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This appendix provides additional details for the ICLR 2026, titled “One Patch, One Text: Sparse
Alignment for Closing CLIP’s Modality Gap for Compositional Zero-Shot Learning”. It is orgnized
as follows:

• §A Detailed Experiment Settings.

• §B More Ablation Experiments.

• §C More Qualitative Experiments.

• §D Pseudo-code.

• §E Statement for Using Large Language Models.

A DETAILED EXPERIMENT SETTINGS

Detailed Dataset Split Statistics. We conduct experiments on three widely-used datasets: UT-
Zappos, MIT-States, and C-GQA. UT-Zappos is a fine-grained dataset composed of 50,025 shoes
images with 16 attributes (e.g., Cotton, Nylon), 12 objects (e.g., Shoes.Heels, Boots.Ankle) and
116 compositions. MIT-States contains 53,753 natural images with 115 attributes (e.g., Ancient,
Broken), 245 objects (e.g., Computer, Tree) and 1962 compositions. C-GQA is the most extensive
dataset containing 39,298 images with 453 attributes, 870 objects and more than 9,500 compositions.
Following the standard split, we divide the compositions into train / validation / test splits. The
detailed splits are shown in Tab. 7. |Cs| indicates the number of seen compositions, |Cu| is the
number of unseen compositions, X represents the number of samples in the corresponding splits.

Table 7: Detail of data split statistics.

Dataset Compositions Train Val Test
|A| |O| |A| × |O| |Cs| |X | |Cs|/|Cu| |X | |Cs|/|Cu| |X |

UT-Zappos 16 12 192 83 22998 15 / 15 3214 18 / 18 2914
MIT-States 115 245 28175 1262 30338 300 / 300 10420 400 / 400 12995

C-GQA 413 674 278362 5592 26920 1252 / 1040 7280 888 / 923 5098

Detailed Evaluation Metrics. Following the generalized CZSL evaluation protocol (Naeem et al.,
2021; Liu et al., 2023), our method is evaluated on both seen and unseen compositions. We report the
four widely used metrics for a comprehensive evaluation. Seen Accuracy (S) and Unseen Accuracy
(U) are computed to evaluate the best classification performance on seen and unseen compositions.
Using Seen Accuracy as x-axis and Unseen Accuracy as y-axis, we calibrate a bias scalar (Naeem
et al., 2021) on Unseen Accuracy and obtain a seen-unseen accuracy curve. Then, we compute and
report the Area Under the Curve (AUC). Meanwhile, we compute the best Harmonic Mean (HM)
between Seen Accuracy and Unseen Accuracy at a specific bias scalar.

More Implementation Details. For network initialization, we load the weights of CLIP (Rad-
ford et al., 2021) and tune the image encoder with LoRA (Zanella & Ben Ayed, 2024). The
Sparse Alignment suppresses semantically irrelevant regions to achieve information balance in
image-text pairs. The overall pipeline of Sparse Alignment is illustrated in Fig. 7. The
Visual Adaptive condensation module is implemented with K blocks composed of multi-head at-
tention and feed-forward network. The number of blocks K is set to 3, 3 and 1 for UT-Zappos,
MIT-States and C-GQA, respectively. The Dynamically Updated Memory Bank does not introduce
additional parameters, as the retrieval and prediction processes are calculated on the condensed
visual representations without transformation. The coefficient α for distillation loss in Eq. 8 is
set to 0.5, 0.9 and 0.5 for three datasets. The coefficient β in Eq. 12 is set to 0.3, 0.7 and
0.7. The coefficient γ in Eq. 12 is set to 0.5, 0.4 and 0.1. For the number of stored samples
in Dynamically Updated Memory Bank is set to 16, 24 and 16. We train our model for 15, 10
and 15 epochs with Adam Optimizer (Kingma & Ba, 2014). The learning rates are initialized at
2e−4, 5e−5 and 5e−4, where the learning rate is scheduled by the StepLR (PyTorch, 2025). Dur-
ing training, we set batch size to 64, 64 and 16 for three datasets. All the experiments are conducted
on a single NVIDIA RTX 3090 GPU. More ablation experiments on hyper-parameters is presented
in Sec. B.
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Figure 7: Pipeline of sparse alignment.

B MORE ABLATION EXPERIMENTS

More Comparison with SOTA Methods. Due to space limitations, we report here a more compre-
hensive comparison of experiments, in which we additionally include more impressive CLIP-based
methods.

Table 8: The experimental results on closed-world settings.

Method UT-Zappos MIT-States C-GQA

S U HM AUC S U HM AUC S U HM AUC

CLIP[ICML’21] (Radford et al., 2021) 15.8 49.1 15.6 5.0 30.2 46.0 26.1 11.0 7.5 25.0 8.6 1.4
CoOp[IJCV’22] (Zhou et al., 2022) 52.1 49.3 34.6 18.8 34.4 47.6 29.8 13.5 20.5 26.8 17.1 4.4
PCVL[Arxiv’22] (Xu et al., 2022) 64.4 64.0 46.1 32.2 48.5 47.2 35.3 18.3 - - - -
HPL[IJCAI’23] (Wang et al., 2023a) 63.0 68.8 48.2 35.0 47.5 50.6 37.3 20.2 30.8 28.4 22.4 7.2
CSP[ICLR’23] (Nayak et al., 2023) 64.2 66.2 46.6 33.0 46.6 49.9 36.3 19.4 28.8 26.8 20.6 6.2
DFSP[CVPR’23] (Lu et al., 2023) 66.7 71.7 47.2 36.0 46.9 52.0 37.3 20.6 38.2 32.0 27.1 10.5
PLID[ECCV’24] (Bao et al., 2023) 67.3 68.8 52.4 38.7 49.7 52.4 39.0 22.1 38.8 33.0 27.9 11.0
CDS[CVPR’24] (Li et al., 2024) 63.9 74.8 52.7 39.5 50.3 52.9 39.2 22.4 38.3 34.2 28.1 11.1
Troika[CVPR’24] (Huang et al., 2024) 66.8 73.8 54.6 41.7 49.0 53.0 39.3 22.1 41.0 35.7 29.4 12.4
CAILA[WACV’24] (Zheng et al., 2024) 67.8 74.0 57.0 44.1 51.0 53.9 39.9 23.4 43.9 38.5 32.7 14.8
RAPR[AAAI’24] (Jing et al., 2024) 69.4 72.8 56.5 44.5 50.0 53.3 39.2 22.5 45.6 36.0 32.0 14.4
LogiCzsl[CVPR’25] (Wu et al., 2025) 69.6 74.9 57.8 45.8 50.8 53.9 40.5 23.4 44.4 39.4 33.3 15.3
ClusPro[ICLR’25] (Qu et al., 2025) 70.7 76.0 58.5 46.6 52.1 54.0 40.7 23.8 44.3 37.8 32.8 14.9

SAC 73.3 76.8 62.0 50.0 53.2 53.0 40.8 24.0 45.8 39.5 34.8 16.2

More Ablation Study on Hyper-Parameteres. We further study the impact of hyper-parameters
on performance, including weight coefficient α in distillation loss Eq. 7, weight coefficient β, γ in
inference Eq. 12 and number of blocks K in VAC.

Influence of Loss Coefficient Weight α. First, we conduct experiments on α to investigate the
impact of the distillation loss in Eq. 8 on the Visual Adaptive Condensation module and the results
are reported in Fig. 8. According to the analysis, we set theα as 0.5, 0.9 and 0.5 for UT-Zappos, MIT-
States and C-GQA, respectively. As we can see, the distillation loss provides a clear performance
gain for the VAC module. Ablating this loss (e.g., setting the weight to 0) reduces the VAC objective
to a standard classification loss, resulting in notably poorer performance.

Influence of Inference Weight of β and γ. Then, we conduct experiments on inference weight β
and γ in Eq. 12 and the results are reported in Fig. 9 and Fig. 10, respectively. We observe that the
optimal parameter settings differ across benchmarks. We hypothesize that this arises from varying
dataset characteristics, including differences in object or attribute contamination from surrounding
regions. Consequently, adjusting the contribution of our modules yields different levels of perfor-
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Table 9: The experimental results on open-world settings.

Method UT-Zappos MIT-States C-GQA

S U HM AUC S U HM AUC S U HM AUC

CLIP[ICML’21] (Radford et al., 2021) 15.7 20.6 11.2 2.2 30.1 14.3 12.8 3.0 7.5 4.6 4.0 0.3
CoOp[IJCV’22] (Zhou et al., 2022) 52.1 31.5 28.9 13.2 34.6 9.3 12.3 2.8 21.0 4.6 5.5 0.7
PCVL[Arxiv’22] (Xu et al., 2022) 64.6 44.0 37.1 21.6 48.5 16.0 17.7 6.1 - - - -
HPL[IJCAI’23] (Wang et al., 2023a) 63.4 48.1 40.2 24.6 46.4 18.9 19.8 6.9 30.1 5.8 7.5 1.4
CSP[ICLR’23] (Nayak et al., 2023) 64.1 44.1 38.9 22.7 46.3 15.7 17.4 5.7 28.7 5.2 6.9 1.2
DFSP[CVPR’23] (Lu et al., 2023) 66.8 60.0 44.0 30.3 47.5 18.5 19.3 6.8 38.3 7.2 10.4 2.4
PLID[ECCV’24] (Bao et al., 2023) 67.6 55.5 46.6 30.8 49.1 18.7 20.0 7.3 39.1 7.5 10.6 2.5
CDS[CVPR’24] (Li et al., 2024) 64.7 61.3 48.2 32.3 49.4 21.8 22.1 8.5 37.6 8.2 11.6 2.7
Troika[CVPR’24] (Huang et al., 2024) 66.4 61.2 47.8 33.0 48.8 18.7 20.1 7.2 40.8 7.9 10.9 2.7
CAILA[WACV’24] (Zheng et al., 2024) 67.8 59.7 49.4 32.8 51.0 20.2 21.6 8.2 43.9 8.0 11.5 3.1
RAPR[AAAI’24] (Jing et al., 2024) 69.4 59.4 47.9 33.3 49.9 20.1 21.8 8.2 45.5 11.2 14.6 4.4
LogiCzsl[CVPR’25] (Wu et al., 2025) 69.6 63.7 50.8 36.2 50.7 21.4 22.4 8.7 43.7 9.3 12.6 3.4
ClusPro[ICLR’25] (Qu et al., 2025) 71.0 66.2 54.1 39.5 51.2 22.1 23.0 9.3 41.6 8.3 11.6 3.0

SAC 72.9 66.7 54.8 42.3 52.9 21.2 23.1 9.4 45.5 11.5 15.3 4.6

mance gain. Therefore, based on our experimental results, we set β as 0.3, 0.7 and 0.7, and set γ as
0.5, 0.4 and 0.1 for UT-Zappos, MIT-States and C-GQA, respectively.

Influence of Number of Blocks in VAC. In addition, we report the ablation study for K, number of
blocks in Visual Adaptive Condensation module. After a comprehensive evaluation, we ultimately
set K as 3, 3 and 1 for UT-zappos, MIT-States and C-GQA, respectively. The detailed performance
are reported in Tab. 10.

Influence of Number of Stored Samples in Memory Bank. We empirically investigate the impact
of the number of stored samples per composition in the memory bank. As illustrated in Tab. 11,
we observe that a small memory size leads to suboptimal and unstable performance due to limited
sample diversity, and the performance becomes consistent as the memory size increases. However,
continually increasing the memory size (e.g., by initializing new slots as zero vectors) may dilute
retrieval weights in Eq. 10. Based on this analysis, we set the number of samples to 16, 24, and 16
for datasets UT-Zappos, MIT-States, and C-GQA, respectively, and set the temperature τmb as 0.1
in Eq. 10 to sharpen the weight of effective samples.

(a) UT-Zappos (b) MIT-States (c) CGQA

Figure 8: Impact of α across three datasets.

C MORE QUALITATIVE EXPERIMENTS

More Qualitative Results. Here, we report more qualitative results in UT-Zappos, MIT-States and
C-GQA datasets. As shown in Fig. C, our method can predict accurate results where the baseline
makes mistakes. For example, baseline is struggle to distinguish similar objects, e.g., “countertop”
and “drawer”, “box” and “cooler”. Meanwhile, without filtering redundant information, base-
line is misled by extraneous visual content, e.g., baseline focuses on object “iron fence”, not
“calm water”. These results demonstrate the effectiveness of our method: by suppressing redun-
dant information, our method is able to make more accurate predictions.
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(a) UT-Zappos (b) MIT-States (c) CGQA

Figure 9: Impact of β across three datasets.

(a) UT-Zappos (b) MIT-States (c) CGQA

Figure 10: Impact of γ across three datasets.

More Visualization Results. As shown in Fig. 12, we present more visualization results of
Visual Adaptive Condensation (VAC) module in C-GQA dataset. We can observe that our pro-
posed VAC is capable of excavating critical visual information without disturbing by redundant
visual cues, such as, “bear” in “green leaf”, “wall” in “mess fence” and “cat” in “gray seat”,
where the main objects are more salient and occupy greater space. These results demonstrate the
effectiveness of our proposed VAC.

Table 10: Impact of K in VAC across three datasets.

(a) UT-Zappos

S U HM AUC

K=1 67.6 74.1 57.0 43.7
K=3 71.2 76.2 58.9 46.7
K=5 69.5 76.0 57.7 45.5

(b) MIT-States

S U HM AUC

K=1 50.3 52.1 38.6 22.0
K=3 50.6 52.1 39.3 22.4
K=5 50.6 51.9 39.1 22.2

(c) C-GQA

S U HM AUC

K=1 45.6 38.6 34.1 15.7
K=2 45.2 39.1 33.9 15.7
K=3 45.7 37.8 33.6 15.4

D PSEUDO-CODE

Training Scheme for SAC. In this section, we provide a detailed training scheme for our pro-
posed SAC framework, which can be divided into three stages. Stage I: Sparse Alignment, we
conduct sparse alignment between textual representations and patch visual representations. Lever-
aging this information-balanced training data, we optimize LoRA (Zanella & Ben Ayed, 2024) for
the visual encoder in CLIP. Stage II: Visual Adaptive Condensation, with the reduced visual in-
formation in the above alignment, the module is guided to adaptively excavate critical visual infor-
mation within the image, which preserves potential discarded yet valuable information in stage I.
Stage III: Dynamically Updated Memory Bank, we first initialize memory bank through training
data and dynamicall update the memory bank during inference.

E STATEMENT FOR USING LARGE LANGUAGE MODELS.

In this section, we illustrate the contributions of author contributions and LLMs tools.
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Table 11: Impact of N in memory bank across three datasets.

(a) UT-Zappos

S U HM AUC

N=2 72.3 76.2 61.1 48.6
N=4 72.6 76.2 61.1 48.8
N=8 72.3 76.2 60.9 48.8

N=16 73.1 76.2 61.0 49.2
N=24 72.9 76.2 60.9 49.0

(b) MIT-States

S U HM AUC

N=4 50.5 52.6 38.7 22.2
N=8 51.4 52.6 39.3 22.6
N=16 51.5 52.6 39.3 22.6
N=24 51.9 52.6 39.2 22.7
N=24 51.9 52.6 39.0 22.7

(c) C-GQA

S U HM AUC

N=2 43.9 38.8 33.5 15.2
N=4 44.7 38.8 33.6 15.4
N=8 44.9 38.8 33.9 15.5

N=16 45.1 38.8 34.0 15.6
N=24 45.0 38.8 34.0 15.6

                                                                                             1
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Figure 11: More qualitative results of our method on three datasets.

Core Contributions (by the authors): Conception of the Sparse Alignment idea, design the archi-
tecture and loss function for modules, design and implementation of all experiments, data analysis,
and interpretation of all results.

Assistance from LLMs: In the final stages of manuscript preparation, we used AI tools
(ChatGPT/GPT-4 and DeepSeek) for specific, non-intellectual tasks to improve presentation quality.
Their use was strictly limited to: 1) Language Polishing: Identifying and correcting typographical,
grammatical, and spelling errors. 2) Syntax and Style: Rephrasing sentences for improved readabil-
ity and academic tone, without altering technical meaning. 3) LaTeX Code Debugging: Ensuring
consistency in reference formatting, figure/table labels, and other LaTeX conventions.

The models did not contribute to the scientific ideas, experimental design, or conclusions of this
work. The authors reviewed and edited all AI-suggested changes and assume full responsibility for
the published content.
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1
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Figure 12: More visualization results of VAC module in C-GQA dataset.

Algorithm 1 Training Scheme for SAC.

Input: training data Dtr, visual encoder of CLIP ϕvis, textual encoder of CLIP ψtxt,
learnable soft prompts θt = [θa, θo, θc], visual adaptive condensation module θvac,
LoRA weight θLoRA, memory bank B.

Output: optimized: LoRA weight θLoRA, learnable soft prompts θt = [θa, θo, θc],
visual adaptive condensation module θvac; updated memory bank B.

1: Stage I:, randomly initialize parameters θLoRA; load pre-trained parameters visual encoder of
CLIP ϕvis, textual encoder of CLIPψtxt, learnable soft prompts [θa, θo, θc].

2: while not converged do
3: batch of training data (Xb,Yb)
4: conducting sparse alignment by visual reduction in Eq. 2
5: calculating basic learning objective Lbase in Eq. 4
6: optimize parameters θ (θLoRA, θt) = θ −∇θ(Lbase(Xb,Yb;θ))
7: end while
8: Stage II: randomly initialize parameters θV AC .
9: while not converged do

10: batch of training data (Xb, Yb)
11: condense visual information within image into vq
12: calculation prediction pvac of VAC by Eq. 5 and psa of SA by Eq. 3
13: calculating learning objective Lvac

base in Eq. 6 and Lkl in Eq. 7
14: optimize parameters θ (θvac) = θ −∇θ((1− α) · Lvac

base(Xb,Yb;θ) + α · Lkl(Xb,Yb;θ))
15: end while
16: Stage III: initialize stored samples for seen compositions in memory bank B by Eq. 9.
17: for batch of testing data Xb do
18: calculating predictions psa, pvac and pbank from three modules by Eq. 3, Eq. 5 and Eq. 10,

respectively
19: obtain final prediction by Eq. 12
20: utilizing pvac to update memory bank by Eq. 9
21: end for
22: calculating the results of each evaluation metric with the final prediction
23: return optimized LoRA weight θLoRA, learnable soft prompts θt = [θa, θo, θc],

visual adaptive condensation module θvac; updated memory bank B.
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