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A RELATED WORK

In this work, we consider the exploration strategy under the principle of Optimism in the Face of
Uncertainty (OFU) (Auer et al., 2002), especially in the heteroscedastic stochastic environment. We
aim to improve exploration efficiency, and alleviate the over exploration issue caused by aleatoric
uncertainty.

Basic exploration strategies, like ǫ-greedy (Sutton & Barto, 2018), noise perturbation (Lillicrap et al.,
2016), entropy regularization (Mnih et al., 2016) and stochastic policy (Haarnoja et al., 2018), lead
to undirected exploration through random perturbations. With the increasing emphasis on explo-
ration efficiency in RL, various exploration methods have been developed. One kind of methods
uses intrinsic motivation to stimulate agent to explore, such as count-based novelty (Martin et al.,
2017; Ostrovski et al., 2017; Bellemare et al., 2016; Tang et al., 2017; Fox et al., 2018), prediction
error (Pathak et al., 2017), reachability (Savinov et al., 2019) and information gain on environment
dynamics (Houthooft et al., 2016). Some recent methods, originating from tracking uncertainty,
guide efficient exploration under the principle of OFU, such as Thompson Sampling (Thompson,
1933; Osband et al., 2016), IDS (Nikolov et al., 2019; Clements et al., 2019) and other customized
methods (Moerland et al., 2017; Pathak et al., 2019).

The base of OFU methods is to model epistemic and aleatoric uncertainties in RL. Bootstrapped
DQN (Osband et al., 2016) has become the well-used approach for capturing epistemic uncertainty
(Kirschner & Krause, 2018; Ciosek et al., 2019), and distributional RL methods (Bellemare et al.,
2017; Zhou et al., 2020; Dabney et al., 2018a;b) are used for capturing aleatoric uncertainty. How-
ever, most traditional OFU methods do not distinguish the two types of uncertainty, which can easily
lead the naive solution to favor actions with higher variances in stochastic tasks, i.e., over-exploration
issue.

To address that, Mavrin et al. (2019) study how to take advantage of value distribution for effi-
cient exploration under both types of uncertainty, proposing Decaying Left Truncated Variance
(DLTV) based on QR-DQN. Besides, Nikolov et al. (2019) and Clements et al. (2019) propose
to use Information Direct Sampling (Kirschner & Krause, 2018) for efficient exploration in RL,
which formulates epistemic and heteroscedastic aleatoric uncertainty and maximizes information
gain on globally optimal action to explore informative state-action pairs. However, such methods
are complicated when deriving a behavior policy and is limited to discrete control.

Meanwhile, there is not any strategy that can help the well-performed continuous RL algorithms
(Haarnoja et al., 2018; Ciosek et al., 2019; Ma et al., 2020) to address aleatoric uncertainty when
exploration. OAC (Ciosek et al., 2019) proposes exploration bonus guided by the upper bound
of Q estimation to facilitate exploration based on Soft Actor-Critic (SAC) (Haarnoja et al., 2018).
Nevertheless, OAC ignores the potential impact of the aleatoric uncertainty, which may cause mis-
leading exploration. Our proposed OVD-Explorer is a novel exploration strategy, which can guide
agent to explore towards higher epistemic uncertainty, and also avoid the areas with high aleatoric
uncertainty, improving the robustness of exploration especially facing heteroscedastic aleatoric un-
certainty.

To capture aleatoric uncertainty, OVD-Explorer models the value distribution and uses mutual in-
formation to guide exploration following the principle of OFU, measuring the correlations between
the policy distribution and upper bounds distribution of return. There are some other information-
theoretic exploration strategies using mutual information, such as VIME (Houthooft et al., 2016),
which measures the information gain on environment dynamics, and EMI (Kim et al., 2019), which
generates intrinsic reward using prediction error of representation learned by mutual information.
Those methods can solve sparse reward problem very well by using intrinsic reward. Nevertheless,
those exploration methods use mutual information neither on the value distribution, nor for OFU-
based exploration. Besides, unlike the mechanisms used in measuring mutual information, such as
variational inference (Hinton & van Camp, 1993; Houthooft et al., 2016) and f-divergence (Nowozin
et al., 2016; Kim et al., 2019), we find the correlation between policy and upper bounds of return
through uncertainty as shown in Theorem 1, thus we can directly derive the close form exploration
policy.
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B PROOFS

B.1 PROOF OF THEOREM 1

In order to prove the Theorem 1, we first propose the following lemma about Fπ(s).

Lemma 1. The mutual information of Z̄π(s, a0), · · · , Z̄
π(s, ak) and π(s) at state s is:

F
π(s) =

∑

a∼π(a|s)

E
z̄(s,a)∼Z̄π(s,a)

[

p(a|z̄(s, a), s) log
p(a|z̄(s, a), s)

π(a|s)

]

, (18)

where p(a|z̄(s, a), s) represents the posterior probability distribution of policy given current state s
and the sampled upper bound of return z̄(s, a).

Proof. For simplicity, we assume that k = 2, and derive the mutual information among three random
variables MI(Z̄π(s, a), Z̄π(s, a′), π(s)), where a 6= a′.

Considering the formula for the mutual information, Fπ(s) is derived as follows:

F
π(s) = MI(Z̄π(s, a), Z̄π(s, a′), π(s)|s)

=
∑

a∼π(s)
z̄(s,a)∼Z̄π(s,a)
z̄(s,a′)∼Z̄π(s,a′)

[

p(a, z̄(s, a), z̄(s, a′)) log
p(a, z̄(s, a), z̄(s, a′))

π(a|s)p(z̄(s, a), z̄(s, a′))

]

=
∑

a∼π(s)
z̄(s,a)∼Z̄π(s,a)
z̄(s,a′)∼Z̄π(s,a′)

[

p(a|z̄(s, a), z̄(s, a′))p(z̄(s, a), z̄(s, a′)) log
p(a|z̄(s, a), z̄(s, a′))

π(a|s)

]

=
∑

a∼π(s)

E
z̄(s,a)∼Z̄π(s,a)
z̄(s,a′)∼Z̄π(s,a′)

[

p(a|z̄(s, a), z̄(s, a′)) log
p(a|z̄(s, a), z̄(s, a′))

π(a|s)

]

,

where the posterior distribution p(a|z̄(s, a), z̄(s, a′)) is the probability of choosing action a on the
condition of the samples from upper bounds of action a and a′.

Considering that in the decision-making process, the probability of action a is independent to the
upper bound of other actions, which means that p(a|z̄(s, a), z̄(s, a′)) = p(a|z̄(s, a)). Therefore,
F

π(s) can be further reduced as follows.

F
π(s) =

∑

a∼π(s)

E
z̄(s,a)∼Z̄π(s,a)

[

p(a|z̄(s, a), s) log
p(a|z̄(s, a), s)

π(a|s)

]

. (19)

Lemma 1 tells that the mutual information F
π(st) is in direct proportion to p(a|z̄(s, a), s), which

measures how much it is worth acting under the current policy π(a|s) when the upper bound is
known.

Next, to measure the posterior probability p(a|z̄(s, a), s), we use a general and practically effective
approach (Wang & Jegelka, 2017; Belakaria et al., 2020; Perrone et al., 2019; Li et al., 2020) of
approximating the posterior probability given upper bound value.

Specifically, we approximate p(a|z̄(s, a), s) using the prior that zπ(s, a) ≤ z̄(s, a) with given pol-
icy π(s, a), since z̄(s, a) is the upper bound of zπ(s, a). Hence, we use the indicator function
1zπ(s,a)≤z̄(s,a) to truncate the policy π(s, a), and utilize the constant C to normalize the probability,
as is shown in the following equation.

p(a|z̄(s, a), s) =
1

C
π(a|s)Ezπ(s,a)∼Zπ(s,a)

[

✶zπ(s,a)≤z̄(s,a)

]

.

Here, Ezπ(s,a)∼Zπ(s,a)

[

✶zπ(s,a)≤z̄(s,a)

]

= ΦZπ(s,a)(z̄(s, a)), where Φx is the cumulative distribu-

tion function (CDF) of x, Z̄π and Zπ are the random variables, whose distributions describe the
randomness of the returns, and z̄(s, a) is the value of random variable Z̄π .
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Therefore, the posterior probability can be measured as follows,

p(a|z̄(s, a), s) =
1

C
π(a|s)ΦZπ (z̄(s, a)). (20)

In our method, we do not use the commonly used mechanisms about mutual information such as
neural network estimation (Belghazi et al., 2018) and upper bound estimation (Cheng et al., 2020).
Instead, we can find the correlation between random variables as shown in Equation 20, which helps
to derive mutual information directly.

According to Lemma 1 and Equation 20, we can give the proof of Theorem 1 in the following.

Proof. By Combining Lemma 1 and Equation 20, Fπ(s) can be further derived as follows.

F
π(s) =

∑

a∼π(s)

E
z̄(s,a)∼Z̄π(s,a0)

[

p(a|z̄(s, a), s) log
p(a|z̄(s, a), s)

π(a|s)

]

=
∑

a∼π(s)

E
z̄(s,a)∼Z̄π(s,a)

[

1

C
π(a|s)ΦZπ (z̄(s, a)) log

π(a|s)ΦZπ (z̄(s, a))

Cπ(a|s)

]

=
∑

a∼π(s)

E
z̄(s,a)∼Z̄π(s,a)

[

1

C
π(a|s)ΦZπ (z̄(s, a)) log

ΦZπ (z̄(s, a))

C

]

=
1

C
E

a∼π(s)
z̄(s,a)∼Z̄π(s,a)

[

ΦZπ (z̄(s, a)) log
ΦZπ (z̄(s, a))

C

]

Here, the last equality follows from Theorem 1.

B.2 PROOF OF PROPOSITION 1

Proof. Similar to (Ciosek et al., 2019), we set the covariance matrix of behavior policy πE is that
of target policy πT , i.e., ΣE = ΣT . Hence, the OVD-Explorer problem is simplified as:

µE = argmax
µ

F̂(s)

= argmax
µ

, E
Z̄π

[

ΦZπ (z̄(s, µ)) log
ΦZπ (z̄(s, µ))

C

]

(21)

To ensure that the behavior policy samples actions around the target policy, we derive the πE upon

mean µT of target policy πT . In specific, we firstly obtain the gradient of F̂(s, µ) at πT , which is
given as follows:

∇aF̂
π(s, µ)|µ=µT

= EZ̄π

[

m̂×
∂z̄(s, a)

∂a
|a=µT

]

(22)

where m̂ is given as:

m̂ = φZπ(s,µT )(z̄(s, µT ))(log
ΦZπ(s,µT )(z̄(s, µT ))

C
+ 1), (23)

and φ(x) is the probability distribution function (pdf). Hence, the µE is given as follows:

µE = µT + αEZ̄π

[

m×
∂z̄(s, a)

∂a
|a=µT

]

, (24)

where α is the step size controlling exploration level and m = log
ΦZπ(s,µT )(z̄(s,µT ))

C
+ 1.

C ALGORITHM 2: OVD-EXPLORER FOR DSAC

In this section, we show the whole algorithm of our implementation of OVD-Explorer based on
DSAC in Algorithm 2. All the code can be found in the supplementary material.
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Algorithm 2 OVD-Explorer for DSAC

1: Initialise: Value networks θ1, θ2, policy network φ and their target networks θ̄1, θ̄2, φ̄, quantiles
number N, target smoothing coefficient (τ ), discount (γ), an empty replay pool D

2: for each iteration do
3: for each environmental step do
4: at ∼ πE(at, st) according to Algorithm 1
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each training step do
8: for i = 1 to N do
9: for j = 1 to N do

10: calculate δki,j , k = 1, 2, following Eq. 4
11: end for
12: end for
13: Calculate LQR(θk), k = 1, 2 using δki,j following Eq. 2

14: Update θk with ∇LQR(θk)
15: Calculate Jπ(φ), following Eq. 5
16: Update φ with ∇Jπ(φ)
17: end for
18: Update target value network with θ̄k ← τθk + (1− τ)θ̄k, k = 1, 2
19: Update target policy network with φ̄← τφ+ (1− τ)φ̄
20: end for

Table 4: OVD-Explorer parameters

Parameter Value

Training Discount 0.99

Target smoothing coefficient τ 5e-3

Learning rate 3e-4

Optimizer Adam (Kingma & Ba, 2015)

Batch size 256

Quantiles amount 20

Replay buffer size 1.0× 10
6 for Mujoco tasks

1.0× 10
5 for other tasks

Environment steps per epoch 1.0× 10
3 for Mujoco tasks

1.0× 10
2 for other tasks

Exploration Exploration ratio α 0.05

Uncertainty ratio β 3.2

Normalization factor C 0.5

D MORE DETAILS ABOUT THE EXPERIMENTS

D.1 GRIDCHAOS

GridChaos is an environment built on OpenAI’s Gym toolkit, whose map is shown as in Figure 3(a)
and Figure 5. In this section we illustrate more details in addition to Section 5.2.

The movable cyan triangle and the fixed symmetric dark blue goal are two parts split from square,
and the goal is to make the triangle embedded in the goal to recover the original square, which is
to say that it is an isosceles triangle whose base side is equal to the height. The triangle is always
initialised randomly in the cyan rectangle, and the black line in the map represents the wall, where
the triangle will be adsorbed once hits the wall. The state transition is stochastic, and we add
Gaussian noise to the action resulting in Gaussian transition probability.
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Figure 5: Map of GridChaos.

To represent the location of the triangle, we es-
tablish a Cartesian coordinate system using the
centroid of the map as the origin, as shown in
Figure 5. Then the coordinates of the triangle
are represented by the midpoint of the altitude
of the triangle which is shown as the red point
in the triangle. In the case shown in Figure 5,
the initial coordinate of the triangle (agent) is
in the negative half of the x-axis and the task
target is in the first quadrant.

D.2 BASELINES

Ma et al. (2020) shows the performance of DSAC and TD4, which is the distributional extension
of TD3 (Fujimoto et al., 2018), and can also be used to capture epistemic and aleatoric uncertainty.
Moreover, DSAC outperforms TD4 on Mujoco tasks as shown in Ma et al. (2020), so we evaluate
only on SAC and DSAC, and further implement OVD-Explorer based on DSAC to develop the
exploration ability.

SAC. The SAC (Haarnoja et al., 2018) implementation is mainly based on OAC repository, and the
results in Ant-v2 and Hopper-v2 are similar to reported results by OAC. Our SAC report a better
result than OAC’s implementation for SAC on HalfCheetah-v2, which is because the high variance
of this environment as explained as in OAC.

DSAC. The DSAC (Ma et al., 2020) implementation is based on our implementation of SAC, except
that the distributional Q function in the DSAC repository is used instead of the traditional Q function
in SAC. As it is based on SAC, we set the hyper-parameters of DSAC to be consistent with SAC to
ensure the fair comparison, which also results in the different reported results from original paper of
DSAC. In our results, DSAC can guarantee an absolute advantage over SAC in most cases, which is
consistent with the previous conclusion.

DOAC. The DOAC implementation is mainly based on our implementation of DSAC as well as
the open source code of OAC. As DSAC shows great advantage due to the distributional value
estimation, to ensure a fair comparison, we extend OAC (Ciosek et al., 2019) to its distributional
version, i.e., DOAC, by replacing the exploration process of DSAC by the behavior policy derived
by OAC. We set the hyper-parameters the same as used by OAC in Mujoco3, and our results of
DOAC on Ant-v2 and HalfCheetah-v2 are significantly better than that OAC reported.

D.3 IMPLEMENTATION

Our implementation of OVD-Explorer is based on the open source code of OAC 4, also refer to the
code of DSAC 5 as well as softlearning 6. All experiments are performed on NVIDIA GeForce RTX
2080 Ti 11GB graphics card.

The training process of OVD-Explorer and DOAC are the same as in DSAC, except for the different
behavior policy used, while OVD-Explorer and DOAC enrich the experience replay with the data
using the the derived exploration policies, respectively. To ensure the fair comparison, the hyper-
parameters for training process of baselines and OVD-Explorer are the same. Besides, we have three
hyper-parameters associated with OVD-Explorer as mentioned before, including α that controls the
exploration level, β that determines the magnitude of uncertainty we use, as well as C that is the
normalization factor. The hyper-parameters in our experiments are shown in Table 4.

E MORE EXPERIMENT STUDY

E.1 RUNTIME ANALYSIS

3That is given by the open source code, where βUB is 4.66 and δ is 23.53
4https://github.com/microsoft/oac-explore
5https://github.com/xtma/dsac
6https://github.com/rail-berkeley/softlearning

17



Under review as a conference paper at ICLR 2022

SAC DSAC DOAC OVDE_G OVDE_Q
0.0

1.0

1.2

Av
er

ag
e 

Ti
m

e 
Co

ns
um

pt
io

n

Figure 6: Runtime analysis. The data is from 1
trial of each algorithm on Noisy Ant-v2 task, and
the errorbar represents half of the standard devia-
tion.

Figure 6 shows the time consumption of al-
gorithms relative to SAC. As can be seen,
the distributional value estimation used in
DSAC, DOAC and our methods introduces ex-
tra time consumption distinctly. Nevertheless,
the relative time consumption of OVDE G and
OVDE Q to SAC is 1.21 and 1.17, respectively,
which means that OVD-Explorer spends about
20% more time than SAC to achieve up to
nearly 100% performance gain as shown in Fig-
ure 6(b). This demonstrates the extra time con-
sumption is well worth it. Besides, the time
consumption of OVDE Q is close to that of
DSAC, only with a larger variance, which in-
dicates that the additional time consumption of
OVDE Q is minimal while performing better
exploration.

E.2 ANALYSIS ABOUT OVD-EXPLORER’S ADVANTAGE IN THE CASE OF GRIDCHAOS

With the heatmap of the visiting frequency of agent during exploration, and the heatmap about the
uncertainty estimation, we can visually analyze the patterns and advantages of OVD-Explorer.

(a) (b) (c) (d) (e) (f)

Figure 7: State visiting frequency heatmap from 1.0 × 105 to 2.5 × 105 steps of one trial for (a)
OVD-Explorer, (b) DSAC and (c) DOAC. (d) Estimated aleatoric uncertainty of OVD-Explorer; (e)
Epistemic-aleatoric ratio of OVD-Explorer; (f) Estimated uncertainty for exploration in DOAC.

The distinctly different exploration patterns can be easily found. Figure 7(a), 7(b) and 7(c) present
the state visiting frequency of OVD-Explorer, DSAC and DOAC, respectively. We can see that
OVD-Explorer explores directly to the right half, where the environmental randomness is lower,
whereas DSAC and DOAC are both stuck in the left half with higher environmental randomness.

Furthermore, we show how OVD-Explorer could explore directly without being trapped by the ran-
domness through the estimated uncertainty. In specific, Figure 7(d) shows that the aleatoric uncer-
tainty estimated by OVD-Explorer is consistent with environment settings, where the environment
noise is higher on the left half. Figure 7(e) shows the ratio of estimated epistemic uncertainty and
aleatoric uncertainty (i.e., epistemic-aleatoric ratio) of OVD-Explore, and higher ratio means higher
epistemic uncertainty or lower aleatoric uncertainty, which is exactly the direction OVD-Explorer
explores . The ratio is larger on the right half, which means that OVD-Explorer can avoid being stuck
in the left half. Meanwhile, Figure 7(f) presents the estimated uncertainty in DOAC, which is larger
on the left half. As DOAC encourages exploring area with relatively large estimated uncertainty, it
explains why DOAC is stuck in the left half.

E.3 EVALUATION ON SEVERAL OTHER NOISE SCALE IN GRIDCHAOS

OVD-Explorer can explore efficiently in heteroscedastic stochastic environment by considering dif-
ferently about epistemic and aleatoric uncertainty for exploration as shown in Section 5.2. To further
empirically prove its strength, we test OVD-Explorer in GridChaos with different noise scales in
four quadrants, and the result is shown as Figure 8 and Table 5. We can find that OVD-Explorer can
perform well in all those different noise injection of environment.
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Figure 8: Training curves on GridChaos with noise of different scale. The x-axis indicates number
of training epoch (100 environment steps for each training epoch), while the y-axis is the evaluation
result represented by average episode return. The shaded region denotes half standard deviation of
average evaluation over 5 seeds. Curves are smoothed uniformly for visual clarity. These results are
corresponding to row A to row E in Table 5.

Table 5: The results for GridChaos. Noise setup shows the different setup for environmental het-
erogeneous Gaussian noise scale, and the corresponding four columns represent the noise settings
in the four quadrants of the Cartesian coordinate system, as shown in Figure 5, in which the goal
locates in the first quadrant, and the triangle is initialised in the second or third quadrants. Average
return shows the average episodic undiscounted return with half standard derivation in the last 100
epoch before totally 1250 epochs. FRG epoch means the minimum training epoches in the trials
used to Firstly Reach the Goal before totally 1250 epochs. The row S is the standard GridChaos as
shown in Figure 3(b), the others are shown in Figure 8

NOISE SETUP AVERAGE RETURN FRG EPOCH

1 2 3 4 DSAC OVDE DOAC DSAC OVDE DOAC

S 0.1 0.5 0.5 0.1 0.00±0.00 59.30±48.42 3.02±6.03 1250+ 229 1222

A 0.0 0.5 0.1 0.1 18.94±37.87 58.99±48.18 38.42±47.08 1161 180 662

B 0.0 0.05 0.01 0.01 39.78±48.72 79.52±39.77 18.71±37.41 694 144 846

C 0.05 0.1 0.1 0.05 0.05±0.10 39.64±48.55 20.59±39.66 1250+ 180 309

D 0.001 0.005 0.005 0.001 20.00±40.00 40.46±48.61 39.99±48.97 284 276 321

E 0.0 0.0 0.0 0.0 0.00±0.00 20.20±39.90 14.60±29.20 1250+ 185 1118

Concretely, from the results, the following observations deserve to be noticed. First, OVD-Explorer
can significantly achieve better average return in all those settings, especially when the noise is set
high, and can learn to reach the goal faster (see column about FRG). It shows the ability of OVD-
Explorer to guide agent explore against higher aleatoric uncertainty on the left side (the second
and third quadrants). Second, for the task without noise as shown in row E, which means the
state transition is deterministic, OVD-Explorer still learns quickly. The results in row E show the
inherently high difficulty of this task, not only because of the very sparse reward, but also the gate
leading to the goal is set very small (the width of the gate is only 30% of the length of agent, i.e.,
the base of the isosceles triangle, which means that at the doorway the agent can only move a very
small distance horizontally, otherwise it would be adsorbed to the wall and immobile).

E.4 EVALUATION IN GRIDCHAOS WHEN THE ALEATORIC UNCERTAINTY IS HIGH AROUND

GOAL

In the previous experiments in GridChaos, the noise (i.e., aleatoric uncertainty) near the goal is set
lower. In such situation, OVD-Explorer, which follows the principle of OFU and further avoids
exploring areas with higher aleatoric uncertainty, could bring significant advantage. Such setup of
heterogeneous noise is reasonable, because in real life, the goal or optimal policy is always not
expected to be highly stochastic.

Nevertheless, the evaluation about tasks with the existence of high randomness in the target region
is valuable, so we conducted the following experiment in GridChaos, where the environment ran-
domness in the right half (first and fourth quadrants), where the target is located, was set larger. The
results are shown in Table 6. Note that we use OVDE(P) to denote the usual implementation that pes-
simistically estimates the value distribution (i.e., using Equation 13). Besides, OVDE(M) denotes
the implementation that does not pessimistically estimate the value distribution (i.e., we modify the
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mean of Gaussian distribution Zπ in Equation 13 from the lower bound to expected value of the Q
estimation µ(s, a) as in Equation 11.).

Table 6: The results for GridChaos (additional). This shows row F to J, which are the cases where
the optimal policy would face higher aleatoric uncertainty.

NOISE SETUP AVERAGE RETURN FRG EPOCH

1&4 2&3 DSAC OVDE(P) OVDE(M) DOAC DSAC (P) (M) DOAC

F 0.5 0.1 50.10±40.96 16.61±33.22 17.01±33.86 50.52±41.43 479 1071 583 321

G 0.1 0.05 0.00±0.00 19.84±39.68 39.96±48.95 20.14±39.93 -1 188 226 233

H 0.05 0.005 0.00±0.00 20.69±39.61 20.07±39.94 0.00±0.00 - 1 247 308 -1

I 0.01 0.005 0.0±0.0 40.00±48.99 60.00±48.99 39.99±48.98 -1 200 236 301

J 0.005 0.001 20.00±40.00 39.98±40.97 20.00±40.00 20.00±40.00 236 312 200 296

Our experimental findings are mainly the following three aspects.

Firstly, when facing extremely high aleatoric uncertainty around the goal (see row F), which causes
the interaction around goal to be very unstable, chaotic and disorder, OVD-Explorer would strongly
discourage exploring such a area, and thus performance would be damaged. In contrast, DSAC and
DOAC have no restriction on aleatoric uncertainty, and high randomness may instead increase the
probability of achieving the goal.

Second, in most cases (see G, H, I, J), OVD-Explorer always can guide better exploration and
achieve better performance than DSAC and DOAC, especially when the noise is negligible (see row
J). This reflects the fact that our exploration objective (the mutual information shown in Equation 8)
makes great sense, achieving an appropriate trade-off between avoiding high aleatoric uncertainty
and being optimistic about high epistemic uncertainty.

Third, an interesting finding is that OVD-Explorer may perform better by turning off the pessimistic
estimation facing higher aleatoric uncertainty around the goal (see column OVDE(M)). This sug-
gests that excessive pessimism is unnecessary if there is a need to explore areas with high aleatoric
uncertainty.

Overall, from the results in Table 5 and Table 6, OVD-Explorer is able to tackle most of the cases
quite well. When there is high randomness around the goal, OVD-Explorer has a shortcoming that it
will inevitably slow down the efficiency of reaching the goal, because it limit the exploration towards
such area. Fortunately, this shortcoming can be mitigated by turning off the pessimistic estimation.

E.5 EVALUATION OF STATISTICAL SENSE

Table 7: Comparisons of related algorithms on Ant-v2. We report the averaged performance and
standard deviation.

TASK EPOCH SEED DSAC DOAC OVD-EXPLORER G OVD-EXPLORER Q

ANT-V2 2500 0, 1, 2, 3, 4 6206.9±1202.5 6586.7±1023.3 7160.6±763.2 7590.3±154.9

ANT-V2 2500 5, 6, 7, 8, 9 6565.0±1343.0 6664.2±255.5 7190.1±813.8 7174.3±570.0

ANT-V2 2500 0 - 9 6385.9±1287.2 6625.4±7446.8 7175.3±789.0 7382.3±466.6

To counteract the randomness from a statistical perspective, we conduct all experiments for 5 trails
with different seeds (typically 0-5), and report the average results with standard deviation. Next,
to verify that the 5 trails are sufficient to mitigate the statistical randomness, we run other 5 runs
(seeds are set as 5, 6, 7, 8, 9, respectively) for those algorithms on Ant-v2, and show the results in
the following. Note that the first row of results is from our previously reported results, which is the
same as Table 3, and the second row show the results new. The experimental results in Table 7 show
that the results of 5 trials are sufficiently representative of the overall level, while the performance
of OVD-Explorer undoubtedly stays ahead.
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E.6 STUDY ON EPISODIC HORIZON

Section 5.3 has shown great advantage of OVD-Explorer over DSAC and DOAC in stochastic Mu-
joco tasks, which limits the length for an episode to 100 steps. To further empirically verify the
efficiency of OVD-Explorer, we test on Noisy Ant-v2 task with different maximum episodic length
setup. Our results in Figure 9 show that OVD-Explorer can significantly perform better than base-
lines in different maximum episodic length (i.e., 250, 500, 750 and 1000). Noting that longer maxi-
mum episodic length renders higher difficulty of solving tasks, especially for the high-dimensional
tasks demanding exploration. In specific, we have the following two conclusions.
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Figure 9: Training curves on Noisy Ant-v2 tasks with different maximum episodic length setup. The
x-axis indicates number of training epoch (the number of environment steps for each training epoch
is the same as the episodic horizon), while the y-axis is the evaluation result represented by average
episode return. The shaded region denotes half standard deviation of average evaluation over 5
seeds. Curves are smoothed uniformly for visual clarity. The sub-title of each figure represents the
episodic horizon, also known as the maximum episode length.

Firstly, the exploration should be more conservative in the harder tasks, where we should set smaller
α in OVD-Explorer. In Figure 9(a), (b) and (c), α is set to 0.05 by default, while we can find
that the advantage of OVD-Explorer G decreases gradually with the increasing of the difficulty of
tasks. Further, if α is set to 0.005, then there is a substantial performance improvement as shown in
Figure 9(d). Also, as shown in Figure 9(e), both OVD-Explorer methods perform well when the task
episodic horizon is 750 with α set to 0.005. On the hardest task we tested, i.e., the Noisy Ant-v2
with horizon 1000 as shown in Figure 9(f), OVD-Explorer gain remarkable performance, while α is
set smaller as 0.001.

Secondly, OVD-Explorer Q is more stable than OVD-Explorer G, which is consistent with the con-
clusion in Section 5.3. We can find from Figure 9(a), (b) and (c) that OVD-Explorer Q performs
stably better while OVD-Explorer G degrades. OVD-Explorer G is better in easier task with horizon
100, which is due to the Gaussian prior of noise. But when the task becomes harder, the prior helps
less, and OVD-Explorer Q shows the advantage of more flexibly modeling aleatoric uncertainty and
thus the performance is more stable.

E.7 STUDY ON HYPER-PARAMETERS β

OVD-Explorer is sensitive to α, as shown in Section 5.4. There is another hyper-parameter β, which
controls the scale of uncertainty quantification as shown in Equation 11 and Equation 13, further
having an impact on Z̄π and Zπ . To evaluate its sensitivity about β, we conduct the experiment
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on Noisy Ant-v2 task using OVD-Explorer G, and the result is shown in Figure 10. The results
demonstrate that there is a broad range of settings for β, which can lead to well performance.
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Figure 10: Sensitivity to β. The x-axis indicates different β settings, while the y-axis is the evalua-
tion result represented by average episode return in the last epoch before totally 1250 epoch. Error
bars indicate half standard deviation of average evaluation over 5 seeds. The 11 different β values
are 0.05, 0.1, 0.6, 1.2, 1.8, 2.4, 3.2, 3.6, 4.8, 6.0, 8.0.

E.8 ABLATION STUDY ON VALUE DISTRIBUTION ESTIMATION

As mentioned in Section 3.2, we estimate Zπ pessimistically to alleviate over-estimation. Also,
as mentioned in Appendix E.4, the pessimism is unnecessary if there is a need to explore areas
with high aleatoric uncertainty. In the following, to investigate the benefit of pessimistic estimation
in general case, we compare the performance of OVD-Explorer to the modified versions that use
normally estimated Zπ . Our results show that pessimistic estimation can mostly be better than that
using normal estimation.
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Figure 11: Training curves on Noisy Ant-v2 with different estimation of Zπ . The x-axis indicates
number of training epoch (100 environment steps for each training epoch), while the y-axis is the
evaluation result represented by average episode return. The shaded region denotes half standard
deviation of average evaluation over 5 seeds. Curves are smoothed uniformly for visual clarity.

For OVDE G (mean), we modified the mean of Gaussian distribution Zπ in Equation 13 from
the lower bound to average value of the Q estimation µ(s, a) as in Equation 11. For OVDE Q
(mean), we modified the zπi (s, a) in Equation 14 from the minimum value to the average value, i.e.,

zπi (s, a; θ) = Ek=1,2Ẑi(s, a; θk).

As shown in Figure 11, both OVDE G (mean) and OVDE Q (mean) perform worse than the pes-
simistic version. To draw a conclusion, pessimistic estimate is indeed required in general cases.
Only when there is a need to explore areas with high aleatoric uncertainty, is such pessimistic esti-
mation worth being turned off.

E.9 THE PERFORMANCE COMPARED WITH RND

RND also follows OFU principle, modeling uncertainty based on network distillation and using it as
an intrinsic motivation signal to facilitate agent exploration. For the sake of fairness, we implement
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RND based on DSAC, denoted by DSAC+RND in the following, and evaluate it on 3 standard
Mujoco tasks and 3 noisy Mujoco tasks. We show the results in the following.

Table 8: Comparisons with RND. We report the averaged performance and standard deviation of 5
runs. Each trail uses the mean undiscounted return over the last 100 epoch. The maximum value of
each row is shown in bold.

TASK EPOCH DSAC DSAC+RND OVD-EXPLORER G OVD-EXPLORER Q

ANT-V2 2500 6206.9±1202.5 7308.4±641.3 7160.6±763.2 7590.3±154.9

HALFCHEETAH-V2 2500 13890.0±3424.4 12198.1±2338.3 14084.5±1579.8 14792.4±997.4

HOPPER-V2 1250 2199.7±602.7 2077.9±344.1 2239.5±428.2 2619.3±457.0

N-HALFCHEETAH-V2 1250 431.39±35.68 409.48±45.88 445.28±37.52 429.63±34.45

N-HOPPER-V2 1250 244.53±4.71 231.46±9.94 252.09±7.82 237.68±13.11

N-ANT-V2 (250) 1250 1275.87±172.64 1306.05±223.18 - 1384.43±84.39

For the complex task Ant-v2, RND brings much greater improvement by facilitating exploration
based on the DSAC. For the other simpler tasks, RND does not bring significant performance im-
provement. This experiment demonstrates to some extent the effectiveness of RND exploration on
several Mujoco tasks, but at the same time, our algorithm OVD-Explorer is still better.

E.10 ANALYSIS ABOUT EXPLORATION PROCESS OF OVD-EXPLORER

In the following, we further verify from statistical analysis that OVD-Explorer is in compliance with
our raised exploration principle, i.e., OVD-Explorer can achieve better trade-off between opti-
mistic exploration and effectively avoiding exploring the areas with high aleatoric uncertainty.
We show the values of uncertainty estimations and our exploration objective (mutual information)
at different stages during the training processes of two trials with different noise settings in figures.

In Figure 12, the environment noise is set lower around the goal, noting that the darker background
color in the map represents higher aleatoric uncertainty, and the red dot represents the coordinate of
the current state. The performance under this trail is given and the agent hardly ever reaches the goal
before the 1000th epoch. Therefore, in the early stage, the aleatoric uncertainty is inaccurate and
remains very low, as the value distribution shows little divergence. The figure also shows that our
exploration objective (in green) is high when the epistemic uncertainty is high. So before the 1000th
epoch, the exploration is guided by epistemic uncertainty, which follows the OFU principle. Later,
once the goal has been explored, the aleatoric uncertainty is properly modelled, i.e., the aleatoric
uncertainty towards left is larger than right at current state (see epoch 1240). Then the mutual
information value towards left is lower than right, although the epistemic towards left is higher. It
indicates that OVD-Explorer can property balance epistemic uncertainty and aleatoric uncertainty,
and effectively avoid to explore the areas with higher aleatoric uncertainty.

In Figure 13, the environment noise is set higher around the goal. At the stage before the 1000th
epoch, the exploration guidance is similar to Figure 12. The agent would hardly estimate the accurate
aleatoric uncertainty without obtaining any reward. In the later stage, at the 1240th epoch, OVD-
Explorer suggests exploring to the right, even though it has been recognized that the environmental
uncertainty on the right is high. This is because the epistemic unertainty dominates under the mutual
information. In contrast, at the 1249th epoch, when the action towards right has been explored much,
the significant higher aleatoric uncertainty towards right dominates. Therefore, following the mutual
information, the action towards left is preferred. This demonstrates the trade off that OVD-Explorer
make, which satisfies our raised exploration principle.
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Figure 12: The statistical analysis for the training process, with the aleatoric uncertainty around the
goal is set lower.
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Figure 13: The statistical analysis for the training process, with the aleatoric uncertainty around the
goal is set higher.
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