baseline canvas shoes.loafers patent.leather sandals canvas boots.mid-half leather sandals sheepskin slippers canvas boots.ankle
Ours canvas shoes.oxfords cotton sandals canvas boots.ankle leather sandals suede slippers canvas sneakers
MIT-States
Groung Truth mossy canyon small truck frozen milk open book barren lake bright castle
Baseline verdant canyon new truck fresh milk thick dry ground old building
Ours mossy canyon small truck frozen milk barren ground ancient castle
C-GQA
Groung Truth full bookcase blue cooler white drawer calm water empty chair open laptop
Baseline brown blue box white countertop iron fence tan chair black latop
Ours full bookcase blue cooler white darwer brown old
K / (& %

Figure 11: More qualitative results of our method on three datasets.

Core Contributions (by the authors): Conception of the Sparse Alignment idea, design the archi-
tecture and loss function for modules, design and implementation of all experiments, data analysis,
and interpretation of all results.

Assistance from LLMs: In the final stages of manuscript preparation, we used Al tools
(ChatGPT/GPT-4 and DeepSeek) for specific, non-intellectual tasks to improve presentation quality.
Their use was strictly limited to: 1) Language Polishing: Identifying and correcting typographical,
grammatical, and spelling errors. 2) Syntax and Style: Rephrasing sentences for improved readabil-
ity and academic tone, without altering technical meaning. 3) LaTeX Code Debugging: Ensuring
consistency in reference formatting, figure/table labels, and other LaTeX conventions.

The models did not contribute to the scientific ideas, experimental design, or conclusions of this
work. The authors reviewed and edited all Al-suggested changes and assume full responsibility for
the published content.
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Figure 12: More visualization results of VAC module in C-GQA dataset.

Algorithm 1 Training Scheme for SAC.

Input: training data Dy,., visual encoder of CLIP ¢, textual encoder of CLIP ),
learnable soft prompts 8, = [0,, 0,, 0.], visual adaptive condensation module 6.,
LoRA weight 81,r4, memory bank B.

Output: optimized: LoRA weight 01,4, learnable soft prompts 8; = [0,, 6,, 0],
visual adaptive condensation module 6,,,.; updated memory bank B.

1: Stage I:, randomly initialize parameters 0, 4; load pre-trained parameters visual encoder of

CLIP ¢,;s, textual encoder of CLIP, learnable soft prompts [0,, 6,, 0.].
2. while not converged do
3 batch of training data (X3, V)
4:  conducting sparse alignment by visual reduction in Eq. 2]
5:  calculating basic learning objective Lyqsc in Eq. ]
6:  optimize parameters 6 (0rora, 0:) = 0 — Vo(Lpase (X, Vi; 0))
7. end while
8: Stage II: randomly initialize parameters 6y 4¢.

9: while not converged do
10:  batch of training data (X3, V)
11:  condense visual information within image into v,
12:  calculation prediction p,q. of VAC by Eq. Eand Psa of SA by Eq.[3]
13:  calculating learning objective £;%¢ in Eq.[6land Ly in Eq.
14 optimize parameters 6 (6uqc) = 0 — Vo((1 — ) - Ly5. (X, Vp: 0) + o - L1 (Xp, V3 9))
15: end while
16: Stage III: initialize stored samples for seen compositions in memory bank B by Eq.
17: for batch of testing data A do
18:  calculating predictions psq, Pyac and Ppayi from three modules by Eq. 3] Eq. [5]and Eq.
respectively
19:  obtain final prediction by Eq.[12]
20:  utilizing p,q. to update memory bank by Eq.[9]
21: end for
22: calculating the results of each evaluation metric with the final prediction
23: return optimized LoRA weight 61,54, learnable soft prompts 6; = [0, 0,, 0],
visual adaptive condensation module 8,,,.; updated memory bank B.
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