
Under review as a conference paper at ICLR 2024

TRANSFORMERS PERFORM IN-CONTEXT LEARNING
THROUGH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer based neural sequence models exhibit remarkable ability to do in-
context learning. Given some training examples, a pre-trained model can make
accurate predictions on a novel input. This paper studies why transformers can
learn different types of function classes in context. We first show by construction
that transformers implement approximate gradient descent on parameters of neural
networks and provide an upper bound for number of heads, hidden dimension, and
number of layers of the transformer. We also show that transformers can learn deep
and narrow neural networks, which has better approximation capabilities compared
to shallow and wide neural networks, using less resource. Our results move beyond
linearity in terms of in-context learning instances and provide an understanding of
why transformers can learn many types of function classes through the bridge of
neural networks.

1 INTRODUCTION

In-context learning (ICL) is a phenomenon first observed in NLP problems where large language
models like GPT-4 can make accurate predictions based on few prompts without any update on
model parameters. People’s understanding on in-context learning is still limited, how and why can
neural sequence models learn in-context remain a black box. Previous work mainly focus on two
perspectives of in-context learning. One perspective explores what function classes can transformers
learn in-context(Garg et al., 2022), another explains why transformers can implement learning
algorithms (Akyürek et al., 2022).

The paper tries to explain why transformer-based predictors can learn different function classes
in-context. We interpret in-context learning of a function as learning implicit neural networks that
approximate the function. Currently there are mainly two understandings of in-context learning, one
is based on gradient descent(Von Oswald et al., 2023; Dai et al., 2022; Akyürek et al., 2022), and the
other views it as Bayesian Inference(Xie et al., 2021). We adapt the former perspective to investigate
the hypothesis that when trained properly, transformers can perform approximate gradient descent on
parameters of neural networks without any parameter update or fine tuning, and these neural networks
are approximators of different functions.

In Section 3, we prove by construction that a family of transformers, with a wide range of activation
functions (not necessarily restricted to the commonly used ReLU), can implement a step of approxi-
mate gradient descent on the parameters of the neural networks. We start by investigating on 2-layer
neural networks and then generalize it to the n-layer neural networks setting. Upper bound for the
number of heads, hidden dimension as well as number of layers needed of the transformer is provided,
among which the number of layers is presented in a recursive fashion for the n-layer neural networks
setting.

In Section 4, we view neural networks as bridges for transformers to learn function classes in-context,
and provide an analysis on the resources it cost for a transformer to approximate the same function
classes through neural networks of different depths and widths. We showcase that for transformers
to learn indicator functions in-context, 2-layer neural networks are not sufficient as bridges since
it will cause the number of heads of the transformer to be unacceptably large (for certain function
classes), while deeper and narrower neural networks which achieve the same approximation accuracy
cost less resource (number of parameter matrices) of the transformer. We also present a condition on

1

Under review as a conference paper at ICLR 2024

when deep networks does better than shallow ones in terms of approximating smooth functions and
requiring smaller transformer size.

1.1 RELATED WORK

In-context learning In-context learning has been studied both empirically and theoretically. Garg
et al. (2022) empirically show that transformers can learn linear functions, two-layer ReLu neural
networks and decision trees in-context. Min et al. (2022) study what aspects of demonstrations impact
the performance of in-context learning. As for the theoretical part, Xie et al. (2021) explains ICL
as implicit Bayesian inference, while Akyürek et al. (2022), Von Oswald et al. (2023) and Dai et al.
(2022) all understand in-context learning as transformers performing gradient descent. These works
all only focus on linear models or their variants without providing an error bound for gradient descent
steps. A more recent work (Bai et al., 2023) also investigates gradient descent on more general
functions, like 2-layer neural networks and demonstrates the model selection ability of transformers.
We extend the their result on 2-layer neural networks to an n-layer neural networks setting and also
provide a tighter bound on the number of heads required of the transformer.

Neural networks and approximation theorems People are interested in the the approximation
abilities of neural networks. Many results have shown the universal approximation property of
neural networks in approximating different function classes (Hornik et al., 1989; Hornik, 1991;
Barron, 1993). While these universal approximation theorems focus on neural networks with certain
depths, more recent work starts to explore the expressing power of deep neural networks due to their
development and success. Yarotsky (2017); Liang and Srikant (2016) both show the approximation
abilities of deep neural networks. Safran and Shamir (2017) shows the width-depth tradeoffs of neural
networks by proving the inapproximability with 2-layer neural networks an the approximability of
3-layer neural networks in terms of approximating indicator functions.

2 PRELIMINARIES

2.1 TRANSFORMERS

A Transformer layer contains two sub-layers, the attention layer and the feed forward layer, which in
essence is an MLP layer. We denote the input sequence to the transformer as H = [h1, · · · ,hN] ∈
RD×N .
Definition 1. (Attention layer) An attention layer with M heads is denoted as Attnθ(·) where
θ = {Vm,Qm,Km}m∈[M]. The output of this layer on the input matrix H is:

Attnθ(H) = H+
1

N

M∑
m=1

(VmH)× σ(QmH)⊤(KmH))

where σ is an activation function (not necessarily restricted to the ReLU function). For each column:

[Attnθ(H)]i = hi +
1

N

M∑
m=1

N∑
j=1

σ (⟨Qmhi,Kmhj⟩) ·Vmhj.

Definition 2. (MLP layer) An MLP layer with hidden dimension D′ is denoted as MLPθ(·) where
θ = (W1,W2) ∈ RD′×D × RD×D′

. The output of this layer on input H is
MLPθ(H) = H+W2σ(W1H)

where σ is an activation function. For each column:
[MLPθ(H)]i = hi +W2σ(W1hi).

We doesn’t require the transformer activation function to be restricted to a specific type, and next we
give a definition on the class of activation functions we focus on.
Definition 3. (General decay condition) We call an activation function σ satisfies the general decay
condition if σ ∈ Wm,∞

loc (R) is non-zero and there exists a ν ∈ {
∑n

i=1 βiσ(ωi·x+bi) : ωi, bi, βi ∈ R}
which satisfies

|ν(k)(t)| ≤ Cp(1 + |t|)−p

for 0 ≤ k ≤ m and some p > 1.

2

Under review as a conference paper at ICLR 2024

We briefly note that here Wm,∞ denotes the Sobolev space, and most common activation functions
do satisfy the general decay condition (Siegel and Xu, 2020).

2.2 NEURAL NETWORKS

We formulate the mathematical representation of an n-layer neural network as below:

Definition 4. (n-layer neural networks) We denote the output of an n-layer neural network on the
input x ∈ Rd as

predn(w,x) = W(n)(r(W(n−1)(r(· · · r(W(1)x)))))

where r is an activation function and w = (W(1), · · · ,W(n)), W(i) ∈ RKi×Ki−1 for i = 1, · · · , n
with Kn = 1,K0 = d. We denote the k-th row vector of the matrices W(i)(i ∈ [n− 1]) as vi,k, and
the k-th element in the vector W(n) as uk.

In the n-layer neural network setting above, we omit the bias terms and let the output be a number
instead of a vector for simplicity. Also, the activation function r act on each element of the vector.

2.3 IN-CONTEXT LEARNING

Here we introduce our in-context learning (ICL) setting. The training examples (prompts) are sampled
from a distribution P, denoted as D = (xi, yi)i∈[N], and a novel input xN+1 is sampled from Px. So
each instance is of the form (D,xN+1). Here xi ∈ Rd.

More specifically, we denote the input to the transformer as

H =

[
x1, x2, · · · , xN , xN+1

y1, y2, · · · , yN , 0
p1, p2, · · · , pN , pN+1

]
∈ RD×(N+1)

where pi are vectors in hidden space of the form

pi =

[
0D−d−3

1
1{i < N + 1}

]

A transformer takes the prompt input H and makes a prediction on the label corresponding to xN+1.
The prediction ŷN+1 is stored in the output matrix H̃ in the position next to yN .

3 GRADIENT DESCENT ON MULTI-LAYER NEURAL NETWORK

We begin our analysis on 2-layer neural networks, and then generalize it to the n-layer networks
setting. To perform gradient descent on the neural networks, we consider the following optimization
problem on the loss function:

min
w∈W

LN (w) =
1

2N

N∑
i=1

l(pred(xi;w), yi)

Now we present necessary assumptions begin our analysis.

Following Barron (1993), We define Bs to be the space of functions f : Rd → R with bounded
Barron norm:

∥f∥Bs =

∫
Rd

(1 + |ω|)s|f̂(ω)|dω.

Assumption 1. Both the activation function r in neural networks and the loss function l has finite
Barron norm.

3

Under review as a conference paper at ICLR 2024

As discussed in Barron (1993), Bs is closed to multiplication, linear combination and translation.
Also, sigmoidal functions, functions with derivatives of sufficiently high order and Boolean functions
are all in Bs, so this should include most common activation functions and loss functions in practice.
We also point out that in Bai et al. (2023) they used the assumption that r, l are both C4 smooth,
which is a stricter assumption since C4 functions do have bounded Barron norm.

During the process of gradient descent, it is likely that the neural networks parameter w goes out of
its domain W , so we need the following assumption to project w onto W .
Assumption 2. W as the domain of w is compact and there exists some MLP layer parameter such
that the MLP layer projects w to W .

3.1 GRADIENT DESCENT ON 2-LAYER NEURAL NETWORKS

A 2-layer neural network can be written as

pred2(w,x) = W(2)(r(W(1)x))

We want to show that transformers can implement gradient descent on 2-layer neural networks
in-context without any parameter update.

We note that

∇wLN (w) =
1

N

N∑
i=1

∂1l(pred(xi;w), yi) · ∇wpred(xi;w),

where ∂1l is the partial derivative of l with respect to the first component. Furthermore,

∇wpred(xi;w) =

u1 · r′(⟨v1,xi⟩) · xi

r(⟨v1,xi⟩)
...

uK · r′(⟨vK ,xi⟩) · xi

r(⟨vk,xi⟩)

We show below that a 2-layer transformer can compute one step of approximate gradient descent,
following the intuition of Siegel and Xu (2020): The first self attention sub-layer computes and stores
approximate pred(xi;w) in hidden space, and the MLP sub-layer computes and stores ∂1l, while the
second attention sub-layer computes and stores w − η∇LN (w), and the last MLP sub-layer maps
this result of one step gradient descent to the domain of w.
Theorem 1 (ICGD on 2-layer NNs). Under Assumption 1 and Assumption 2, there exists a family
of 2-layer transformers (with activation functions satisfying the general decay condition) such that
for any input data (D,xN+1) and any w, a transformer performs approximate gradient descent on
the neural networks parameter w:

w+
η = ProjW(w − η∇LN(w) + ϵ(w)), ∥ϵ(w)∥ ≤ ηϵ.

Furthermore, the upper bound for number of heads and hidden dimension for the transformer is:

max
l∈[2]

M (l) ≤ O(ϵ−2), max
l∈[2]

D(l) ≤ O(ϵ−2)

Remark 1. We note here that in the theorem when we say a transformer performs approximate
gradient descent on the neural networks parameter, we mean that the transformer maps each column
of the input matrix H: hi = [xi; y

′
i;w;0; 1; ti] to the output vector h′

i = [xi; y
′
i;w

+
η ;0; 1; ti], where

only the parameter w is updated according to gradient descent and the other parts remain unchanged.

3.2 GRADIENT DESCENT ON n-LAYER NEURAL NETWORKS

As in Definition 4, n-layer neural networks can be formulated as

predn(w,x) = W(n)(r(W(n−1)(r(· · · r(W(1)x)))))

We theoretically prove that transformers can implement gradient descent on n-layer neural networks
in context and provide an upper bound for number of heads, hidden dimension of transformers as
well as give a recurrence relation on the number of transformer layers.

4

Under review as a conference paper at ICLR 2024

Figure 1: Neural Networks as bridges for transformers to learn function classes in-context. Though
transformers can learn both deep and shallow neural networks in-context, learning them requires
different transformer sizes.

Theorem 2 (ICGD on n-layer NNs). Under Assumption 1 and Assumption 2, there exists a family
of an-layer transformers (with activation functions satisfying the general decay condition) such that
for any input data (D,xN+1) and any w, a transformer performs approximate gradient descent on
the n-layer neural networks parameter w:

w+
η = ProjW(w − η∇LN(w) + ϵ(w)), ∥ϵ(w)∥ ≤ ηϵ.

where an satisfies O(an) = O(n) +O(an−1). Furthermore, the upper bound for number of heads
and hidden dimension for the transformer is :

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2)

where K denotes the maximum width of the neural networks: K = max{K0,K1, · · · ,Kn}.

Remark 2. We note that an, the number of transformer layers required in the above theorem is of
order O(n2), which is a decent growth rate considering the fast growth of neural networks neurons.

Trade-off of width and depth of neural networks We note here that people are interested in the
approximation capabilities of neural networks, thus it’s worthwhile discussing how the trade-off
between width and depth of neural networks can affect the approximation error of the gradient
descent step. If we control the error in the approximate gradient descent to be ϵ, then in order for
the transformer to learn two different neural networks with the same magnitude of number of heads,
we require nK2 to be a constant. Thus controlling the width of the network is more efficient than
controlling the depth of the neural networks in terms of maintaing the same approximation error.

4 NEURAL NETWORKS AS BRIDGES FOR TRANSFORMER TO LEARN FUNCTION
CLASSES IN-CONTEXT

Since neural networks are universal approximators, and transformers can learn neural networks in
context, a natural question is whether transformers can learn function classes that neural networks can
approximate. Our theorem bridges the gap between transformers and neural networks, and previous
work on approximation theorems of neural networks has bridged the gap between neural networks
and function classes, so it is natural to consider the whole path of transformers learning function
classes in-context as shown in Fig. 1. But how much resources does it cost for a transformer (number
of layers of the transformer and number of heads for each attention layer, or equivalently number of
parameter matrices) to approximate a neural network (as an approximator)? We consider two types
of function classes: the indicator functions of L2 balls and smooth functions.

4.1 INDICATOR FUNCTIONS OF L2 BALLS

Safran and Shamir (2017) proves the inapproximability of 2-layer neural networks and the approx-
imability of 3-layer neural networks. We present them as lemmas below.
Lemma 1. The following holds for some positive univeral constants c1, c2, c3, c4, and any network
employing an activation functioin satisfying Assumptions 1 and 2 in Eldan and Shamir (2016):
For any d > c1, and any non-singular matrix A ∈ Rd×d,b ∈ Rd and r ∈ (0,∞), there exists a

5

Under review as a conference paper at ICLR 2024

continuous probability distribution γ on Rd, such that for any function g computed by a 2-layer
network of width at most c2 exp(c4d), and for the function f(x) = 1(∥Ax+ b∥ ≤ r), we have∫

Rd

(f(x)− g(x))2 · γ(x)dx ≥ c2
d4

.

Lemma 2. Given δ > 0, for any activation function σ satisfying Assumption 1 in Eldan and Shamir
(2016) and any continuous probability distribution µ on Rd, there exists a constant cσ dependent only
on σ, and a function g expressible by a 3-layer network of width at most max{8cσd2/σ, cσ

√
1/2δ},

such that the following holds:∫
Rd

(g(x)− 1(∥x∥2 ≤ 1))2µ(x)dx ≤ δ,

where cσ is a constant depending solely on σ.

These two lemmas reveal that the indicator of the L2 ball can be better approximated by a 3-layer
neural network with width O(d2) than a 2-layer neural network requiring width at least exponential
in the input dimension. Now using these lemmas we obtain the following theorem on transformer
resource it takes to learn these two networks.
Theorem 3. Let f(x) = 1(∥Ax + b∥ ≤ r) be the indicator of unit ball. Consider two neural
networks NNA and NNB that approximates the function f with error ϵ ∈ (0, 1), where NNA is
a 2-layer, width O(exp(ϵ−1/4)) and NNB is a 3-layer, width O(ϵ−1). It takes two transformers
TFA,TFB to learn these two neural networks. TFA needs O(exp(2ϵ−1/4)) parameter matrices and
TFB needs O(ϵ−1) parameter matrices.

Proof. Recall Theorem 2 and we know that the number of transformer layers required is O(nK2)
(Here we the gradient error ϵ is absorbed in the O notation since it is a fixed constant independent of
the networks approximation error). So the transformer size is determined by number of layers times
number of heads, which is O(n2K2). Now bring in the width of NNA and NNB immediately yields
the results, concluding the proof.

The theorem points out the exponential explosion in transformer size if a 2-layer neural network
is learned to approximate the indicator. However, a 3-layer neural network requires much smaller
transformer size. This showcases the neccessity of bringing deeper neural networks into consideration.

4.2 SMOOTH FUNCTIONS

We use the approximation results of deep neural networks achieved by Yarotsky (2017).
Lemma 3. For any d, n and ϵ ∈ (0, 1), there is a ReLU network architecture that

• is capable of expressing any function from Fd,n with error ϵ;

• has the depth at most c(ln(1/ϵ) + 1) and at most cϵ−d/n(ln(1/ϵ) + 1) computation units,
with some constant c = c(d, n).

Lemma 4. Let f ∈ C2([0, 1]d) be a nonlinear function. Then, for any fixed L, a depth-L ReLU
network approximating with error ϵ ∈ (0, 1) must have at least cϵ−1/(2(L−1)) computation units,
with some constant c = c(f, L) > 0.

While Lemma 3 gives the upper bound for a relatively deep neural network, Lemma 4 show the slow
approximation of smooth functions by shallow networks.

Below we state a formal theorem for the resource of a transformer it takes to learn two neural network:
one is deep and narrow, another is shallow and wide.
Theorem 4. For any d and n > 2, let f ∈ Wn,∞([0, 1]d). Consider two neural networks NNA and
NNB that approximates the function f with error ϵ ∈ (0, 1). NNA has depth O(ln(1/ϵ) + 1) and
width O(ϵ−d/n) as in Lemma 3, and NNB has depth L and width O(ϵ−1/(2(L−1))) as in Lemma 4.
We also have two transformers, TFA and TFB, pre-trained to learn these neural networks. If we
fix the accuracy of gradient descent in Theorem 2, then TFA needs O((ln(1/ϵ)3ϵ−2d/n)) parameter
matrices and TFB needs O(ϵ−1/(L−1)) parameter matrices. In particular, if 2(L− 1)d < n, then it
costs a transformer less resource to train neural network A than B.

6

Under review as a conference paper at ICLR 2024

This theorem can be proved in exactly the same way as Theorem 3 thus we ommit the proof.
Intuitively, the smoother the function is and the lower dimension the input x is, the better deep neural
networks perform in terms of approximation and transformer resource cost.

5 CONCLUSION

We provide results on transformers learning n-layer neural networks through gradient descent and
view in-context learning of a function as the process of learning neural networks which approximate
this function. We also emphasize that our results gives a theoretical bound on the size of the
transformer required to implement in-context learning.

Our work shed some light on deeper understanding of in-context learning. In fact, our results suggest
that transformers can in-context learn any function classes that can be approximated by neural
networks this way. We also present the resource required for a transformer to learn indicator functions
and smooth functions (in particular Cn functions), showing 2-layer neural networks aren’t sufficient
for in-context learning due to the explosion of transformer size. Also, the smoother the function is
and the lower dimension the input is the better deep neural networks perform in terms of transformer
resource cost. We believe our work brings a new perspective to the understanding of in-context
learning and opens up new directions for empirical exploration of in-context learning.

7

Under review as a conference paper at ICLR 2024

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable in-context
learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637, 2023.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transac-
tions on Information theory, 39(3):930–945, 1993.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-context? language
models secretly perform gradient descent as meta optimizers. arXiv preprint arXiv:2212.10559, 2022.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on learning
theory, pages 907–940. PMLR, 2016.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a
case study of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598,
2022.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Shiyu Liang and Rayadurgam Srikant. Why deep neural networks for function approximation? arXiv preprint
arXiv:1610.04161, 2016.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837, 2022.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural networks.
In International conference on machine learning, pages 2979–2987. PMLR, 2017.

Jonathan W Siegel and Jinchao Xu. Approximation rates for neural networks with general activation functions.
Neural Networks, 128:313–321, 2020.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey
Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In International
Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning as
implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114,
2017.

A THEOREM 2

We provide the proof of Theorem 2 here. We note that Theorem 1 is a special case of Theorem 2
thus we only provide the proof of the more genral case. We provide Theorem 1 separately for two
reasons: first it is the most simple and empirically verified case (transformers can learn 2-layer neural
networks in-context), second it is the initial condition for recursion of the general case in terms of
transformer layers.

First we need an approximation theorem of neural networks (Siegel and Xu (2020) corollary 1). We
denote Σn

d (σ) = {
∑n

i=1 βiσ(ωi · x+ bi) : ωi ∈ Rd, bi, βi ∈ R}. We also define Bs to be the space
of functions f : Rd → R with bounded Barron norm

∥f∥Bs =

∫
Rd

(1 + |ω|)s|f̂(ω)|dω.

8

Under review as a conference paper at ICLR 2024

Lemma 5. Let Ω ⊂ Rd be a bounded domain. If the activation function σ ∈ Wm,∞
loc (R) is non-zero

and there exists a ν ∈ Σn0
1 (σ) which satisfies the polynomial decay condition

|ν(k)(t)| ≤ Cp(1 + |t|)−p

for 0 ≤ k ≤ m and some p > 1, we have

inf
fn∈Σn

d (σ)
∥f − fn∥Hm(Ω) ≤ |Ω| 12

√
n0C(p,m, dim(Ω), σ)n− 1

2 ∥f∥Bm+1

for any f ∈ Bm+1.

Note that when m = 0, the Sobolev space H0 is in effect the L2 space, and we set m = 0 in the
proof of Theorem 1.

Proof. We first observe that ν ∈ Σn0
1 (σ) implies that

Σn
d (ν) ⊂ Σnn0

d (σ)

So we only need to prove that the result without the
√
n0 term holds for σ satisfying the polynomial

decay condition itself.

The decay condition implies that σ ∈ L1(R) and thus the Fourier transform of σ is well-defined.
Since σ ̸= 0, we have

0 ̸= σ̂(a) =
1

2π

∫
R
σ(ω · x+ b)e−ia(ω·x+b)db

so we have
eiaω·x =

1

2πσ̂(a)

∫
R
σ(ω · x+ b)e−iabdb

Thus

f(x) =

∫
Rd

eiωxf̂(ω)dω

=

∫
Rd

∫
R

1

2πσ̂(a)
σ(

ω

a
x+ a)f̂(ω)e−iabdbdω.

The above integral is on an unbounded domain, but the decay assumption on the Fourier transform of
f allows us to normalize the integral in the ω deriction. By the triangle inequality and the boundedness
of x ∈ Ω, we have

|ω
a
· x+ b| ≥ max(0, |b| − R|ω|

|a|
).

where R is the maximum norm of an element of Ω. WLOG, we can translate Ω so that it contains the
origin and R ≤ diam(Ω). Combining this with the polynomial decay of ω implies that

|σ(k)(
ω

a
· x+ b)| ≤ Cp(1 + |ω

a
· x+ b|)−p

≤ Cp(1 + max(0, |b| − R|ω|
|a|

))−p.

Thus the function h defined by

h(b, ω) = (1 + max(0, |b| − R|ω|
|a|

))−p

provides an upper bound on σ(k)(ωa · x+ b) uniformly in x. Moreover, we calculate that∫
R
h(b, ω)db =

∫
|b|≤R|ω|

|a|

db+ 2

∫
b>

R|ω|
|a|

(1 + b− R|ω|
|a|

)−pdb

= 2R|a|−1|ω|+ 2[(1− p)−1 × (1 + b− R|ω|
|a|

)1−p]∞R|ω|
|a|

= 2R|a|−1|ω|+ 2

p− 1

≤ C1(p, diam(Ω), σ)(1 + |ω|).

9

Under review as a conference paper at ICLR 2024

Combining the above with our assumption on the Fourier transform we get

I(p,Ω, σ, f) =

∫
Rd

∫
R
(1 + |ω|)mh(b, ω)|f̂(ω)|dbdω (1)

≤ C1(p,diam(Ω), σ)∥f∥Bm+1 (2)

Now we use this to introduce a probability measure λ on Rd+1 given by

dλ =
1

I(p,Ω, σ, f)
(1 + |ω|)mh(b, ω)|f̂(ω)|dbdω,

using this we write

f(x) = Edλ(J(ω, b)e
iθ(ω,b)σ(

ω

a
x+ b)),

where
θ(ω, b) = θ(f̂(ω))− θ(σ̂(a))− ab

and
J(ω, b) = (2π|σ̂(a)|)−1I(p,Ω, σ, f)(1 + |ω|)−mh(b, ω)−1.

We denote the real part of eiθ(ω,b) as χ(ω, b) ∈ [−1, 1], then we have

f(x) = Edλ(J(ω, b)χ(ω, b)σ(
ω

a
x+ b)).

We denote f(x) = Edλ(fω,b(x)). Then we use Lemma 1 from Barron (1993) to conclude that
for each n there exists an fn which is a convex combination of at most n distinct fω,b, and thus
fn ∈ Σn

d (σ), such that

∥f − fn∥Hm(Ω) ≤ Cn− 1
2 , (3)

where C = supω,b ∥fω,b∥Hm(Ω). Now, since Ω is bounded, it has finite measure, and we use
Cauchy-Schwartz to get

∥fω,b∥Hm(Ω)∥ ≤ |Ω| 12 ∥fω,b∥Wm,∞(Ω),

so we only need to bound ∥Dα
xfω,b∥L∞(Ω) for each |α| ≤ m.

∥Dα
xfω,b∥L∞(Ω) ≤ ∥J(ω, b)Dα

xσ(a
−1ωx+ b)∥L∞(Ω)

≤ (2π|a|α| ˆσ(a)|−1I(p,Ω, σ, f)(1 + |ω|)−m)× ∥h(b, ω)−1Dα
xσ(a

−1ωx+ b)∥L∞(Ω).

Since |α| ≤ m,σ ∈ Wm,∞, we have

|Dα
xσ(a

−1ωx+ b)| ≤ |a|−|α|(1 + |ω|)mσ(|α|)(a−1ωx+ b)

So we get

∥Dα
xfω,b∥L∞(Ω) ≤ (2π|a|α|σ̂(a)|)−1I(p,Ω, σ, f)× ∥h(b, ω)−1σ(|α|)(a−1ωx+ b)∥L∞(Ω).

What’s more we have
∥h(b, ω)−1σ(|α|)(a−1ωx+ b)∥L∞(Ω) ≤ Cp.

So we obtain

sup
ω,b

∥fω,b∥Hm(Ω) ≤ |Ω| 12 (2π|σ̂(a)|)−1I(p,Ω, σ, f)Cp

∑
|α|≤m

|a|−|α|

Finally using Eqs. (1) and (3) we get

inf
fn∈Σn

d (σ)
∥f − fn∥Hm(Ω) ≤ |Ω| 12

√
n0C(p,m, dim(Ω), σ)n− 1

2 ∥f∥Bm+1 .

Now we are ready to give a proof of Theorem 2.

10

Under review as a conference paper at ICLR 2024

Theorem 2 (ICGD on n-layer NNs). Under Assumption 1 and Assumption 2, there exists a family
of an-layer transformers (with activation functions satisfying the general decay condition) such that
for any input data (D,xN+1) and any w, a transformer performs approximate gradient descent on
the n-layer neural networks parameter w:

w+
η = ProjW(w − η∇LN(w) + ϵ(w)), ∥ϵ(w)∥ ≤ ηϵ.

where an satisfies O(an) = O(n) +O(an−1). Furthermore, the upper bound for number of heads
and hidden dimension for the transformer is :

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2)

where K denotes the maximum width of the neural networks: K = max{K0,K1, · · · ,Kn}.

Proof. We note that

∇wLN (w) =
1

N

N∑
i=1

∂1l(pred(xi;w), yi) · ∇wpred(xi;w), (4)

where ∂1l is the partial derivative of l with respect to the first component. Moreover we have

∇vi,j
pred(x;w) =

Kn∑
k=1

ukr
′(v⊤

n−1,kr(W
(n−2)r(· · ·)))∇vi,j

v⊤
n−1,kr(W

(n−2)r(· · ·))

Now we use Lemma 3 to approximate the functions r(t), ∂1l(t, y) and s · r′(t). Note that in the
following expressions we denote ωi · x+ bi as ⟨ai, [x; 1]⟩.

• The function r(t) is approximated by r̄(t) on [−R1, R1]:

r̄(t) =

M1∑
m=1

β1
mσ(

〈
a1m, [t; 1]

〉
) with M1 ≤ O(ϵ−2

r)

such that ∥r(t)− r̄(t)∥L2([−R1,R1]) ≤ ϵr.

• The function (t, y) 7→ ∂1l(t, y) is approximated by g(t, y) on [−R2, R2]
2:

g(t, y) =

M2∑
m=1

β2
mσ(

〈
a2m, [t; y; 1]

〉
) with M2 ≤ O(ϵ−2

l)

such that ∥g(t, y)− ∂1l(t, y)∥L2([−R2,R2]2) ≤ ϵl.

• The function (s, t) 7→ s · r′(t) is approximated by P (s, t) on [−R3, R3]
2:

P (s, t) =

M3∑
m=1

β3
mσ(

〈
a3m, [s; t; 1]

〉
) with M3 ≤ O(ϵ−2

p)

such that ∥P (s, t)− s · r′(t)∥L2([−R2,R2]2) ≤ ϵp.

• The function (u, v) 7→ u · v is approximated by Q(u, v) on [−R4, R4]
2:

Q(u, v) =

M4∑
m=1

β4
mσ(

〈
a4m, [u; v; 1]

〉
) with M4 ≤ O(ϵ−2

q)

such that ∥Q(u, v)− u · v∥L2([−R4,R4]2) ≤ ϵq .

for i ∈ [n− 1], j ∈ [Ki] and

∇uk
pred(x;w) = r(v⊤

n−1,kr(· · ·))

11

Under review as a conference paper at ICLR 2024

We’ll later show that it is this difference in gradient that mainly contributes to the growth of transformer
layers required. n− 2 attention only layers: In the first attention-only layer, the transformer maps

hi = [xi; yi;w;0; 1; ti] 7→ hi = [xi; yi;w;W(2)(r̄(W(1)x));0; 1; ti],

in the second attention-only layer, the transformer maps

h
(1)
i 7→ h

(2)
i ,

where
h
(1)
i = [xi; yi;w;W(2)(r̄(W(1)x));0; 1; ti],

and
h
(2)
i = [xi; yi;w;W(3)(r̄(W(2)(r̄(W(1)x))));0; 1; ti].

In the p-th layer, the transformer maps

h
(p−1)
i 7→ h

(p)
i ,

where

h
(p−1)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(p)(r̄(W(p−1) · · · r̄(W(1)x)));0; 1; ti],

and

h
(p)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(p+1)(r̄(W(p) · · · r̄(W(1)x)));0; 1; ti].

We then prove why a transformer can achieve this mapping taking the p-th layer as an example.

We denote the k-th row of W(p)(r̄(W(p−1) · · · r̄(W(1)x))) as predp,k(x), which is a number.

Consider the matrices {Q(p)
k′,k,m,K

(p)
k′,k,m,V

(p)
k′,k,m}k′∈[Kp+1],k∈[Kp],m∈[M1] so that for all i, j ∈

N + 1, we have

Q
(p)
k′,k,mhi =

a1m[1]
a1m[2]
0

 , K
(p)
k′,k,mhj =

predp,k(x)1
0

 , V
(p)
k′,k,mhj = β1

m · vp+1,k′ [k]eDk′ .

Here Dk′ denotes the hidden space in the column vector hi where the sum below is stored. Then we
compute the update on the column hi:∑

m∈[M1],k∈[K]

σ(
〈
Q

(p)
k′,k,mhi,K

(p)
k′,k,mhj

〉
)V

(p)
k′,k,mhj =

Kp∑
k=1

vp+1,k′ [k]r̄(predp,k(x)) · eDk′

The n− 1-th layer follows the protocol of the mapping of the previous layers in the self-attention
sub-layer.Thus after the n − 1-th attention sub-layer, we have predn(x;w) stored in the output
column h

(n−1.5)
i .

The MLP sub-layer of the n− 1-th layer: In this feed forward layer we pick matrices W1,W2

such that W1 maps

W1h
(0.5)
i = [a2m[1] · pred(xi;w) + a2m[2] · y′i + a2m[3]−R2(1− ti)]m∈[M2],

and the entries of W2 are (W2)(j,m) = β2
m1{j = D0 + 2}. So

W2σ(W1h
(n−1.5)
i) =

∑
m∈[M3]

σ(
〈
β2
m, [pred(x;w); y′i; 1]

〉
−R2(1− tj)) · c2meD0+2

= 1{tj = 1} · g(pred(xi;w), y′i) · eD0+2.

So if we abbreviate gi = 1{tj = 1} · g(pred(xi;w), y′i), we get the output of this sublayer is

h
(n−1)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(n)(r̄(W(n−1) · · · r̄(W(1)x))); gi;0; 1; ti]

Other layers to compute the approximate gradient: Now, we look at the gradient of the neural
networks again:

∇vi,j
pred(x;w) =

Kn∑
k=1

ukr
′(v⊤

n−1,kr(W
(n−2)r(· · ·)))∇vi,j

v⊤
n−1,kr(W

(n−2)r(· · ·))

12

Under review as a conference paper at ICLR 2024

for i ∈ [n− 1], j ∈ [Ki] and

∇uk
pred(x;w) = r(v⊤

n−1,kr(· · ·)).

We observe that the term ∇vi,j
v⊤
n−1,kr(W

(n−2)r(· · ·)) is in fact the gradient of an n − 1 layer
neural network, and a transformer needs an−1 layers to compute and store these gradients for all
i ∈ [n− 1], j ∈ [Ki]. After these an−1 layers, the approximate gradients are already stored in the
hidden space of hi, and we denote the approximation of ∇vi,jv

⊤
n−1,kr(W

(n−2)r(· · ·)) as s(n−1)
i,j .

Now consider the matrices {Qk,m,Kk,m,Vk,m}k∈[Kn],m∈M3
so that for all i, j ∈ [N + 1] we have

Qk,mhi =

a
3
m[1]

a3m[2]
a3m[3]
0

 , Kk,mhj =

s
(n−1)
i,j

pred
k

n−1(xi;w)
1
0

 , Vk,mhj = β3
m · ukeDi,j

.

Here Di,j denotes the place where we store the gradient of vi,j . A simple calculation yields

∑
m∈[M1],k∈[Kn]

σ(⟨Qk,mhi,Kk,mhj⟩)Vk,mhj =

Kn∑
k=1

ukP (s
(n−1)
i,j ,pred

k

n−1(xi;w)) · eDi,j

Now that all the terms that approximate ∇vi,j
pred(x;w) are stored in the hidden space (we denote

them as vi,j), we simply need another layer to compute the gradient of loss function.

Consider the matrices {Qk,m,Kk,m,Vk,m}k∈[Kn],m∈M4
so that for all i, j ∈ [N + 1] we have

Qk,mhi =

a
4
m[1] · gi
a4m[2]
a4m[3]
0

 , Kk,mhj =

 1
vi,j
1
0

 , Vk,mhj = − (N + 1)ηβ4
m

N
· eDi,j

.

Now we get

g(w) :=
1

N + 1

N+1∑
i=1

∑
(k,m)

σ(⟨Qk,mhi,Kk,mhj⟩)Vk,mhj

= − η

N

N+1∑
i=1

approximate(∂1l(pred(xi;w), yi)) · approximate(∇wpred(xi;w))

Thus η−1g(w) approximates ∇L̂N (w), and requiring ∥η−1g(w) + ∇L̂N (w)∥L2 ≤ ϵ yields the
upper bound for the number of heads: O(nK2ϵ−2) and hidden dimension: O(nK2ϵ−2).

Total number of layers: From the analysis above, the total number of transformer layers required
is O(an) = O(an−1) + O(n), and it is straightforward to check that an is of order O(n2). This
completes the proof.

13

	Introduction
	Related work

	Preliminaries
	Transformers
	Neural Networks
	In-context learning

	Gradient Descent on multi-layer neural network
	Gradient Descent on 2-layer neural networks
	Gradient Descent on n-layer neural networks

	Neural networks as bridges for transformer to learn function classes in-context
	Indicator functions of L2 balls
	Smooth functions

	Conclusion
	Theorem 2

