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A THE PROOF OF THE UPPER BOUND ON THE ERROR OF RLMC

This section is devoted to the proof of the upper bound on the error of sampling, measured in
Ws-distance, of the randomized mid-point method for the vanilla Langevin Langevin diffusion. Since
no other sampling method is considered in this section, without any risk of confusion, we will use the
notation 9y, instead of YR-MC to refer to the k-th iterate of the RLMC. We will also use the shorthand
notation

Jr = f(V%), Vfi ==V f(O), and V firv = V().
A.1 PROOF OF THEOREM 1

Let 99 ~ 1y and Ly ~ 7 be two random vectors in R? defined on the same probability space. At
this stage, the joint distribution of these vectors is arbitrary; we will take an infimum over all possible
joint distributions with given marginals at the end of the proof. Note right away that the condition
Mh + /k(Mh)3/? < 1/4 implies that Mh + (Mh)3/? < 1/4, which also yields Mh < 0.18.

Assume that on the same probability space, we can define a Brownian motion W, independent of
(Yo, Lo), and an infinite sequence of iid random variables, uniformly distributed in [0, 1], Up, Uy, . . .,
independent of (Y¥¢, Lo, W). We define the Langevin diffusion

t
Li=Ly— | Vf(L)ds+V2W,. (17)
0
‘We also set

Qv = O — WUV fi + V2 (Wirvon — Win)
i1 =% — hV frrv + V2 (Wiyn — Win).
One can check that this sequence {1 } has exactly the same distribution as the sequence defined in
equation 6 and equation 7. Therefore,
W3 (kr1, ™) < E[|941 — Liernnll3] = 19541 = LgpnynllE, = 2iaa-
We will also consider the Langevin process on the time interval [0, k] given by

t
Li=1Lj— / V(L) ds + V2 (Wit — Wia), Ly = Y.
0
Note that the Brownian motion is the same as in equation 17.

Let us introduce one additional notation, the average of ¥ 1 with respect to Uy,
Vi1 = B[O y1[9%, W, Lo].
Since Lj1)p is independent of Uy, it is clear that
2 3 2 3 2
Tip1 = [Ok+1 = FnallL, + [19k41 — LiesynllL, -
Furthermore, the triangle inequality yields

19%+1 = Ligrvynllie < 191 — Ly, + 14 = L nyn -
From the exponential ergodicity of the Langevin diffusion (Bhattacharya, 1978), we get

IL}, = Ligtynlli, < e ™MLy — LinllL, = e ™9, — L, = e ™.
Therefore, we get
9 9 _ 2
Thy1 < 0ks1 — O, + (19ks1 — Lhlle, + e 7™ ay)

_ = 2 =
= (7™ + |91 — LillL.)” + 1941 — Fusa - (18)
The last term of the right-hand side can be bounded as follows
1941 — Fnt1llL, = MV firv — EulV frrvllL,
<AV et — V() ||L,-
Using the definition of ¥4, we get
181 = Frl2, < (MR (/3R W Fill2, + o). (19)

We will also need the following lemma, the proof of which is postponed.
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Lemma 1. If Mh < 0.18, then ||9)41 — L ||, < (Mh)?{0.7h||V fi|L, + 1.2v/p}.

One can check by induction that if for some A € [0, 1] and for two positive sequences { By, } and

{Cy} the inequality 27, < {(1 — A)zy, + Ck}2 + B holds for every integer k > 0, then’

n

n 1/2
A=Al zg+ Y (1—A)"FCp + { > - A)2<"—k>3,3}
k=0

k=0

In view of equation 20, equation 18, equation 19 and Lemma 1, for p = e~™", we get

x, < pzo + (Mh)? Zp”‘k(0.7h|\kaH]L2 + 1.2¢/hp)

k=0
n 1/2

- Mh{ >/ filE, + hp>}

k=0
- M2h /R
< plwo + O.?(Mh)Qthn—kvakHL2 n 1.32T\/7p
k=0
Mh? [ 1/2

+ \/g{ sz(""“)llvf(ﬂk)ni} +0.92Mhy/p/m.

k=0

(20)

2n

We need a last lemma for finding a suitable upper bound on the right-hand side of the last display.

Lemma 2. I[f Mh < 0.18 and k > 1, then the following inequalities hold

n

W2 p RV F(08)2, < LTMhp™||[90|1f, + 4.4MA(p/m) < 0.31p" (|97, + 0.8(p/m).

k=0

The claim of this lemma and together with equation 21 entail that

n - Mh2 n B 1/2
o < p"wo + 0.7(MR)RY  p" 7 F|IV flle, + \/g{ > ’“)IIVf(ﬂk)lliz}
k=0

k=0
+ (1.32VKMh 4 0.92) M h+/p/m
n 1/2
< p"wo + (0.74VKMB + 0.58)Mh{h2 > p”k|Vf(19k)||H%Q}
k=0
+ (1.32VEMh 4 0.92) Mhy/p/m

< p"wo + (0.42VEMh + 0.33) Mhp"'? |90 ||L, + (1.98VKMh + 1.44) Mhy/p/m.

Assuming that h is such that (v kMh+1)Mh < 1/4 and noting that | 9¢ ||, < Wa(vo, 7)++/p/m,

we arrive at the desired inequality.

A.2 PROOF OF TECHNICAL LEMMAS

In this section, we present the proofs of two technical lemmas that have been used in the proof of the
main theorem. The first lemma provides an upper bound on the error of the averaged iterate ¥ 1
and the continuous time diffusion L’ that starts from 19 and runs until the time h. This upper bound
involves the norm of the gradient of the potential f evaluated at 1. The second lemma aims at

bounding the discounted sums of the squared norms of these gradients.

5This is an extension of (Dalalyan & Karagulyan, 2019, Lemma 7). It essentially relies on the elementary

(a4 )2 + 2 < a+ Vb? + ¢2, which should be used to prove the induction step.
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A.2.1 PROOF OF LEMMA 1 (ONE-STEP MEAN DISCRETISATION ERROR)

‘We have
h
st — Lo, = Hﬁ ~HEGIV sl — T+ [ VIED s
0

Lo
= HhEU[kaw - V( ’Uh)]HIL

)
< Mh|| 940 — Ly,

Urh
:Mh||z9k—Uthfka6+/O VHELds|,,

—an | [ (v - ) ds
0 Ly
h
<M [ IVHEY) = Vi, ds
0
h
= Mh/0 |VF(LY) = V(L) ds. (22)

Let us define (t) = ||V f(L;)—V f(L{)||L, . Using the Lipschitz continuity of V f and the definition
of L', we arrive at
2
p(t)? < MQ{ +2tp}
Lo

] / VA ds
0

<ar{ (49l + [ IVAED) - VHER, ds)2 2

' 2
<M2{/0 [VF(LL) = V(L] ds + /Y filZ, +2tp}

t

(1) <M [ p(s)ds + M [RIV I, +2tp.
0

Using the Gronwall inequality, we get

o(t) < MeM*\ [12(|V fil 12, + 2tp.

Combining this inequality with the bound obtained in equation 22, and using the inequality e
1.2, we arrive at

or, equivalently,

M
h g

h
91 = Lill <1200 [ [V AR, + 25pds
0

1/2

h
< 1.2M2h\/ﬁ{/ (s*IV fullE, + 2sp) ds}
0

<122 hVR{ (R 3) |V full2, + B2} 2.

This completes the proof.

A.2.2 PROOF OF LEMMA 2 (DISCOUNTED SUM OF SQUARED GRADIENTS)
‘We have
M
Frr1 < fi + VI (91 —95) + 7||19k+1 — 3

M
< e = WV v + V2V L€+ S 10V o = V283

M
< fr = BV Sill3 + M|V fillo|[9r v — Oxll2 + V2V £ & + 5 1AV frvv = V2&|3.

(23)
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One checks that
IV

Tell
[9kv — OklZ, = P*|UV fillF, + 2hpE[U] = (B /3)[|V fillF, + hp < 0-011WL2 + hp

and, therefore,
1/2
MV fillo[9xs0 — Oxlla < (0.011[V filld, + M2hp|V fic|2)"/
105||V fx |7, + 4.55M>hp

<(
<0
< 0.105||V f4 |12, + 0.82Mp.

Furthermore,
IRV frorv — V2E&kllL, < 1BV fie — V2&kll, + AV frrv — Vil

VPPV SRlIE, + hp + MA|[Oksv — OrllL,

<P, + ko + b /0011 [V £, + MZho

N

<RIV AR, + hp+ (JO.011R2 [V fi12, +0.182hp
implying that
M09 frew — VB2, < Y (L3R V 2, + 1.40p)
< 0.124h% ||V f3||2, + 0.7M hp.
Combining these inequalities with equation 23, we get
E[frt1] < E[fi] = 0.771h[|V fio||Z, + 1.52M hp. (24)
Set Sn(f) =Y h_o P Ffrand S, (Vf2) =320 p"F[[V fll£,. Using Lemma 3, we get
Elfuir] — 0"ELfo] + pSa(f) < Su(f) — 077108, (V%) + To20 0P
Since mh > 1 — p > 0.915mh, we get
0.771h8, (Vf2) < p"E[fo] + (1 — p)Su(f) + 1.67kp
< p"E[fo] + mhS,(f) + 1.67kp
< P"E[fo] + 0.5h8,(V f?) + 1.67xp
where the last line follows from the Polyak-Lojasiewicz inequality. Rearranging the terms, we get
hS,(Vf?) < 3.7p"E[fo] + 6.2kp (25)
Note that equation 25 is obtained under the Polyak-Lojasiewicz condition, without explicitly using
the strong convexity of f. However, using the latter property, we can obtain a similar inequality with
slightly better constants.
Indeed, equation 24 yields
RE[|V fill3] < 1L3(E[f] — Elfy4]) + 1.98Mhp. (26)
In what follows, without loss of generality, we assume that f(6*) = ming f(0) = 0. In view of
equation 26, we have

k k
Ry PINVE@)IE, < 13D A (EF(9)) — f(9541)]) + %
j=0

=0

k
< L3(p"E[f(90)] — E[fera]) + 13> p* 7 (1 = p)E[f(9)] + 2.1kp

j=1

k
< L3MTE[f(80)] + 1.3(1 — p) Y p" IE[f(9;)] + 2.1kp
j=0
1.3M

<
2

k
. 1.3 o
Pk+1||190||]%2 + - M1 —p) E o 9,2, + 2.1kp.
=0
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We have, in addition

1954112, = 1195 — AV fillZ, + 2hp < (1 — mh)2[[9,2, + 2hp.
Therefore,
Llp

2h
D < (1 —mh) (9|2, +

2 < 1— 2k 2 = r
[94l2, < (1= mh)M Dol + 5=

Using this inequality in conjunction with the fact that 1 — mh < p, we arrive at
k
s 1.3M 1.3
Y PV E,)IE, < =5 IDollE, + =M™ [0l +2.95p.
j=0

This completes the proof of the lemma.
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B THE PROOF OF THE UPPER BOUND ON THE ERROR OF KLMC

The goal of this section is to present the proof of the bound on the error of sampling of the “standard”
discretization of the kinetic Langevin diffusion. With a slight abuse of language, we will call it
Euler-Maruyama discretized kinetic Langevin diffusion, or kinetic Langevin Monte Carlo (KLMC).
To avoid complicated notation, and since there is no risk of confusion, throughout this section 19 and

vy, will refer to 9XEMC and vXEMC respectively. We will also use the following shorthand notation:

fn:f(ﬂn)a gn:vfn:vf(ﬁn), n=h, M'*/:M/’V'
The advantage of dealing with 7 instead of h is that the former is scale-free.

Note that the iterates of KLMC satisfy

Vpy1 = (1 — an)v, —angn ++/2yn0&, (27
19n—i—l - 1971 + 77177(04”71 - Bngn + 277’ 5£n)7 (28)
where
1—e" -n -1
a=—c@1), B=""TT""c(01/2),
n n
1—e 2n . 2(1 — 2+ 2n? — e=27)
2 2
0°=———¢€(0,1), o’ = € (0,1/3)
2n (2n)?

and &, £, are two N,(0, I,)-distributed random vectors independent of (9, v,).

Since we assume throughout this section that 2M A < 0.1, v > 2M and x > 10, we have

1-— — Mh _ Mh 1
0= 120PCD 5 g5 and mn= P ME L
" k10 200
The latter, in particular, implies the following bound for p:
1—mh<o=e ™" <1-0.99mh=1-0.99mn/7. (29)
For any sequence w = (wy)nen Of real numbers, we denote by S, (w) the p-discounted sum

> h—o P" Fwy,. Below we present a simple lemma for the function S,,(-) that we will use repeatedly
in this proof.

Lemma 3 (Summation by parts). Suppose w = (wp )nen is a sequence of real numbers and define
St (w) :=>"4_o 0" Fwiy1. Then, the following identity is true

ST (W) = wpy1 — 0" wo + 05, (w).

Proof. The proof is based on simple algebra:

S W) = wpar + Y 0" Wi = w1 + 0 (Sn(w) — 0"w) - O
=1

B.1 EXPONENTIAL MIXING OF CONTINUOUS-TIME KINETIC LANGEVIN DIFFUSION

Consider the kinetic Langevin diffusions
dL; =V, dt dV; = =V dt — YV f(Ly)dt + /2y dW, (30)

Proposition 1. Let Vi, Ly and L{, be random vectors in RP. Let (V;, L;) and (V{, L}) be kinetic
Langevin diffusions defined in equation 30 driven by the same Brownian motion and starting from
(Vo, Lo) and (Vy, L{)) respectively. It holds for any t > 0 that

V.-V, Vo -V e [L 0,
HC |:Lt_L2:| C[LO—L6 , with C= I, L[

lge—wmw—Mnt

19
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Proof of Proposition 1. SetY; :=V; — V/ +~(L; — L}), Z; := V; — V/, that is
f]-clz-)
Y, L;-L;
We note that by the Taylor expansion, we have
Vf(Li) = Vf(L}) = Hy(Ly — Ly),

where H; := fol V2f(L; — x(L; — L})) dz. By the definition of (V;, L;) and (V/, L}), we find

d
&(Vt — Vi +~(L: — L})) = —yHi(L; — L)
=-H(Y; - Z;).
Similarly, we obtain
d

—(V, = V) = —(V; = V/) = yH, (L, — L})
= —’YZt — Ht(}ft — Zt) .

dt

This implies

d
%[”anz + ||Zt\|2] =2V, (-H,Y; + H,Z,) +2Z (—Z; - H,Y; + H, Z,)
2 2
<2(=m[Y " =y || Z2 ||+ M| Z|I”)

<-2(mn - 0)| %]

Invoking Gronwall’s inequality, we get

| ][ <o tmncr-aon] (]

as desired. O

B.2 PROOF OF THEOREM 3
Let 9,,, v, be the iterates of the KLMC algorithm. Let (L, V;) be the kinetic Langevin diffusion,

coupled with (¥, v,,) through the same Brownian motion (W;t > 0) and starting from a random
point (Lg, Vp) < exp(—f(y) + %Hv”%) such that V = vg. This means that

h h
Unt1=vpe ! — V/ e V=) 4V f(9,) + \/57/ e (=9 qw,
0 0

h u u
g1 =9y + / <vne_7” — ’y/ e V(u=s) dsVf(9,) + \/ify/ e V(u=s) dWS) du.
0 0

0

We also consider the kinetic Langevin diffusion, (L', V'), defined on [0, h] with the starting point
(9, vy,) and driven by the Brownian motion (W, 1+ — Wit € [0, h]). Tt satisfies

t t
V/ =v,e 7 — 7/ e VIV (L)) ds + \67/ e =) aw,
0 0
t
0

Our goal will be to bound the term x,, defined by

_ Un — Vnh
Tn = HC |:19n - th,:|

with C = [If’ OP] 31)

L, I, ~1,

20
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The triangle inequality yields

v, -V, V! —Vun
<o )| e[ E]
. L, ~ Lo |,
el e
Lo
< 0xn + V2 |vpi1 = Vi, +3l[Ont1 — LilL,, (32)

where the second inequality follows from Proposition 1 (see also the proof of (Dalalyan &
Riou-Durand, 2020, Prop. 1)), while the third inequality is a consequence of the elementary inequality

a2+ (a+b)2 < V2a+bfora,b>0.
The next lemma gives an upper bound on the terms appearing in the right-hand side of equation 32.

Lemma 4. If V f is M-Lipschitz continuous, then for every step-size 1 = ~vh > 0 and every v > 0,
the following holds

—V 2
||vn+1 h/H]Lz < %{2\/7 yp??-‘r 3””71”]1_,2 + T]HgnH]LQ}M,YnQeJ\/I’WI /2

I — 2
Y[t Rl < %(0.6\/%—1— lvn L, + 0.250]|gn L, + )Mvn:ieMW /2,

where M., = M /~.

Forn < 0.2 and v > 2M, Lemma 4 implies

[vns1 = Vi, < Myn?(0.15y/7p + 0.51|vnll, + 0.171]gn 1)
MNOns1 = LI, < Man®(0.046\/4p + 0.17]|vnll, + 00437 gn 12, )-

Therefore,
V2 |[vnt1 = VI, + 911901 = Lille, < Mon?(0.23y/75 + 0.74] vy [, + 0-250]|gn L.)-
(33)
Combining equation 32 and equation 33, we get
Tnt1 < 0ty + My (0.23y/7p + 0.74]vn I, + 0.257]|gnllL. )-
From the last display, we infer that
n—1
oo < 0o+ Myn® Y 0" F(0.234p + 0.74] vk ||, + 0.25n]gkllL, )-
k=0
This implies that
N 0.23M.n*\/7p N
< oo+ + +0.74My” Y~ 0" F(||vk-1lL, +0-33n]lgk1lL. )
k=1
. 0.23M\n> /7D 0.74M0? [ = ,_ 12
<Ot = DV S ST 0 (ol + 033 lgk )
k=1

In view of equation 29, ¢ < 1 — 0.99mn/~ and

n

1/2
<gnxo+o.233mwp+o.74Mw{ > ot (ol + 053 ||gkL2)} |
k

Proposition 2. Assume that vy ~ N (0,~1,) is independent of 9. If v > 5M, k > 10 and < 1/10
then

o\ " 1.119%p 2
nz 0 k||ng]%2 < 4.420"vE[fo] + — + 4.98(;vn + 0.96\/7;0)
k=0

o en 2 " 1.87v%p 2
T)Z 0" P luellf, < 3.930"vE[fo] + o +3.2(zn + 0.96/7p) "
k=0

21
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We can apply Proposition 2 and ¢ > 0.998 to infer that

1.8742 1/2
@ < 0"0 + 0.233K11/7p + 0.74Mw{ﬂzg (3.98@”7 E[f,] + nj P 3950z, + 0.96\/7]9)2) }

" v N 1.88v2p NEs
< "o + 0233w AP + 0.74M, 1y (3.999 VElfo] + == 1E +3.26(2, +0.96,/7p) )

1.54M 1.88v%p | 3y%p\1/2
< o"xo + +0.233k1 /D + 7m77 o"E[fo] +0.62v/k nz,, + 0.74Mw( mZ Py p)

f m
1.54M Mn./
< "o+ 062VR e + = 1o EIfo] + % (0:233 +0.74v/1.94).

Therefore, under the condition \/E n < 0.1,

" 1.65M 1.35Mn./vp
o < 1070 o + \/T—nn\/Q"E[fo} L ——

Finally, one can check that 222 > ~2||9,, — 1971”]1242 > y2W3(VKMC ) and xg = |90 — Lo||L, =
YWa (g, ). This completes the proof of the theorem.

B.3 PROOF OF PROPOSITION 2 (DISCOUNTED SUMS OF SQUARED GRADIENTS AND
VELOCITIES)

To ease the notation, we set z,, := E[v,! g,,] and define

NE

Sn(z) = Z ankzh Sn(gz) =

k=0 k

Sn(f) = Qn_kE[fk]a Sn(UQ) :

- 2
0" *llgkllz, ,
0

3
s

0" Flukllz, -
0

~
Il
o
~
Il

Throughout the proof, we will need some technical results that will be stated as lemmas and their
proof will be postponed to Appendix B.5.

Lemma 5. If for some M > 0, the gradient V f is M -Lipschitz continuous, then for every step-size
h > 0 and every v > 0 it holds for the KLMC iterates defined in equation 28 that

2011 — (1= an)z + anlignll?, | < nMy (lvalE, + §0°llgnll?, + 517p — anz.)
for some positive number an < 0.14.
Since M., < 1/5and n < 0.1, we have
a—3IMun? > L1 —e™) — g’ 2 10(1 — ™) = $0.1° > 0.94.

Therefore, we can rewrite the claim of Lemma 5 with the notation B = nM., & as follows:
Zna1 < (1= an — Bn)zy + 0.20]|v,[7, + 0.67ypn* — 0.94n] g, 17, -

Lemma 6. Let 3 < 0.014 and 1) € [0,0.1]. If zo = 0 and the sequences {z,} C R, {v,,} C R? and
{gn} C RP satisfy the inequality

Zns1 < (€77 = Bn)zn + 0.20][va |2, + 0.67ypn* — 0.941]ga 2, (34)
then for every o € [0, 1] such that o > e~ ", it holds that

0.73nvyp B 1.072141

Sn(g?) < 1.09a(S,(2))- +0.2138, (v?) + 1~ 7

(35)

where (S, (2))— = max(0, S, (z)) is the negative part of S, (z) and o = (1 — e™") /1.
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In order to get rid of the last term in equation 35, we need a bound on (S,,(z))_. To this end, we use
the smoothness of the function f, in conjunction with equation 28, to infer that

29E[fni1 — fn] < 29Elg, (Ont1 — 9n)] + My [y (Fn g1 — 9017,

2am(1 — M) 20 — B (2 = BMyn?) | gnll?, + My n?|lonll?, + 3 Mym°yp
2a0nzn — 0.967%(|gn I, +0.0182n[v, |1, + FE1°yp

with g = a(1 — BM,n?) = a(1 — 0.1 x 0.1%) > 0.999.

Lemma 7. Let ag,y,n > 0. If the sequences {F,} C R, {gn} C R? and {v,} C RP? satisfy
F,, > 0and

<
<

2(F7L+1 - Fn) < 20407]25” + 001827]”'1)"”]%2 + 1—2577371) (36)
then, for every o € (0, 1), it holds that
2 3
a0 (nSn(2))= < 0" Fo + (1 — 0)7Sa(F) +0.0182S,,(v?) + %'

In view of the strong convexity of the potential function and the assumption that f(0,) = 0, the
Polyak-Lojasiewicz inequality

2
Fo < 5 llgnll

holds true. This implies that (1 — 0)S,,(f) < (n/7)mSn(f) < 5(n/7)Sn(g?). Combining this
inequality with the claim of Lemma 7, applied to F,, = vE|[f,], we get

0.14n~?
+ nmp
m

0.999(Sy (2)) - < Q%E[ fo] +0.55,,(¢g%) + 0.0182S,, (v?) (37)

Let us now combine equation 35 and equation 37:

0.16m72p
m

110"
Sn(g?) < f; TE[fo] + 0.555,(g2) + 0.028, (v?) +

0.73v%p N 1.07|zn41]
m n

1.1o" 0.75v%p 107z,
SVl fo] + 0.5550 (6) + 0.2238, (v2) + 22V P o 10T Zn4a]

+0.2138,, (v?) +

<
m Ui

Subtracting 0.555,, (g?) from both sides and dividing by 0.45, we obtain

S (92) < 2‘45Qn7E[f0}

1.7v2p  2.38|z,
LT | +1|.

+0.55,,(v?) - ;

(38)

Let us now derive a bound for S, (v?). We start with the following property, which is a direct
consequence of the definition of v,,41:

[vns1ll2, = llvallE, < —an(2 = an)llvallZ, — 20m(1 = an)z, + o*n?|lgullZ, + 2n7p.

Using the same technique as before and applying Lemma 3, we deduce the following:
(0= 1)8n(v*) = ¢" w0l = (0= 1)Sn(v?) = "
2myp

< —an(2 — an)Sn(v?) — 2an(1 — an)S,(2) + &*n*S,(g?) + s

Therefore, since o > 1 — %,
2.021~2
(20— a®n = 2)Sa (v?) < ~20m(L = an) S, (2) + (an)*Su(g%) + == .

Since o = (1 — e~ ") /n with n < 0.1, from the last display, we infer that

1.1342
Sn(v?) < 1.02a(8,(2)) _ 4 0.51nS,(g%) + TP,

mn
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Combining this inequality with equation 37, implies

1.030" 0.2~2 1.1342
S (02) < 28 o] 405625, (¢2) + 0.0195, (v?) + —P 4 05198, (¢?) + —— P
n m mn
1.030" 1.1342
< 1 0.625,(g%) + 0.0198, (v?) + —— P
n mi
Therefore, subtracting 0.0195,,(v?) and dividing by (1 — 0.019), we get
1.10" 1.16+2
S(v%) < =27 fo +0.64S,(¢%) + # (39)

Combining equation 38 and equation 39, we arrive at

1.1p" 1.16~2 2.450™
S, (0?) < ~=2 R fo] 4 =P +o.64(#w@] £ 0.55,(0%) +
n mn n

L7y?p  2.38|zp41]
+ )
m n
2.67o"
< Y 1o
n

Therefore, subtracting 0.325,,(v?) and dividing by (1 — 0.32), we get

1.27v2p  1.53|z,
L 120t |21

+0.325,, (v?).
mi

3.930" 1.87~2 2.25
S, (v?) < 308 | 18T [2n+1]
Ui mn Ui
Once again, combining with equation 38, we get
2.450" 3.930" 1.8742 2.25|zp, 1.742 2.38| 2y,
S, (g?) < 2300 7E[fg]+0.5< "y 1L8TVp | +1|)Jr 7P | 2:38|zn4]
n n mmn n m n

that leads to

4.420™~

1.1192p N 3.51]zp41]

Sn(92) < mn 7

E[fo] + (40)

The last lemma we need is the one providing an upper bound on |z, 41].
Lemma 8. For everyn < 0.1 and v > 5M, we have

2
|zn+1] < (1192, + 1.14\/4p) 7,
where x., is given by equation 31.

Using Lemma 8 in conjunction with equation 39 and equation 40, we arrive at the inequalities stated
in Proposition 2.

B.4 PROOF OF LEMMA 4 (ONE-STEP DISCRETIZATION ERROR)

We use the notation
_ 1—et e~ — 14 ~t
Po(t) =e 7, (t) = Ty Pa(t) = %

and note that
Pi(t) < t, Pa(t) < 0.59t%.

Furthermore,

h
Fons1 = Vil = vH [ e (@i - vrw.) ds
0

Lo

h
<y [ eIV AEY - V@), ds
0

h
< My/ |2, — 9], ds. (1)
0
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where the last implication is due to the M -smoothness of the potential function f. On the one hand,
for every s € [0, h], we have

L -9,= ) V. du
9=

= 1(s) v, — 7/ / e TV (L)) — V(9,)) dtdu — 2(s) gn

0 0
9~ [ (=) AW, d
+\/>'Y/O /O (& +du
= 1(5) Vn — a(s) gu + m/ () AW,
0

—7/$wds—tﬂvfu%%—vﬂ0w)&.
0

Therefore,

1 = Bl < s loalles +0-575 [gall, + V/2ps/3s + My /0 (s = D)[|L7 = O]l d.

The last inequality combined with s — ¢ < h — t allows us to use the Gronwall lemma, which implies
that

L = B[, < (s l[onllL, +0.575% | gnlle, + v/(2/3)psys) e (=059
2
< (sllvnllL, +0.5v8% [|gnllL, + /(2/3)psys)e® oM™ (42)
Combining the last display with equation 41, we get

2

o1 = Vil < {3llvalle + §nllgnllL, +0.33yApn} Mh>yet /2
2

< {3llvnll, + $nllgnll, +0.33yApn} Myn*e™ /2,

This completes the proof of the first inequality. To prove the second one, we again use the update
rules of 8,1 and L’:

h t )
[9ns1 — L, = ’YH/O /0 e (VL) — VF(9,)) ds dt

Lo

h t
< /0 /0 IV F(LL) = T F (0], dsat

h rt
< Mfy/ / | Ly — 9|, dsdt.
0 Jo

The last term can be bounded using equation 42. This yields

o 2 h t
Wni1 = Ly, < MyyPettn /2/ / (sl|vnllL, + 0.5752(|gnllL, + v/ (2/3)ps? 7) ds dt
0 0

2
< My 2 (Mo ||u, + s5nllgnliL, + 0.1v/p107)
2
< (1/6)Myn®e™ ™ 2 (||lvy L, + 0.25n]gnllL, + 0.6\/p77)

as desired.
B.5 PROOFS OF THE TECHNICAL LEMMAS USED IN PROPOSITION 2

B.5.1 PROOF OF LEMMA 5

Since z, = E|g,! v,,], we have

|Zn+1 — Zn — E[g;(anrl - Un)” = |E[(gn+1 - gn)TUn+1H' (43)
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On the one hand, definition equation 27 of v, 41 yields

E[Q; (Vnt1 —vp)] = *anE[glvn] - O”]”Qn”HZJQ- (44)

On the other hand, the Cauchy-Schwartz inequality implies

‘E[(gnJrl - gn)T’UnHH < Hgn+1 - gnHLZanHHLQ
S M|Fn 41 = On L, lvnsalle, -
Similarly, using update rules equation 27 and equation 28 of the KLMC, and the triangle inequality
we get

llonlt, + 17 gnllf, — 2080° 2 + Z20°yp

a2, +7°llgnllf, — 2an(1 — an)z, + 2n7p.

’72”0”4-1 - 19TL||H%2

lvns1 ||H24

NN

Hence,

(7/77)2”19n+1 - 19n||11242 + ”'Un+1||ﬂ2‘2
2

<ol + 202gall?, — an(B+1—an)z, + dyp. (45)

%Hﬂn—&-l — L, [|Vng1 L, <

Therefore, combining equation 43, equation 44 and equation 45, we get

|21 — (1 — an)zn + anllgnllf,| < My (Ivnll?, + 20°llgnli?, + 3170)
—n*My (B +1 —an) z,
—_—

=&
with an < an(1.5 — an) < 0.14, as desired.
B.5.2 PROOF OF LEMMA 6
We apply inequality equation 34 for every index k& < n multiply each side by o™ *:

0" F 21 < (€7 = Bn)o™ Fzy, + 0.20" Fnl|ug |2, + 0.6T0%ype™ T — 0.94n0" || gk |12, -

Summing over k, applying Lemma 3 and taking into account that zg = 0, we get

21+ 0Sn(2) < (€77 = Bn)Su(2) +0.208, (v*) + W —0.94n8,,(9%)
< (&7 = Bn)Sn(2) + 0.20S, (v2) + 0'(158772;1’ 0.9475, (¢?)

This implies that
0.9475,(9%) < (0 — €77+ Bn)(—Sn(2)) + 0.20S, (v?) + 06158172;‘2? — Znt1-

Note that p—e™"7 > 0 and Q—e_"—i—Bn <1—e7740.014n < 1.02(e~"—1) = 1.02an. Therefore,

0.687°yp

0.9475,,(9%) < 1.02am(Sn(2))— + 0.27S, (v?) + -

Zn+41-

Dividing both sides of the last display by 0.947, we get

0.73nvyp _ 1.072p41

Sn(9?) < 1.09a(S,(2))- +0.2138,,(v?) + - ;

This completes the proof of the lemma.
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B.5.3 PROOF OF LEMMA 7

We write inequality equation 36 for all indices k and multiply both sides of it by 0" ~*. Summing the
obtained inequalities and applying Lemma 3, we obtain the following:

2°p
15(1 - o)’

where the left-hand side is obtained using Lemma 3 and the fact that F,, > 0. Rearranging the terms
and dividing by 2, we obtain

2(0 — 1)S,(F) — 20" Fy < 2091 Sy (2) + 0.0.182n8,, (v?) +

n 2y 2P
—aonSp(z) < 0"Fo + (1 — 0)Sn(F) +0.0.1821S,, (v°) + ———.

15(1 - o)
Since the right-hand side of the last display is nonnegative, we infer that

2n%p

o (nSn(2))— < 0"Fy + (1 — 0)Sn(F) + 0.0.1821S,, (v?) + 51— o)

which coincides with the claim of the lemma.

B.5.4 PROOF OF LEMMA 8

In view of Lemma 5, we have
|znt1] < (67" 4 0.30%) 20| + 1llgnll?, + n(0.2[|vnllf, + 0.20%(lgnll7, + 0.02777p)
< 0.56([|gnllL, + [[vnllL,)? 4 0.0027yp
2
< 0.56(llgn — Vf(Lnn)llLs + 1vn — VarllL, + v/ Mp +/Ap)~ + 0.00277p,

where we have used the facts |V f (L)L, = [ |V f]|? dr < Mp (Dalalyan & Karagulyan, 2019,
Lemma 3) and E[||V,,,||?] = 7p. Finally, one can note that

Hgn - vf(th)”]Lz + ||'Un - ‘/;Lh”]LQ < 0-57”19” - th”ILg + ||'Un - Vnh”ILg
0.5”'0” - Vnh + 7(19n - th)”]Lg + 1-5””” - Vnh”]Lz

\/5/72xn-

<
<

Therefore,

zns1] < (1192, + 1.09y/7p)° + 0.0027vp < (1.19z,, + 1.14,/7p) "

This completes the proof of the lemma.
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C THE PROOF OF THE UPPER BOUND ON THE ERROR OF RKLMC

Consider the underdamped Langevin diffusion
dL, = V,dt,  where  dV; = —vV,dt — yVf(L;) dt + V27 dW, (46)

for every ¢ > 0, with given initial conditions L and V{). Throughout this section, we assume that
Vo ~ N,(0,~1,) is independent of Ly, and the couple (Vj, L) is independent of the Brownian
motion W. We also assume that L is drawn from the target distribution 7; this implies that the
process (L, V;) is stationary.

In the sequel, we use the following shorthand notation
n=n~h, g=VF, fn:f('&n)a gn:g(ﬂn)7 gn+U:g('l9n+U)> M’Y:M/'Y-

The randomized midpoint discretization—proposed and studied in (Shen & Lee, 2019)—of the
kinetic Langevin process equation 51, can be written as

1 _ e—Un Uh Uh _
Opiv = + — - / (1—e " Wh=))ds V f, + V2 / (1 — e 7Uh=9)) aw,
0 0

1_ e 1 — e~ n(1=0) h -
19%-1—1 = ﬁn + c Up — 1) c vfn-i—U + \/5/ (1 - eiv(his)) dWs
Y Y 0
h
Vg1 =vpe T —ne YPTUMVE b+ V2 / e 1) AW, (47)
0
where W, = Wih+s — Whn. We rewrite these relations in the shorter form
7-9n+U = 7971 + 7_177(U07117n - U27781 gn + U V 2U'V77 5—151) (48)
Oni1 =D +77'0(G20n — nB2 gnrv + /271 52£2) (49)
Un41 = Un — N2V — 20Bsgniv + /271 03€s (50)

where &1, 1, B2, B3 and &, are positive random variables (with randomness inherited from U only)
satisfying

a <1,  Bi<1/2,  Ba<1-U<K1, pBs<1/2,  6i<1/3

and E[B,] € [0.468, 0.5]. Similarly, &z, &2 and &3 are positive real numbers depending on y and h
such that

ar <1, F2<1/3, i<l

We define

Upy1 = Eylvng1], Oni1 = Ey[nqa].

The solution to SDE equation 46 starting from (v,,,1,,) at the n-th iteration at time h admits the
following integral formulation

t
L, =9, + / V!ds
0
t t
Vi =wvpe™ " —y / e IV (L) ds + V2 / e AW, (51)
0 0

These expressions will be used in the proofs provided in the present section. Furthermore, without
loss of generality, we assume that the f(6,) = mingerer f(6) = 0.

C.1 SOME PRELIMINARY RESULTS

We start with some technical results required to prove Theorem 2. They mainly assess the
discretisation error as well as discounted sums of squared gradients and velocities.
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Lemma 9 (Precision of the mid-point). For every h > 0, it holds that

_ 2
180 = Lnllee <5~ Myn?e™ 2 (0,065 | gu s + (1/6)[onll, + /vw/54)

Lemma 10 (Discretization error). Let (L}, V') be the exact solution of the kinetic Langevin diffusion
starting from (O, vy,). If v =2 M and h > 0, it holds that

B M2 eMm?/2
Wi = Lhlls € = (0.0650gn s + (1/6) fonu + v/rp/54)

2
U
%(O.MMWQ +1)lgnL.

941 = Villa < M2 2 (006509 . + (1/6)[oall. + Virip/54)

V[ Fns1 = FngallL, < Myn?(0.26]|v, ||, + 0.1064/77p) +

2
[Vns1 — Bt lle < Mon?(0.82]0n]lL, + 0.41,/77D) + %(0.55]\@7 + 1)\ gnll,,-

Corollary 4. If v > 2M and n < 1/5, it holds that

YNOns1 — L, < M3n>(0.038n]gn L, + 0.098| v, |, + 0.084/77p),
NOni1 = FngalL, < 77 0.578||gn L.+ 0.02([vy[lL,+ 0. 005\/W)7
”'ﬁn-‘rl - Vh/H]Lz <M 77 0. 06677||gn||]Lz+ 0. 168||'Un||le+ 0. 137\/W)a
[Vn41 = Ongall, < 7?( 0591\ gnlf; + 0.164]|v, |1, + 0.082,/77D).

Proposition 3. Ify > 5M and n < 1/5, then, for any n € N, the iterates of the RKLMC satisfy

2

AAAA

B . 10.6
nz 0" Flor]l2, < 18.80"VE[fo] + 3.92(xn + 1.5y7p)% + 10647

= . 11.292p
1Y 0" Fllgell?, < 21.70"E[fo] + 4.88(zn + 1.5y7D)* + TW

1/2
where 0 = exp(—mh) and @, = ([vn = Vanll2, + [[vn = Vin +7(9n — L) |2,) 2.

Proof of Proposition 3. We use the same shorthand notation as in the previous proofs and assume
without loss of generality that 8, = 0. Let us define z;, = E[v, gx], and

Sn(2) =Y 0" *a, Su(g?) = 0" " llgxls, .
k=0 k=0

Sn(f) = Z " PE[ i), Sn(v?) = Z @”7k||vk\|12@ :
k=0 k=0

We will need the following lemma, the proof of which is postponed.

Lemma 11. For any v > 0 and h > 0 satisfying v > 5M and any n < 1/5, the iterates of the
randomized midpoint discretization of the kinetic Langevin diffusion satisfy

[vns1llE, <(1 = 1.470)|valIf,— 26onE[v,, gul+  20%||gnll2, +2.12y0p  (52)
Efv,,1gn+1] < 0.51n|[vn |12, + (1 — a2n)Efv,l gu]— 0.97n||gu[I,+0.97%yp  (53)
VE[fr1— fo] < 02807 ||vnlf,+ aznEv,, gn]— 0.461%(|g, |7, + 0.097°yp.

From the first inequality equation 52 in Lemma 11, we infer that
SH(v?) < (1 — 1.479)S, (v?) — 20915, (2) 4+ 202 S, (g%) + 2.12+%*p/m.
In view of Lemma 3 and the fact that [|vo |7, = ~p, this implies that
1.4718,, (v?) 4 242105, (2) < Sn(v?) — S (v?) + 2128, (¢%) + 2.12v%*p/m
< (1= 0)Sn(v?) + 207 Sn(9?) + 2.129%p/m + yp.
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Note that 1 — o < % < 0.027. Therefore, we obtain
2.14~2
(1.47 — 0.02) S, (v2) + 2G2S, (2) < 20Sn(g2) + mz L

that is equivalent to

1.48v?p

S, (v?) € 1.38a25,,(2)_ + 1.3815,,(¢%) + o

(54)

The second step is to use the second inequality equation 53 of Lemma 11. Note that m#n/v < 1/500
implies 1 — ¢ > 0.998m1n/~. It then follows that

SH(2) = (1 — agn)Sn(z) — 0.97S,,(g*) + 0.511S,, (v?) + 0.99v*p/m.
This inequality, combined with Lemma 3, yields
0.9775,(9%) < —(@2n + 0 — 1)Sn(2) + 0.5195, (v%) + |2n11| + 0.9y p/m
< @nSn(2)— +0.511S,, (v?) + |znr1| + 0.9772p/m.

This can be rewritten as

1.03| 241 N 0.937217.

Sn(g?) <1.03a28,(2)_ + 0.538, (v?) + ., -

(55)

Let us now proceed with a similar treatment for the last inequality of Lemma 11. Applying Lemma 3,
we get S31(f) > 0Su(f) — 0" Elfo] > (1 — mn/7)Sa(f) — 0™ E[fo], which leads to

2,2
—mnSi(f) < @ ELfo] + 028128, (v2) + GanSi (=) — 04675, (g7) +0.00L L.
From this inequality, and the Polyak-Lojasievicz condition, one can infer that
P
@28 (2)— < 0" TYE[fo] /0 + 0.28nS,, (v?) + (0.5 — 0.461) S, (g%) + 0.09 . (56)
Combining equation 56 with equation 54, we get
Sp(v?) < 1.38(9"*17E[f0}/77 402805, (v2) + (0.5 — 0.461) S, (g2) + 0.0970 L p)
1.482
+1.387S, (g2) + — L2
mn
Since 7 < 0.2, it follows then
1.80" 2
5.0%) < 08(5,(6%) + 22 () 4 22 57
mn
Similarly, combining equation 56 and equation 55, we get
Sn(g?) < 1.03(9”7151[]”0]/17 + 02805, (v2) + (0.5 — 0.467) S, (¢2) + 0.09 2 p)
1.03|z, 0.93
10,5380 (0?) 4 L0l 0937
n m
Since 1 < 0.2, it follows then
1.940™ 1.94|z, 0.94~2
Su(g?) < 1058, (02) + 2248V gy L9zl L, (58)

Equations equation 57 and equation 58 together yield

1.80" 22 1.940™
Su(?) < 084(Su(g?) + == EL)+ ) + < B

mn

1.94| 241 n 0.9492p
n m

E[fo] +

1.94|z 41| n 1.78v*p
mn

3.460™y

< 0.845,(¢%) + E[fo] +
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Hence, we get

21.70" 12.2|z, 11.29%p
Sulg?) < T ) 4 22| | 1207p

Ul Ui mmn

Using once again equation equation 57, we arrive at

12.2|2p41] n 11.292%p . 1.80" "1
n mn n mn

5.0%) < 0.8( L Bl +

which is equivalent to

18.80™ 9.8z, 10.6~2
Sn(v2) < #E[fo] + |Zn41] + Y p.
n n mn

To complete the proof of the proposition, it remains to establish the suitable upper bound on |z, 1]
To this end, we note that

=

”071 - thH]L2 + \/J\/Tp
2{[y(Fn — th)H]L2 +/0.27p
3(zn + 1.5v/7D)

[vn — Vnh“]L2 +Vp

[vn — Vnh||1L2 + VP

ZTn + /YD

Then, following the same steps as those used in the proof of the second inequality of Lemma 11, one
can infer that

1gnllw,
0.
0.

[onllL,

VA A/ A/AN/ANV/A

20| +0.97]lgn 12, + 0.517|vn[Z, + 0.099*yp
Ignll. lvnllL, +0.1]lgallf, + 0.051[Jv, |2, + 0.001yp
1.1|gnIf, + 0.301]|v,||f, + 0.001yp

0.099(x,, + 1.5,/4p)* + 0.301(z,, + 1.1/p)?

0.4(zn + 1.5p)°

This completes the proof of the proposition.

‘Zn+1|

<
<
<
<
<

C.2 PROOF OF THEOREM 2

Let 9,4, %011, Vnt1 be the iterates of Algorithm. Let (L;, V;) be the kinetic Langevin diffusion,
coupled with (¢,,,v,) through the same Brownian motion and starting from a random point
(Lo, Vo) o exp(—f(6) — %[[v[|?) such that Vj = wv,. Let (L}, V{) be the kinetic Langevin
diffusion defined on [0, k] using the same Brownian motion and starting from (9,,, v,, ).

Our goal will be to bound the term «,, defined by

_ Un — Vnh
el

with C = [Ip OP} .

L, I, 11,

To this end, define

Upt1 = Eyfvn4], g1 = Ey[Pn41]
Since (V(n+1)h, L(n+1)h) are independent of U, we have

2 _
v 1 — Vn 1)h
+|lc |t (n+ ]
L, H ["9n+1—L<n+1>h

2

2 Un+1 — 'Bn-&-l
T =||C 3
et H [’197#1 - ’l9n+1]

Lo
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Using the triangle inequality and Proposition 1 (See also Proposition 1 from (Dalalyan & Riou-Durand,
2020)), we get

‘ C [’l:?nﬂ Vint1)n ] H {anrl } n HC [‘_/;{ - V(n+1)h]
ﬁn+1 - L(7L+1 n+1 Ly L/h - L(n+1)h Lo
efis ]| -
n+1 Lo "

where o = e~™". Combining these inequalities, we get

2 2 2
Th41 < (an + yn+1) + Zn+1

where
2

v -V
n —|lC Yn+1 h
=525 7]

VUn+1 — f)nJrl
z =||C 3
e H [ﬁnﬂ - ﬁn+1]

]LQ ]L2

This yields®

n n 1/2
< gt Yo (32
k=1 k=1
1/2 1/2
< o 1 S n—k, 2 / - 2(n—k) 2 /
< o0'xo + I_QZQ Yk + ZQ 2k ) s
k=1

k=1
where the second inequality follows from the Cauchy-Schwarz inequality and the formula of the sum
of a geometric progression. Using the fact that | Cla, b] " ||? = |la||? +||a+7b|? < 3]|al|® +2v2|b]|%,
we arrive at
yn+1 <3l|Tnt1 = VRIE, + 20° 19041 — L2,
1 <3lvnts = BnaallE, + 29 [9ns1 — D lIE,-

‘We then have

1.0017 & s o )2
Tn < Q" Z "Bllox = ViliZ, + 29219k — L3 |I2,)
k=
) 1/2
; (Z P00 B, — 042, + 29205 — ﬂuﬁ)) . (59)
k=1

By Corollary 4, we find

2
ok = VilI2, < Min® (0.0667) gkl +0.168 w1 |, +0.137y/77p)

< 0.2°My* % 0.0514(n*|lg-1 2, + lvr-rlIZ, +mp),

P9~ L2, < M (0.0389lgi 1 e, + 0.098 v 1 e, +0.084/77p)
< 0.2°M,n® % 0.0002(7°||gr-1l1E, + [loe—1lE, +nyp)
s — 4112, < n* (0,591l gi e, + 0164wy e, +0.082y/7775)

/A

n* x 0.39(|lgr-111, + llve-1lZ, +n7p),
_ 2
V9% — 9ill, < n* (0-578Hgk—1||mz +0.02[|v—1|lL, + 0-005\/777]9)
<n* % 0.32(|lgr-111E, + llve-1llZ, + n7p)

%0ne can check by 1nduct10n that if for some sequences x, Yn, 2» and some p € (O 1) it holds that

221 < (0Tn + Ynt1)? + 2211, then necessarily z,, < 0"xo + S r_, 0" Fuyr + (Xr_y 02" 222 for
every n € N.
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Therefore, we infer from equation 59 that
~y n 1/2
Ty < Q"xo+<m77 > 0.22Myn® x 0.0310" * (*llgkli?, + llvkll?, + mp)>
k=0

n 1/2
+(Z 182427 (g2, + [loxl, + mp)) .
k=0

From Proposition 3 it then follows that

n
e " 10.8v2%p
1Y 0" (P llgkllE, + lvkl?, +nyp) < 18.90"vE[fo] + 3.97(z, + 1.5/7p)% + -
k=0
(k) 2 2 < 40.50"E 2, 21.99%p
ny e (llgrllz, + llvells, +mvp) < 40.50"1Elfo] +8.8(2n + 1.5y/7p)" + =~
k=0
This yields

" 3 " 5 10.8y%p\1/2
T < 0"x0+0.0367 ﬁ(18.9g ~vE[fo] + 3.97(z,, + 1.5/7D)° + T)

4072py 1/2
32 (74@”7]E[f0] 4 16(zn + 1.5\A0) + —;L p)
< 0"+ (0.0720°Vr + 403/ ), + (0.160° /K + 8.7/ )/ 0" E[ fo]
+0.1203y/kp/m + 6.40° 2 \/p/m.

‘We assume that 77,%1/ 6 < 0.1, which implies that

Ty < 0"z + 0.0722, 4+ 0.161/0"vE[fo] + 0.120°y/kp/m + 6.40° %~/p/m.

Rearranging the display leads to

Ty < 1.080"xo + 0.18V/0"yE[fo] + 0.1203y+/kp/m + 6.9n°/%~\/p/m.

Finally, we use the fact that o = YW, (1, 7) and x,, > YWa (v, 7)/V/2 to get the claim of the
theorem.

C.3 PROOFS OF THE TECHNICAL LEMMAS

We now provide the proofs of the technical lemmas that we used in this section.

C.3.1 PROOF OF LEMMA 9

By the definition of 9,17, we have

Uh
nsv — L]l < H | e (s, - Vi) as

Uh
< [ a-enwroy s - vr)|as
0
1
:Uh/o (1= e Un0=0)||V (L)) — V(L) | dt

1
< MhnU2/0 (1 —1)||Lo — Ly || at,
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where in the last inequality we have used the Lipschitz property of Vf and the inequality 1 —
e~Un(=1t) < Un(1 — t). By taking the expectation wrt to U, we get

1 2
Ev|[9n+v — Ly |I* < M*h*p°Ey [U4{ / (1 =1)|| Lo — Lype| dt} ]
0

21.2,.2 1
Mh”EU[U‘l/ HL()—L’UMHth}
0

N

3

M2h2 2 1
T”EU[U?’]/O Ly — L || at.

N

Hence, we obtain in view of eq. (42)
M2p2n? [
90 = Zill, <~ [ 126 = I,

M2h2p2eMm® 1 2~2p(ht)3 ht)?
< ?77/ 2p(ht)* | T ~(ht)
12 0 3 2

2
@)
—2M2 Mvn 2
< (V@I + VI ol + VOIS0V O] |
Taking the square root of the two sides of the inequality, we get the claim of the lemma.

C.3.2 PROOF OF LEMMA 10

By the definition of 9,, 1, we have

9 = Tl = B b1 = )V (0,00)] - [ h (ke”(h*s))Vf(L;)dsH
_ HIEU[h(l—e’V(h’Uh))anJrU} — hEy (1= e M)V £(L)]|
< BBy [(1= e O [V fiir = VF (L) ]
< Mn*Eg [(1 = U)l[8nro — Lol

where in the last inequality follows from the smoothness of function f and the fact that 1 —
e~ 7(h=Uh) < ~(1 — U)h. Using the Cauchy-Schwarz inequality, we get

1941 = L |I* < Min*Eu[(1 = U)*| By [[|9n+v — Linll?]

M27’]4
= Ev [[9n+v — Lyl

By Lemma 9, we then obtain

_ M. 772
[9nt1 = LI, < %WHU — Lyl

M2 5oMyn? /2

< = (00650l . + (/) foalls -+ (1/7) 7).

This completes the proof of the first claim.

Using the definition of 1,1, and the fact that the mean minimizes the squared integrated error, we
get

19ns1 — Fnplli, = hH (1- e—vh(l_U))vfnw ~Ey[(1- e—’yh(l—U))vfnJrU] HL

<A (1= e D)V — By 1 - MO0,

2
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Recall that U = 1 — U, combining this with the last display and the triangle inequality yields
91 = Bl < A (1= ) (Vs = V1) |+ ]| (77 Bl v |
< My?||U(Ongv = 90) ||, + Bl U|l. l|gn .- (60)
In view of equation 48, we get
(1= ) @i = Ba)ll7, = E[(1 = 0 (Iltn/7) Uervn — U*nBrga) |2 + (2/3)0%"p/7) |

< Ploall, | n'llgall?,  n'p
T 1592 210~2 90~

In addition, |1 — U||L, = 1/1/3. Therefore, we infer from equation 60 that

3 Myn® ||vnllL mp\ | 0P (My? 1
g1 — Iy < ( 2 4 7) + *( I 4 *) nllLs-
|| +1 +1||H.42 v \/ﬁ 90 v \/m \/g ||g ||]Lz

Numerical computations complete the proof of the second claim.

By the definition equation 50 of v,, 1, we have

h
[ Vh’||IL2 = ’YHEU [he—'y(h—Uh)anJrU] _/ e_'Y(t—S)Vf(L’s) ds
0

Lo
< [he =G o — he UG p (L) ||
2

< Myh||9niv — Lip L,
By Lemma 9, we obtain the third claim of the lemma.

In view of equation 47, and the fact that the expectation minimizes the mean squared error, we have
_ — 1— —vh(1—
[on1 = Bnsallie = b e MO g — By [ MOV ||
2

<MDV — By [0 v,

Ly
The last display, the notation U = 1 — U and the triangle inequality imply that
lvni1 — OngillL, < ’YhHeinU(vfn-%U - an) ||]L2 + 'VhH (einU - EU[G*UU])VJE"HLQ
< MR Onsvr = Oy, + 0] (77 = 1) V|,

2
Ui
< MAh||9nsv = |, + ﬁngnub. (61)
In view of equation 48, we get
2 _ —
[Bnsv = 97, = E[lln/7)Uarvn — U*nBr ga)|1* + (2/3)0°U%p/4
2 2 4 2
A P )
372 102 6y
The last claim of the lemma follows from the previous display and equation 61.
C.3.3 PROOF OF LEMMA 11
From equation 48, equation 49 and equation 50, it follows that
VNOnsv = Oull, <Undrvn = (Un)*Brgall?, + (1/6)n°yp
< 20%/3)lonllE, + (" /10)llgnlE, + (n*/6)7p (62)

and

< nllvnlle, + 057 gnrvllL, + v/ (2/3)n*vp

< Nllvnll, + 0.59°(|gnllL, + 0.5My || ntv — OnllL, + V/(2/3)n3yp

< 1.0017||vn ||z, + 0.50192[|gn |, + /0.6773p (63)

’Y||19n+1 - ﬁnH]Lz
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where in the last step we have used equation 62 and the fact that M, n?/2 < n*/8 < 1/200. A bit
more precise computations also yield

2
= 12 N
NInt1 — OnllL, < {(llvall, + 0°l1B2gnllL.)? + 3y0°p} "~ + o lgniv = gnlle,

My
2

2 2 1/2
<A{llvalle, + Z5llgnlle.)” + 390°p} " + 35719010 — Fnllr.

9 5 1/2
< {(ﬁ\lvn\\h + %HQHHLQ) + %'777319} + Vnv — YnllL,

Taking the squares of this inequality, we get
2 2 .
’YQHﬁn+1 - ﬁn”%& < (nanHLz + %HQnHLz) + %’Yndp + 1(1)7077472“1971,+U - 19””]%2
2 2 1/2
+ 3{ (lonlle. + Z5lgallis)” + 390°p} 11900 — Fallu,
2
< (14 %Onzw{(llvnllh + ZElgnll)” + 3mvp + 157210040 — ﬁn\\ifz}
2
<1012 { (loalle + Zllgnllie)” + 20w+ 019290 = BallZ, }
< 0.680° (3llvnllZ, + n*llgnll?, +mvp). (64)
This implies that for v > 5M and ) < 1/5, we have
[ontallf, < (1 —an)?|loallf, —4n(1 — a2n)E[B2v, gniv] + 0*Ignsollf, + 2070
+ 20V 20p|gn+v — gnllL,
< (L= aen)’|lonllf, — 4n(1 — a2n)E[B2v, gntv] + n?llgn+vllE, + 2mp
+ 2Mm/ 20pl|Y(Fnsv — On) L,
< (L —naz)*|loallf, — 4n(1 — na2)E[B2v, gntv] + n?llgn+vlE, + 2-17p
+20(Myn)* [y (Sns0 — 90) |2,
< (1= @)?|wal2, — 26on(1 — na)Elo] gu] + 112 gul2, + 2.1i9p
+ 2M’Y77||'Un||1Lg Iv(Fntv — "9n)||ILQ + 31(M'y77)2||7("9n+U - ﬁn)Hiz
< (1= aan)’|[vnll?, — 2a2n(1 — nas)Elv,) gn] + 1.10%(|gnl1?, + 2.197p
+02M 0 [va |12, + 5M [V (Onrv — 9012, + 3L(My0)? [V (Fntv — ),
< (1= agn)®[lvall, — 2a2n(1 — a2n)Efv, gn] + 1.10%(|gnll, + 2.1n7p
+ O'2M7772||vn||1%2 + 5'4MW||’V(197L+U - 1971)”]%2-

Since for < 0.2 we have @z > 0.9, we get (1 — a9n)? + 0.2M,n? + 5.4M,(2n*/3) < (1 —
0.91)2 4+ 0.0087 + 0.16n < 1 — 1.475. Therefore,

[ont1ll?, < (1= 1470)|lvallE, — 2a2n(1 — na2)Elv, ga] + 1.120°||gnlI, + 2-1277p.

The next step is to get an upper bound on E[v;'— +19n+1] — IE[v,;r gr] in order to prove equation 53. To
this end, we first note that

< an”]LQ +77Hgn+U||]L2 + 2777]9

< vall, +7llgnllL, + MWUH'Y(‘%H-U —9)[lL, + v 2n7p

< 1004 ([lvnll, +1llgnllL, + v/207p). (65)

[Vl

From equation 63 and equation 65, we also infer that

YMvntallL, [9ns1 — FnllL, < 77\/3(1'0012 +0.5012 + 0'34)(”1]71”]%2 + 772”971”1%2 + 277'7]?)
< 2.2n([lvaliE, + n?llgnllE, + 207p)-
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Therefore, this bound and some elementary computations yield

E[v,419n+1] < E[, gn] + E[,41(gni1 — gn)] + E[(vnt1 — va) " g0
< E[w, 9] + M [vnt1 [l 170041 — 90, — a2nElv, gn] — 1Elg,) gn-v]
< (1= an)E[vy, ga] + M vt L1y (Ons1 = On)ll. — nllgnll?,
+ MonllgnllL. [V v — On) L,
< (1= aonE[v, gl = nllgnllt, +2.2Mn([loall2, +1°llga 2, + 2m7p)
+ Mollgale, (3 loal, + 52 lgnll2, + Smp)
< (1= aon)Elv, ga] = nllgnll?, +2.2Myn(llvallZ, + n*llgnllf, + 2n7p)
+0.5Myn (3 vnllE, + 1577 llgnllZ, + grvp).
Grouping the terms, and using the fact that A/, n < 1/25, we arrive at

E[v,419n41] < (1= Gon)E[v, gn] = 0.97nllgnE, +2.54Mynl|vnl|E, + 4.5My777p
< (1 — azn)E[v, ga] — 0.97nlgn|F, + 0.51n]vnll?, + 0.997°p.
Similarly, using the Lipschitz property of V f and equation 64, we get

VE[frt1 = fa] S AElg, (Ons1 — 90)] + (My/2)[|[7(9ng1 — 90)IE,

= Elg,, (a2nv, — 1°Bagniv)] + 0.070° Bllwallt, +7*llgnl?, +mp)

< agnElw, gn] — 71°E[B2]|lgnllf, + 0.20°||gnllL, 1V (Ons0 — 9n)lL,
+0.077*3|vn1F, + 7 llgnll?, + nvp)

< agnElv, gn] — 7°E[B2]llgnll?, + 0.1n*||gnllf, + 0.1y (Sntv — 9)|E,
+0.077*(3|vnIE, +1°llgnll?, +nvp)

< agnE[v,) gn] — 0.468n%(|gnll?, + 0.17"[lgn1Z,
+0.079%||v, |2, + 0.019*||gn |2, + 0.020>yp
+0.077*(3[lvnllf, + n*(lgnllf, + myp)-

Grouping the terms, and using the fact that M.,n? < 1/50, we arrive at

VE[fri1 — fn] < G2nE[v, gn] — 0.460%||g,|I7, + 0.287%||v,,[|Z, + 0.097%p.

This completes the proof of the lemma.
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