
A Appendices for: The Regularizing Effect of Different Output Layer1

Designs in Deep Neural Networks2

A.1 Implementation and training details3

Architectures For ResNet [7], VGG [18] and DenseNet [8] we used implementations from PyTorch4

Hub [15]. For U-Net [16], the implementation of [6] is used. In the decoder of U-Net, the upsampling5

is learned with transposed convolutions. In the low-resolution datasets CIFAR-100 (C100) [12] and6

STL-10 [3], the first convolutional layer in both ResNet and DenseNet is adjusted to have a kernel7

size of 3, a stride of 1, and a padding of 1. In addition, the first maxpool is omitted.8

The penultimate layer in DenseNet consists of concatenated nodes from different previous layers.9

Thus, these nodes or activations have different semantics and representational capacities. However, in10

W 1to1 and W ensemble, it should not matter which specific channels are used as logits vector(s). Due11

to this specific connectivity pattern, we insert a group of 1x1 conv layer, BN and ReLU with the same12

number of input and output channels before the output layer in DenseNets for W 1to1 and W ensemble.13

Hyperparameters Both α = 0.1 for W scale and q = 0.9 for W sparse were motivated by early14

experiments to reduce neuron dependency and/or increase neuron expressivity but were not tuned to15

individual settings. In comparison, hyperparameters are tuned for the methods we compare against.16

Grid search is applied for dropout [19] and dropconnect [23] (options for drop probability: 0.2, 0.5,17

0.7, 0.9). In both methods, a large value of 0.7 worked best. For additive gaussian noise [4], we18

found that less noise generally performs better, so we stick to σ = 0.1 in all settings. If not specified19

otherwise, hyperparameter H for W ensemble is set to its maximum given any architecture/dataset20

setting, i.e. H = bN/Kc. For semantic segmentation, this maximum is not defined. We therefore21

set H = 10, which should be large enough to notice a difference compared to the baseline. For22

the proposed layers, we tune only α in W ensemble (options: 0.5, 1.0, 2.0). Larger values result in23

faster training as smaller activation values are amplified. In settings without pre-training, α = 0.524

and α = 1.0 work best. For fine-tuning, α = 2.0 is beneficial in multiple settings. In general,25

hyperparameter tuning is conducted on a small development set, which is constructed from the26

original training set. See also the ablation study in Sect. 5.7, which gives more insights about27

appropriate hyperparameter choices.28

Optimization Our setup is similar to prior works (e.g., [7, 8]). In most settings, we use stochastic29

gradient descent (SGD) with Nesterov momentum [20] of 0.9 without dampening and weight decay30

of 0.0001. For medical imaging datasets, we chose Adam [10] because it consistently performed31

better in early experiments. The learning rate is 0.1 in SGD and 0.001 in Adam. For fine-tuning and32

SGD, the initial learning rate is reduced to 0.01. During training, the learning rate is reduced by a33

factor of 10 each time performance reaches a plateau with a patience level of 15 epochs. The number34

of epochs varies for different datasets. In ImageNet (IN) [17] we train for 90 epochs, for the other35

datasets the number of epochs varies between 200 and 300 depending on the training progress. The36

batch size for IN and APTOS [1] is 256. In APTOS, we achieved better results with larger batch37

sizes, possibly due to class imbalance. In order to run multiple experiments in parallel, we chose a38

smaller batch size of 32 for all other datasets. For segmentation, the batch size is set to 16 due larger39

image dimensions of 512× 512.40

Preprocessing and augmentation Images from all datasets are standardized by subtracting the41

mean and dividing by the standard deviation of each channel of the training data. In fine-tuning42

settings, we use the statistics of IN. In CUB-200 [22], Cars-196 [11], Food-101 [2] and IN, images43

are resized with the shorter side randomly sampled in [256, 480] while maintaining the aspect ratio,44

and then randomly cropped to 224 × 224. For evaluation, images from these datasets are resized45

to 256× 256 and 10-crop testing [13] is applied. Except for segmentation datasets, we use random46

horizontal flips. In APTOS, images are resized to 224 × 224, randomly flipped along the vertical47

axis and scaled (85− 115% of original dimensions). In SLIVER [21] and CHAOS [9], we clamp48

intensities according to the 99th intensity percentile to remove outliers. In C100 and STL-10, small49

translations are added, which are implemented as random crops with a padding of 4 on all sides.50

Compute resources The experiments were performed on a cluster consisting of 5x GeForce RTX51

2080 Ti, 2x TITAN RTX and 4x A100-SXM4-40GB. These resources were used according to their52

1



availability. The project ran over a period of about 3 months. With an estimated usage of one GPU53

for 12 hours per day, the total emissions amount to an estimated 117 kg of CO2eq, of which 0% was54

directly offset (estimation according to [14]). We plan to track resource usage more closely in future55

projects.56

Licenses and miscellaneous We use PyTorch as deep learning framework, as well as its pre-57

trained models, which are open-source and released under a BSD license. The U-Net implementation58

of [6] is released under GNU General Public License v3.0. Captum is leveraged to measure neuron59

dependencies/expressivities and is released under the BSD license. Lucent [5] is applied for feature60

maximization visualizations in Sect. A.6 under the Apache 2.0 license. All datasets in this paper are61

available for research purposes. ImageNet partly contains images showing persons (see also [24]).62

Datasets mentioned in Sect. 5.3 were used in past machine learning challenges and contain de-63

identified data to the best of our knowledge. Further details about all datasets, including how they64

were acquired, can be found in the respective references.65

A.2 Code66

We provide a colab notebook as supplement which implements all output layers for a ResNet. All67

layer types are easy to implement and require only a few lines of code to replace the standard output68

layer. This is shown for PyTorch in the following.69

In W random, parameter updates are deactivated as follows:70

self.fc = nn.Linear(N, K)71

self.fc.requires_grad_(False)72

In W scale, activations resulting from the encoder are scaled before the fc output layer:73

def forward(self, x):74

x = self.encoder(x)75

x = x * alpha76

return self.fc(x)77

In W sparse, an additional sparsification function is applied to W random:78

def sparsify(self, q):79

K, N = self.fc.weight.data.shape80

num_to_remove = int(q * N)81

idx = torch.stack([torch.randperm(N)[:num_to_remove] for _ in range(K)])82

for i in range(K):83

self.fc.weight.data[i, idx[i]] = 0.84

In W 1to1 and W ensemble, one can take a slice from the activations according to the number of classes85

and heads without affecting the backbone specifications. For W 1to1, H = 1 and α = 1.86

def forward(self, x):87

x = self.encoder(x)88

x = x * alpha89

return x[:, :K*H]90

In addition, W ensemble requires to compute separate losses for each head:91

loss = 092

for h in range(H):93

loss += nn.CrossEntropyLoss()(pred[:, h*K:h*K+K], y)94

loss /= H95

A.3 Additional dependency/expressivity results96

This section extends Sect. 3 from the main paper. Table 7 shows instance-based dependencies for97

all proposed layers and the ResNet backbone in several datasets. In C100, STL-10 and CUB-200,98

instance-based dependencies are high compared to the other output layers. In CUB-200, e.g., ablating99

2



Table 7: Instance-based dependencies as avg. reduction in probability when ablating the most
important neuron per instance w.r.t. the output class. + denotes fine-tuning from a pre-trained model.

C100 STL-10 CUB-200 CUB-200+

W trained 0.1014 0.1375 0.2395 0.0165
W scaled 0.0108 0.0065 0.0208 0.0107
W random 0.0043 0.0032 0.0125 0.0033
W sparse 0.0103 0.0104 0.0185 0.0122
W 1to1 0.8923 0.9195 0.7186 0.8898
W ensemble 0.0183 0.0020 0.0845 0.0446

Figure 7: Neuron dependency (left) and expressivity (right) in a ResNet-50 with 2048 penultimate
layer channels trained on CUB-200 for different output layer designs, showing the change in accuracy
on the test set. Best viewed in color.

Figure 8: Neuron dependency (left) and expressivity (right), fine-tuned on CUB-200 from a pre-
trained IN model.

Figure 9: Neuron dependency (left) and expressivity (right), trained on STL-10.

3



Table 8: Comparing precision, recall and overall weight allocation between a trained and random
output layer for different diabetic retinopathy severities in the APTOS dataset. The number of class
instances are shown for the test fold. Gray background indicates fixed, random weight allocation.

Recall Precision # instances
∑
W:,k

W
tr
a
in

e
d

Neg. 0.95 0.95 361 1.9
Mild 0.42 0.53 74 −1.2
Mod. 0.78 0.63 200 −1.1
Prol. 0.15 0.38 39 −6.1
Sev. 0.36 0.41 59 −3.6

W
r
a
n
d
o
m

Neg. 0.97 0.95 361 −0.9
Mild 0.39 0.53 74 0.3
Mod. 0.83 0.69 200 1.2
Prol. 0.33 0.46 39 −0.8
Sev. 0.46 0.61 59 0.3

Table 9: Performance comparison of randomizing or scaling different parts of a ResNet-50. Block
denotes fixing/scaling the last convolutional block in the network.

STL-10 CUB-200

W trained (baseline) 81.36 57.18
W trained 3 blocks 84.21 63.99
W random block 86.59 67.21

W scaled 83.33 63.46
W scaled network 85.66 58.40
W scaled block 86.42 66.74

a single neuron reduces the absolute probability for the predicted class by ∼ 24%. Lowest neuron100

dependencies are observed in W random, but the differences to other layers are subtle. The values for101

W 1to1 can be interpreted as average confidence of the model, since there is a direct correspondence102

between conv channels and classes. We also include results for a pre-trained model for CUB-200. It103

is worth noting that in this setting, neuron dependencies are reduced for the standard output layer,104

which corroborates the link to overfitting and generalization. Note also that neuron dependencies tend105

to decrease with increasing number of heads for W ensemble. For example, for STL-10, H = 204,106

so ablation of a single head does not reduce the output probabilities much. This is in contrast to107

CUB-200, where H = 10 leads to larger neuron dependencies.108

Next, we include additional class-based neuron dependency/expressivity plots for above datasets in109

Fig. 7, 8 and 9 (see Fig. 4 in the main paper for C100; center crop is used for CUB). As expected, the110

accuracies in W 1to1 and W ensemble drop to random performance after removing more neurons than111

heads available, and show (near) maximum performance already when using a single node per class.112

As for C100, accuracy drops slowest for W random when ablating a large number of neurons. Both113

W sparse and W scale exhibit relatively small class-based neuron dependencies for small numbers114

of ablated neurons per class. In comparison, standard output layers perform worse in CUB-200115

and STL-10 even for small changes to the network. This changes for pre-trained networks, where116

W trained shows comparable class-based neuron dependency/expressivity to other output layers.117

A.4 Weight allocation in output layers118

The APTOS dataset consists of 3662 images, is imbalanced and can be subdivided by diabetic119

retinopathy (DR) severity: Negative DR (1805 images), Mild DR (370), Moderate DR (999), Prolifer-120

ative DR (193) and Severe DR (295). Table 8 shows performances for individual classes for a random121

cross-validation fold. Both recall and precision are improved especially in underrepresented classes.122

The last column in Table 8 lists aggregated weight values for individual classes. Interestingly, it indi-123

4



cates a correlation between weight allocation and class sizes in W trained, with the negative DR class124

being given the most weight. This suggests a bias in the output layer where over/under-represented125

classes are weighted more/less. This is prevented by design with randomization, but also inherently126

with 1-to-1 and ensemble layers where there is a single node per class.127

A.5 Block scaling/randomization revisited128

This section extends Sect. 5.5 from the main paper, which showed that fixing the last conv block,129

or scaling the last conv block next to the output layer, can regularize the network and improve130

performance. We want to answer two more questions and refer to Table 9 in the following. First, is131

randomizing the last conv block the main driver of regularization in small datasets, or is it rather a132

reduction of network capacity? We design another ResNet variant, which uses only 3 conv blocks133

followed by GAP, thus omitting the last conv block. We see improved results compared to the134

deeper baseline. However, randomizing the last conv block instead of omitting it again increases135

performance. Next, we are interested whether activation scaling benefits generalization when applied136

to every activation in the network (i.e. after each group of conv layer, BN and ReLU). Again, scaling137

the whole network performs better than W trained. However, it also performs worse than W scaled in138

CUB-200. Also, scaling only the last conv block outperforms the other variants in both datasets.139

A.6 Visualization of heads in ensemble layers140

Why does W ensemble show better performance than W 1to1? After all, both consider the same141

channels from the previous conv layer. We conjecture that this is due to different initializations in142

the heads of W ensemble that might lead to varying local minima and thus complement each other.143

This is illustrated in Fig. 10 where activations for all 10 heads are maximized for two example144

classes in ResNet, fine-tuned on CUB-200. Although the learned visualizations of each head’s class145

node exhibit redundancies in color/structure, subtle differences are observable. For example, similar146

abstract patterns appear in all heads, but vary in orientation, rotation, or occur in different locations.147

a)

b)

Figure 10: Feature maximization for class nodes across heads in W ensemble for the indigo (a) and
painted bunting (b) with exemplars on the left side. We use Lucent [5] to create these visualizations.

5



References148

[1] APTOS. Aptos 2019 blindness detection, 2019. URL https://www.kaggle.com/c/149

aptos2019-blindness-detection.150

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative151

components with random forests. In European Conference on Computer Vision, 2014.152

[3] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-153

vised feature learning. In Proceedings of the fourteenth international conference on artificial154

intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.155

[4] Terrance DeVries and Graham W Taylor. Dataset augmentation in feature space. arXiv preprint156

arXiv:1702.05538, 2017.157

[5] Github. greentfrapp’s github repo, . URL https://github.com/greentfrapp/lucent.158

[6] Github. Milesial’s github repo, . URL https://github.com/milesial/Pytorch-UNet.159

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image160

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,161

pages 770–778, 2016.162

[8] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected163

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern164

recognition, pages 4700–4708, 2017.165

[9] A Emre Kavur, N Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir166

Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, et al. Chaos challenge-167

combined (ct-mr) healthy abdominal organ segmentation. Medical Image Analysis, 69:101950,168

2021.169

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint170

arXiv:1412.6980, 2014.171

[11] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for172

fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and173

Recognition (3dRR-13), Sydney, Australia, 2013.174

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.175

2009.176

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep177

convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.178

[14] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying179

the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.180

[15] PyTorch Hub. Pytorch. URL https://pytorch.org/hub/research-models.181

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for182

biomedical image segmentation. In International Conference on Medical image computing and183

computer-assisted intervention, pages 234–241. Springer, 2015.184

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng185

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.186

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision187

(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.188

[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale189

image recognition. arXiv preprint arXiv:1409.1556, 2014.190

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.191

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine192

learning research, 15(1):1929–1958, 2014.193

6

https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection
https://github.com/greentfrapp/lucent
https://github.com/milesial/Pytorch-UNet
https://pytorch.org/hub/research-models


[20] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of194

initialization and momentum in deep learning. In International conference on machine learning,195

pages 1139–1147, 2013.196

[21] Bram Van Ginneken, Tobias Heimann, and Martin Styner. 3d segmentation in the clinic: A197

grand challenge. In MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge,198

volume 1, pages 7–15, 2007.199

[22] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011200

Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.201

[23] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of202

neural networks using dropconnect. In International conference on machine learning, pages203

1058–1066. PMLR, 2013.204

[24] Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky. A study of face205

obfuscation in imagenet. arXiv preprint arXiv:2103.06191, 2021.206

7


	Appendices for: The Regularizing Effect of Different Output Layer Designs in Deep Neural Networks
	Implementation and training details
	Code
	Additional dependency/expressivity results
	Weight allocation in output layers
	Block scaling/randomization revisited
	Visualization of heads in ensemble layers


