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VoxInstruct: Expressive Human Instruction-to-Speech Generation
with Unified Multilingual Codec Language Modelling

Anonymous Author(s)

ABSTRACT
Recent AIGC systems possess the capability to generate digital
multimedia content based on human language instructions, such as
text, image and video. However, when it comes to speech, existing
methods related to human instruction-to-speech generation exhibit
two limitations. Firstly, they require the division of inputs into con-
tent prompt (transcript) and description prompt (style and speaker),
instead of directly supporting human instruction. This division
is less natural in form and does not align with other AIGC mod-
els. Secondly, the practice of utilizing an independent description
prompt to model speech style, without considering the transcript
content, restricts the ability to control speech at a fine-grained level.
To address these limitations, we propose VoxInstruct, a novel uni-
fied multilingual codec language modeling framework that extends
traditional text-to-speech tasks into a general human instruction-to-
speech task. Our approach enhances the expressiveness of human
instruction-guided speech generation and aligns the speech gen-
eration paradigm with other modalities. To enable the model to
automatically extract the content of synthesized speech from raw
text instructions, we introduce speech semantic tokens as an inter-
mediate representation for instruction-to-content guidance.We also
incorporate multiple Classifier-Free Guidance (CFG) strategies into
our codec language model, which strengthens the generated speech
following human instructions. Furthermore, our model architec-
ture and training strategies allow for the simultaneous support of
combining speech prompt and descriptive human instruction for
expressive speech synthesis, which is a first-of-its-kind attempt.

CCS CONCEPTS
• Information systems → Multimedia content creation; •
Human-centred computing→Human computer interaction (HCI).

KEYWORDS
Human computer interaction, expressive speech synthesis, codec
language model, human instruction, AIGC
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1 INTRODUCTION
Human-computer interaction (HCI) aims to enhance user expe-
rience and facilitate seamless interactions between humans and
computers [3]. With the rapid advancements of deep generative
models, recent Artificial Intelligence Generated Content (AIGC)
systems can generate digital multimedia content based on human
language instructions, such as text [1], image [20], video [24] and
audio [17], thereby significantly propelling HCI. Leveraging large-
scale training data, these models have achieved remarkable success
in text and visual modalities, which can produce high-quality and
vivid samples aligned with natural language inputs. However, when
it comes to audio, especially speech, there is still significant room
for improvement in human instructions-to-speech generation.

In general, speech involves three types of information: linguis-
tic, paralinguistic, and extralinguistic, corresponding to spoken
content, prosody/emotion, and speaker/scenario, respectively [18].
Human instructions should be able to describe and control these
three aspects within the synthesized speech. Due to the high cost
of manually annotating paralinguistic and extralinguistic informa-
tion in speech, the lack of large-scale datasets with high-quality
text-speech pairs constrains the performance of current prompt-
based text-to-speech (TTS) models. Besides, existing approaches
[9, 12, 15, 23, 31] need to divide inputs into content prompt (tran-
script) and description prompt (style and speaker), that is less natu-
ral in form and does not align with other AIGCmodels. For example,
when performing text-to-image generation, we can use a single
natural language prompt to simultaneously describe both the con-
tent and style of the image in a flexible way. The practice of using
independent description prompts to model speech style embed-
ding, without considering the transcript content, also restricts the
ability to control speech at a fine-grained level. Current research
on large-scale TTS models [13, 14, 22, 28, 34] primarily focus on
using speech prompts for voice cloning. However, relying solely on
speech prompts is user-unfriendly and incapable of creating new
voices. Furthermore, there is also a gap in current research regard-
ing the simultaneous utilization of both text description prompts
and speech prompts for speech generation.

To align the speech generation paradigm with other modalities,
we propose VoxIntruct, a new speech generation framework that
can directly support human language instructions as inputs, ex-
tending the traditional text-to-speech task into a general human
instruction-to-speech task. Specifically, human instructions refer
to a combined form freely written by natural language, including
both the spoken content and the descriptive information of the
speech. Our instruction-to-speech generation model is based on
the powerful large language model (LLM) architecture LLaMA [27],
and a pre-trained MT5 text encoder [30] is adopted to improve
the understanding of instruction context. To enable the model to
automatically extract the content of the synthesized speech from
raw text instructions, we introduce speech semantic tokens as an
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Figure 1: The capabilities of the proposed expressive human instruction-to-speech generation model.

intermediate representation for instruction-to-content guidance,
eliminating the need for an additional phoneme sequence as the
speech transcript, unlike previous approaches. In addition, by in-
corporating multiple Classifier-Free Guidance (CFG) [21] strategies
into our codec language model, we have strengthened the gener-
ated speech adhering human instructions. To ehance the model
generalization, we adopt the pre-training and fine-tuning paradigm,
leading to improvements in terms of expressiveness and naturalness
of the synthesized speech. Furthermore, benefiting from the model
architecture and training strategies, it is a first-of-its-kind attempt
to support inputs that combine speech prompts with descriptive
human instruction for expressive speech generation or voice style
modification. In particular, when using speech prompts with in-
structions limited by just spoken content, VoxInstruct operates as
a zero-shot voice cloning TTS system, with the performance on
par with current state-of-the-art (SOTA) Large-scale zero-shot TTS
models for both monolingual and cross-lingual scenarios, demon-
strating the comprehensive capabilities of our proposed method.

The contributions of this paper are summarized as follows:
• We present VoxInstruct, the first multilingual codec language

modeling framework that extends traditional text-to-speech tasks
to general human instruction-to-speech tasks by generating
speech directly from human instructions written freely in natu-
ral language, replacing previous separate content prompts and
description prompts. It significantly improves the expressiveness
of synthesized speech and the generalization of prompt-based
TTS.

• To strengthen the synthesized speech following human instruc-
tions, we introduce speech semantic tokens as an intermediate
representation for instruction-to-content guidance, and incorpo-
rate multiple Classifier-Free Guidance (CFG) strategies.

• We reveal a successful model architecture and training strate-
gies that support a combination of speech prompts and text
description prompts for expressive speech synthesis, which is a
first-of-its-kind attempt. It is able to generate speech of competi-
tive quality with current SOTA large TTS models when using
only speech prompts.

2 RELATEDWORKS
2.1 Text Prompt-based TTS Methods
In expressive text-to-speech (TTS) synthesis, conventional methods
are limited by fixed style labels or reference speech to control
the style, which may be inconvenient to users. Therefore, there’s
growing interest in generating speech from natural language text
prompts, with some research already investigating this approach.

PromptTTS [9] utilizes style prompts based on five attributes
to direct the stylistic expression of the synthesized voice, and con-
structs the PromptSpeech dataset containing prompts with style and
content information. Additionally, PromptStyle [16] incorporates
a reference encoder and aligns text prompt and reference embed-
dings for cross-speaker style transfer. Emphasizing naturalness and
flexibility, InstructTTS [31] enables stylistic speech synthesis us-
ing free-form natural language descriptions. Considering that text
prompts cannot fully and precisely describe the characteristics of
speech, PromptTTS 2 [15] introduces a diffusion-based variation
network to address voice variability beyond text prompts, thus tack-
ling the one-to-many issue. PromptSpeaker [33] and PromptTTS++
[23], on the other hand, shift their focus to text description-based
speaker generation by incorporating additional speaker informa-
tion into the text prompts, thereby enhancing control over speaker
individuality in speech generation. Each of these models employs a
prompt encoder to capture stylistic information from natural lan-
guage inputs. Meanwhile, Salle [12] treats text-controllable TTS as a
language model task, utilizing audio codec codes as an intermediate
representation, offering an alternative perspective to text prompt-
based TTS systems. And Salle also introduces the textrolspeech
dataset, featuring emotion descriptions in prompts.

However, all the above text prompt-based TTS methods input
the transcript and description separately. Our model supports more
natural prompt inputs by integrating the description and transcript,
moving closer to true control via natural language instructions.
Additionally, while existing approaches utilize training datasets
of limited size and have restricted coverage in terms of domain
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(mostly sourced from audiobooks), we have expanded the scale and
scope of our data, enabling better and more diverse outcomes.

2.2 Large-Scale TTS Models
The remarkable success of large models in text and image gener-
ation has indeed spurred significant developments in large-scale
text-to-speech (TTS) models. VALL-E [28], for instance, pioneered
a codec language modeling approach for TTS by using an audio
discrete codec model [8], marking a departure from traditional con-
tinuous signal regression methods. It expanded the TTS training
data to 60K hours of English speech, leading to substantial advance-
ments in zero-shot voice cloning. VALL-E X [34] extends these
capabilities into cross-lingual speech synthesis, further broaden-
ing the applicability. Similarly, Spear-TTS [14] regarded TTS as
two sequence-to-sequence tasks: from text-to-high-level semantic
tokens and semantic tokens to low-level acoustic tokens, employ-
ing language models for both stages. Models like VALL-T [7] and
RALL-E [29] aimed to improve the stability of these decoder-only
LM-based TTS systems by introducing shifting relative position em-
beddings or chain-of-thought prompting techniques. These models,
thanks to their extensive training data and the in-context learning
ability of their language model backbones, are capable of produc-
ing high-quality and natural speech that closely resembles the
speech prompts. Another line of large-scale TTS models leverages
non-autoregressive (NAR) modeling, exemplified by systems like
NatrualSpeech 2 [22] and Mega-TTS 2 [13]. They also show great
zero-shot voice cloning capabilities, and even better robustness than
language model-based methods because of explicit duration model-
ing. However, they typically fall short in achieving the diversity of
generated speech compared to AR models. Besides, existing NAR
models require extra effort to derive duration alignment from large-
scale speech corpora, which can be time-consuming and prone to
inaccuracies in noisy speech conditions.

In this paper, we build a human instruction-to-speech genera-
tion model based on codec language modeling. Unlike previous
TTS codec language models that rely on phoneme sequences, our
model directly generates speech from human language instruction.
This allows the model to understand unified language instructions
that incorporate both spoken content and voice/style description,
enabling it to produce expressive speech that adheres closely to the
given instructions.

3 PROBLEM FORMULATION
Let x𝑖𝑛𝑠 represents the natural language text of the human instruc-
tion that describes the characteristics of voice (speaker’s gender,
age, speed, pitch), the speaking style (emotion, prosody), the speak-
ing scenario, together with the transcript of spoken content. Our
major task is to generate a speech signal y ∈ R𝐿 in accordance with
x𝑖𝑛𝑠 , where 𝐿 is the length of samples in y. Due to the challenge of
directly generating waveforms, it is common practice to first pro-
duce an intermediate acoustic representation A ∈ R𝑇×𝐷 , such as
mel-spectrograms or codec, where 𝑇 is the downsampled length of
speech (that is, frame) and𝐷 is the feature dimension of each frame,
and then utilize an additional vocoder to synthesize the waveform.
Hence, the human instruction-to-speech generation process can be
briefly defined as F : x𝑖𝑛𝑠 ↦→ A.

Intuitively, x𝑖𝑛𝑠 includes the content part x𝑐𝑜𝑛 and the descrip-
tion part x𝑑𝑒𝑠 , which represent what is to be said and how it is to
be said, respectively.

Conventional TTS task aims to model the transcript-to-speech
mapping F𝑇𝑇𝑆 : x𝑐𝑜𝑛 ↦→ A. To achieve controllable expressive-
ness in speech, recent prompt-based TTS works further model the
process of F𝑃−𝑇𝑇𝑆 : (x𝑐𝑜𝑛, x𝑑𝑒𝑠 ) ↦→ A. However, they require the
distinguished inputs of the content prompt and the description
prompt, with x𝑑𝑒𝑠 only allowing for coarse control of the overall
speech, which is not true instruction-based speech generation.

Unlike them, our proposed speech generation model is designed
to directly support human instructions x𝑖𝑛𝑠 as input, where x𝑖𝑛𝑠 is
a flexible combination of x𝑐𝑜𝑛 and x𝑑𝑒𝑠 . For instance, the spoken
content x𝑐𝑜𝑛 can be placed before, after, or even inserted at any
point within x𝑑𝑒𝑠 , and x𝑑𝑒𝑠 can describe the style of either the whole
or a portion (such as emphasizing a particular word) of x𝑐𝑜𝑛 , much
like the structure of novel or article writing. We believe this input
format not only facilitates user-friendly instruction-based speech
generation but also holds the potential for expansion into a broader
and general instruction-based audio generation framework.

In addition, since textual human instructions may be incapable of
precisely describing the voice timbre desired by the user, the system
should also support speech prompts as an auxiliary optional input.
Given a reference speech ỹ as speech prompt, Ã is the intermediate
representation of speech prompt encoded from ỹ. In this situation,
human instruction and speech prompt complement each other to
generate speech, represented as F ′ : (x𝑖𝑛𝑠 ; Ã) ↦→ A. The model
takes into account both the detailed voice characteristics in Ã, and
the style and content controls in x𝑖𝑛𝑠 . Specifically, when x𝑖𝑛𝑠 is
limited to contain the spoken content x𝑐𝑜𝑛 only, the model operates
as a conventional voice cloning TTS system, synthesizing the given
transcript by entirely mimicking the reference speech prompt.

4 METHODOLOGY
In this section, we first provide an overview of the human instruction-
to-speech generation framework, following which we introduce
the core component of this framework - the multilingual codec
language modeling based on natural language instruction inputs.
Together with a powerful language model architecture LLaMA,
speech content guidance with semantic tokens, multiple classifier-
free guidance strategies, and pre-training with the fine-tuning par-
adigm, the proposed system can directly generate high-quality and
expressive speech in both English andMandarin adhering to human
language instructions.

4.1 Framework Overview
As illustrated in Fig.1, the proposed speech generation framework is
made up of a text encoder, an acoustic encoder, an acoustic decoder
and a neural codec language model. The detailed architecture of the
proposedmodel is shown in Fig.2. Drawing from the success of other
cross-modal generation systems, we utilize a pre-trained text en-
coder to capture the semantic information of human instruction. To
support multilingual instruction inputs, we choose the Multilingual
T5 basemodel (MT5-base) [30]1, and use its pre-trained text encoder
with inserting trainable low-rank adaptation (LoRA) adaptors. The
1https://huggingface.co/google/mt5-base
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Figure 2: Model architecture.

raw text of human instruction x𝑖𝑛𝑠 is passed to the MT5 encoder to
derive the text embedding sequence E𝑖𝑛𝑠 = {𝑒1, 𝑒2, ..., 𝑒𝑚}, where𝑚
is the number of subwords after text tokenization. As to the acoustic
encoder, the neural codec model Encodec [8]2 is used to extract
the discrete acoustic tokens as intermediate representations A𝑇 ∗𝑛 ,
where 𝑛 is the number of residual quantizers of each frame.

Since speech is a type of variable-length sequence data, we em-
ploy a codec language modeling approach to model the mapping
from instruction text embedding sequence to acoustic tokens, which
allows to avoid the need for additional duration prediction. The
codec language model takes instruction text embedding E𝑖𝑛𝑠 and
speech prompt Ã (if it is provided) as input to produce target acous-
tic tokens. After generating acoustic tokens, we leverage Vocos
[25]3 as the acoustic decoder instead of the original Encodec de-
coder, as Vocos offers better audio reconstruction quality.

4.2 Instruction-to-AT Generation with LLaMA
Architecture and ST Guidance

The neural codec language model aims to generate acoustic tokens
(AT) based on the text embedding sequence of multilingual hu-
man language instructions. Previous LM-based TTS models such
as VALL-E mainly adopt a two-stage manner, including autoregres-
sive (AR) and non-autoregressive (NAR) models. The AR model
generates the coarse-grained acoustic tokens (the first quantizer)
step by step, while the NAR model generates the acoustic details
(the rest quantizers) in parallel. Similarly, we also combine AR and
2https://github.com/facebookresearch/encodec
3https://github.com/gemelo-ai/vocos

NAR models to ensure both generation quality and inference effi-
ciency, and we leverage a more powerful transformer architecture
LLaMA [27] as the model backbone. LLaMA introduces several
improvements including pre-normalization, RMSNorm, SwiGLU
activation function, and rotary positional embeddings (RoPE) [26],
all of which have been proven effective in LLM. Besides, we use
fast and memory-efficient flash attention [6] to replace the original
attention module in LLaMA.

Unlike text-to-image generation, speech typically requires stricter
content alignment. The precise occurrence and the correct order
of pronunciation units significantly impact the intelligibility of the
generated speech. We found that directly learning the mapping
from instruction text embedding to acoustic tokens (AT) is rela-
tively challenging. To enhance the model’s understanding of human
instructions and generate intelligible speech, we introduce semantic
tokens (ST) extracted from speech. These tokens assist the model
in discerning the content within x𝑖𝑛𝑠 , eliminating the requirement
for supplementary phoneme sequence input. Therefore, our codec
language model consists of three stages: instruction-to-ST genera-
tion, coarse-grained AT generation, and acoustic details generation,
with the first two stages being modeled by the AR model.

4.2.1 Stage I (AR): instruction-to-ST generation. To obtain speech
semantic tokens, we use the self-supervised representation model
HuBERT [11] as well as the 𝑘-means clustering to discrete HuBERT
embeddings4. Semantic tokens are expected to provide high-level
abstract representations of speech content devoid of prosodic ele-
ments (such as duration) or speaking style. Consequently, consecu-
tive duplicate tokens are removed, following the method outlined in
[14]. To facilitate the generation of multilingual speech, we prepend
a language label 𝑙 to the semantic token sequence 𝑆 , serving to sig-
nify the language information of the speech content. The AR model
initially predicts the language label from the instruction text em-
bedding E𝑖𝑛𝑠 , and subsequently produces all semantic tokens, with
a <𝑆𝑒𝑜𝑠> token indicating the end of ST prediction. The process can
be formulated as:

𝑃 (𝑆 |E𝑖𝑛𝑠 ;𝜃𝐴𝑅) = 𝑃 (𝑙 |E𝑖𝑛𝑠 ;𝜃𝐴𝑅)
𝑇 ′∏
𝑡=1

𝑝 (𝑆𝑡 |E𝑖𝑛𝑠 , 𝑙, 𝑆<𝑡 ;𝜃𝐴𝑅) (1)

4.2.2 Stage II (AR): coarse-grained AT generation. The first quan-
tizer of acoustic tokens encapsulates essential content, prosody and
fundamental timbre information, while also determining the over-
all speech duration, akin to creating a rough sketch of the speech.
We employ the aforementioned AR model to predict such coarse-
grained acoustic tokens. The prediction conditions incorporate the
instruction text embedding sequence, alongside the language label
and the semantic token sequence. This stage can be delineated as
follows:

𝑃 (𝐴(:,1) |E𝑖𝑛𝑠 ;𝜃𝐴𝑅) =
𝑇∏
𝑡=1

𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) ;𝜃𝐴𝑅) (2)

It is unnecessary to distinguish between stage 1 and stage 2
during training, as the input sequence to the AR model is presented
in a concatenated form, denoted as <𝐸𝑖𝑛𝑠 , 𝑙 , 𝑆 ,𝐴(:,1)>. With a causal
attention mask in the AR model, all preceding tokens are treated as

4https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
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conditioning elements or prompts (including speech prompts), thus
allowing for simultaneous training of both ST and coarse-grained
AT generation processes.

4.2.3 Stage III (NAR): acoustic details generation. For efficient in-
ference, we utilize a NAR model to generate the rest quantizers of
acoustic tokens, which is also based on the LLaMA backbone but
omits the casual attention mask. Each layer’s quantizer is forecasted
using all preceding layers’ quantizers as well as the instruction text
embedding, the language label, and the semantic tokens. To fur-
ther improve speech quality, we adopt iterative parallel decoding
across each layer, similar to MaskGIT [4] and SoundStorm [2]. In
the course of predicting each layer’s quantizer, the NAR model per-
forms multiple forward passes, during which it predicts and then
retains a portion of the tokens based on their confidence scores.
Moreover, to support both instruction-to-speech generation and
voice cloning capability, the NAR model is designed to optionally
accommodate a speech prompt Ã. During training, we decided with
a certain probability whether to use a prefix segment Ã of acous-
tic tokens as a speech prompt. The entire process can be simply
represented as:

𝑃 (𝐴(:,2:𝑛) |E𝑖𝑛𝑠 , Ã;𝜃𝑁𝐴𝑅) =
𝑛∏
𝑖=2

𝑃 (𝐴(:,𝑖 ) |E𝑖𝑛𝑠 , 𝑙, 𝑆, Ã(:,1:𝑛) ;𝜃𝑁𝐴𝑅)

(3)

4.3 Classifier-Free Guidance for Codec
Language Model

The success of classifier-free guidance (CFG) in text-to-image gen-
eration [10] has demonstrated the effectiveness of combining un-
conditional generation and conditional generation within diffusion
models. Recent advancement in unimodal text generation has fur-
ther illustrated that CFG can also be used in LLMs [21], improving
both coherence and alignment with the given prompt. Motivated
by this, we first attempt to introduce CFG into codec language
models, to enhance the control over human instruction-to-speech
generation.

Specifically, the condition in Equation (1) and (2) are replaced
with an empty prompt at a certain probability during AR model
training. That is, we mask text embedding sequences when predict-
ing semantic tokens, and we mask text embedding sequences or
semantic token sequences when predicting coarse-grained acous-
tic tokens, both of which are considered forms of unconditional
generation. Consequently, during inference, we can sample the 𝑖-th
semantic token in the logits space, combined with unconditional
guidance:

𝑙𝑜𝑔𝑃 (𝑆𝑡 |E𝑖𝑛𝑠 , 𝑙, 𝑆<𝑡 ) = 𝑙𝑜𝑔𝑃 (𝑆𝑡 |E𝑖𝑛𝑠 , 𝑙, 𝑆<𝑡 )
+𝛾 (𝑙𝑜𝑔𝑃 (𝑆𝑡 |x𝑖𝑛𝑠 , 𝑙, 𝑆<𝑡 ) − 𝑙𝑜𝑔𝑃 (𝑆𝑡 |∅, 𝑙, 𝑆<𝑡 ))

(4)

where 𝛾 is the guidance strength. Besides, when sampling the 𝑖-th
coarse-grained acoustic token, we can utilize two types of CFG at
the same time, allowing the generation of AT to focus on different
aspects:

𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) ) = 𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) )
+𝛼 (𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) ) − 𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |∅, 𝑙, 𝑆, 𝐴(<𝑡,1) ))

(5)

𝑙𝑜𝑔𝑃 ′ (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) ) = 𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) )
+𝛽 (𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, 𝑆, 𝐴(<𝑡,1) ) − 𝑙𝑜𝑔𝑃 (𝐴(𝑡,1) |E𝑖𝑛𝑠 , 𝑙, ∅, 𝐴(<𝑡,1) ))

(6)

where 𝛼 and 𝛽 are the guidance strength corresponding to the
human instruction and the semantic tokens. The guidance strength
is usually set to be over 1.

Intuitively, enhancing guidance on instructions contributes to
better control over the voice characteristics of generated speech,
while intensifying guidance on ST helps increase the intelligibility
of the speech content, which can be shown in experiments.

4.4 Training Strategy
Compared to text-image data, the scale of existing instruction-
speech datasets is relatively small. To improve the performance
of the proposed speech generation model, we implement a pre-
training with fine-tuning paradigm.

In the pre-training stage, we train our model using large-scale
public speech datasets that consist only of text transcriptions. The
raw transcripts, enclosed in quotation marks, serve as human in-
structions, which means x𝑖𝑛𝑠 is limited to the speech content x𝑐𝑜𝑛 .
This phase ensures that the codec language model exhibits strong
text-to-speech synthesis (intelligibility) and zero-shot voice cloning
(generalization) capabilities. Subsequently, we fine-tune the model
with instruction-speech paired data, endowing it with the ability to
understand descriptive information x𝑑𝑒𝑠 in human instructions. The
instructions here primarily describe the overall speech attributes
in addition to the spoken content. Owing to the relative scarcity of
instructions annotated with fine-grained attributes, such as stress
marking, we employ a progressive fine-tuning strategy to achieve
fine-grained control over speech. Specifically, we further fine-tune
the model using a small dataset of fine-grained instructions, thereby
equipping the model with the capability for detailed control over
speech characteristics.

5 EXPERIMENTS
5.1 Implementation Details
Dataset In line with the scene intention of pre-training and fine-
tuning paradigm, we incorporated substantial data varied in anno-
tation granularity, denoted as transcript-only data, instruction data
and fine-grained instruction data, as presented in Table 1. Large-
scale publicly available speech datasets with transcripts, including
Chinese corpus WenetSpeech [32] and English corpus GigaSpeech
[5], are firstly involved in pre-training stage.We filtered out samples
that are shorter than 3 seconds and those of low quality, resulting
in a total of 13.4K hours of speech.

Subsequently, leveraging our internal annotation system, we
employed a series of instruction-speech paired datasets with com-
prehensive and in-depth interpretation of speech expressiveness
through diverse natural language instructions. Speech instructions
characterise the speech in terms of spoken content, acoustic prop-
erties, speaker identity, emotional tone and scenario background,
with a subset of fine-grained description towards word emphasis.
The detail of the annotation system, encompassing expert classifiers
and captioning model, followed by a LLM for instruction rewriting,
is elaborated in Appendix. We automatically annotated instructions
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Table 1: Statistics of the Training Data

Version Language Data Source #Used Clips #Duration

Transcript-Only EN WenetSpeech 5,746,972 6,319h
ZH GigaSpeech-xl 5,705,080 7,117h

Instruction EN GigaSpeech-m, LibriTTS-R, TextrolSpeech, In-the-wild Corpus 1,065,182 1,331h
ZH AISHELL3, Zhvoice, In-the-wild Corpus 1,233,355 1,116h

Fine-grained Instruction EN LibriTTS-stress 75,654 149h
ZH AISHELL3-stress 63,258 51h

on some open-source datasets. Additionally, to enhance general-
izability, we collected a considerable corpus of scenario-enriched,
in-the-wild audio data from the Internet. This corpus includes a vari-
ety of explicit contextual information, ranging from live commerce
and news broadcasts to classroom lectures and gaming commentary,
equipped the model with stronger generalisation ability on specific
scenes. The instruction datasets and the fine-grained instruction
datasets contain 2.4K and 200 hours of speech, respectively.
Training Details The model training was conducted on 8 NVIDIA
A100 GPUs. Initially, the model underwent pre-training for 1M
iterations with a batch size of 64, using a gradually decay learning
rate starting from 10−4. A warm-up strategy was employed during
the first 10,000 iterations. Following this, the model was fine-tuned
on the instruction datasets for 800K iterations with a batch size of
32, and underwent an additional 100K iterations of fine-tuning on
the fine-grained instruction dataset.

In terms of model configuration, both the AR model and the
NAR model are built on the LLaMA architecture, which includes
12 layers of Transformers with a hidden dimension of 1024 and
a feedforward network dimension of 4096. The LoRA adapters
inserted within MT5 text encoder have an r value of 16. For the
AR model, to facilitate unconditional generation as part of CFG,
we mask the entire text embedding sequence or semantic token
sequence with a probability of 0.1 during training. For the NAR
model, to support the optional input of speech prompts, we set a
probability of 0.3 for not using any prefix acoustic segment Ã. To
enable iterative decoding, we employ a cosine schedule to randomly
mask a portion of acoustic tokens for the current layer’s quantizier.
Evaluation Metrics To verify the effectiveness of our proposed
speech generation model, we use multiple subjective and objective
evaluation metrics. Given the model’s capabilities in instruction-
to-speech generation and voice cloning, we specifically introduce
evaluation metrics focused on these two aspects.

For instruction-to-speech generation, we employ two mean opin-
ion score (MOS) tests to evaluate the quality and controllability of
the generated speeches: MOS-Q measures the quality of speech,
with higher values signifying greater speech quality, naturalness
and expressiveness, MOS-I measures how well the speech follows
the given human instructions, with higher values indicating better
control of the speech attributes corresponding to the descriptive
instructions. In terms of objective metrics, we perform ASR with
Whisper medium model [19]5 on the generated speech and calcu-
late the word error rate (WER) with original transcriptions. We
also calculate the accuracy on several speech attribute factors of
the generated speech, with the corresponding classification models.

5https://github.com/openai/whisper

For voice cloning, we employ MOS-S to measure the voice sim-
ilarity between speech prompts and generated speech. As for ob-
jective metrics, speaker embedding cosine similarity (SECS) and
mel cepstral distortion (MCD) are adopted to evaluate the dispar-
ity between generated speech and the speech prompt. We employ
Resemblyzer6 to extract the utterance-level speaker embedding
for calculating cosine similarity. For all subjective MOS tests, 20
participants take part in the evaluation and rate on a scale from 1
to 5 with 1 point interval.

5.2 Compared Methods
We compared our proposed speech generation model VoxInstruct
with several systems of text prompt-based TTS and speech prompt-
based TTS, respectively. For text prompt-based TTS, we reproduced
PromptTTS [9] and Salle [12] in multi-lingual version, and trained
them on our instruction and fine-grained instruction dataset. Specif-
ically, we processed the instruction text prompt to exclude the con-
tent part, aligning with their original setting of modeling content
and style separately. Andwe all used Vocos decoder as their vocoder.
For speech prompt-based TTS, we select mono-lingual Vall-E [28]
and cross-lingual Vall-E X [34] as baselines. Due to the high cost
of reproduction, we directly collected some audio samples from
their demo pages7 for comparison.

5.3 Human Instruction-Controlled Speech
Generation

To demonstrate the capability of our proposed VoxInstruct in con-
verting human instructions into expressive speech, we first con-
ducted both subjective and objective experiments on an English
test set. The test samples were taken from GigaSpeech-s, which
were unseen during training. We utilized our instruction anno-
tation pipeline to produce corresponding human instructions for
these samples. As ground truth speech is available, we were able
to compute the MCD and SECS with ground-truth as references
in this part. The results are presented in Table 2. It is evident that
VoxInstruct achieved the highest MOS-Q of 4.22 and MOS-I of 3.76,
outperforming the two baseline models significantly. The speech
quality of our reproduced PromptTTS is relatively low, which may
be attributed to its Transformer-decoder architecture and the use of
MSE loss, as mentioned in [23]. This seriously affects its subjective
evaluation results and the WER value. For objective evaluations,
VoxInstruct also secured the best average classification accuracy of
speech attribute factors with the closest similarity to ground-truth
speech and obtained a considerableWER of 2.5which is in line with
other state-of-the-art TTS systems. This indicates that VoxInstruct
6https://github.com/resemble-ai/Resemblyzer
7https://www.microsoft.com/en-us/research/project/vall-e-x/
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Table 2: The experimental results of human instruction-to-speech generation on the English test set

Model MOS-Q MOS-I Accuracy on Speech Attribute Factors WER↓ MCD↓ SECS (GT)↑Mean Gender Age Pitch Energy Speed Emotion

Ground Truth - - 80.12 100.001 55.06 81.01 62.03 82.59 100.00 2.7 - -
PromptTTS 1.82 2.07 66.93 78.80 58.23 60.76 60.13 70.25 73.42 11.6 16.161 0.577

Salle 3.67 3.18 65.45 85.13 59.49 57.59 60.44 63.92 66.14 7.2 12.768 0.595
VoxInstruct w/o pre-training 4.11 3.66 73.95 94.62 54.43 77.53 61.39 77.22 78.48 3.3 16.273 0.622

VoxInstruct 4.22 3.76 74.89 95.57 57.28 77.53 59.81 78.16 81.01 2.5 11.864 0.641

Table 3: The experimental results of speech generation from instructions based on randomly sampling speech attributes and
LLM-aided generation in Chinese

Model MOS-Q MOS-I Accuracy on Speech Attribute Factors
Mean Gender Age Pitch Energy Speed Emotion

PromptTTS 2.36 2.17 65.38 85.61 60.00 54.74 41.40 70.53 80.00
Salle 2.77 2.68 61.22 87.37 58.95 49.12 44.56 56.14 71.23

VoxInstruct w/o pre-training 3.56 3.72 63.75 94.74 56.14 54.39 44.21 66.32 66.67
VoxInstruct 4.01 3.83 61.4 89.47 57.89 54.04 43.51 57.54 65.96

possesses the ability to understand unified human instructions x𝑖𝑛𝑠 ,
capable of recognizing descriptions of voice characteristics and
accurate spoken content within the instructions and generating
expressive speech that is consistent with the given instructions.
Moreover, it can be observed that incorporating a pre-training
phase results in a slight improvement in speech attribute control
and a more pronounced enhancement in intelligibility, which is
intuitively expected.

In addition, we further conducted experiments in Chinese. Un-
like the English test, Chinese instructions were generated by first
randomly sampling speech attributes and then leveraging an LLM
for rewriting. The results are outlined in Table 3. Although VoxIn-
struct’s performance in objective accuracy metrics is comparable
to, or slightly inferior to, the baseline models, it excels significantly
in the subjective metrics of MOS-Q and MOS-I, with 4.01 and 3.83,
respectively. This demonstrates that our model also performs well
in understanding Chinese instructions and generating speech. Fur-
thermore, our findings reveal that VoxInstruct can inherently com-
prehend mixed-language instructions and produce code-switched
speech directly, eliminating the need for any grapheme-to-phoneme
(G2P) conversion.

Table 4: The recall accuracy of speech stress detection

Model Acc_word Acc_sentence

PromptTTS 76.46 65.59
Salle 81.75 71.96

VoxInstruct 88.29 87.17

5.4 Speech Stress Control through Fine-Grained
Human Instructions

To demonstrate that our unified instruction-based speech genera-
tion approach has superior fine-grained control over speech, we
fine-tuned all these models on a fine-grained instruction dataset
and evaluated the performance by using an internal stress detection
model. 200 instructions containing detailed emphasis information
were used to synthesize test samples.

The accuracy of correctly detecting stressed words among all
words (Acc_word) in synthesized speech, as well as the accu-
racy of identifying the correct stressed word among all sentences
(Acc_sentence), are displayed in Table 4. It is shown that the
method used by PromptTTS, which focuses on the mapping be-
tween text prompts and global speech style embeddings, encounters
difficulties in achieving fine-grained control. Conversely, our ap-
proach, which utilizes unified instruction prompts as input, shows
superior fine-grained control capabilities compared to Salle’smethod,
which models content and style prompts separately.

5.5 Voice Cloning Ability Based on Speech
Prompt

In this section, we compare VoxInstruct with the zero-shot TTS
model VALL-E and Vall-E X, which respectively focus on monolin-
gual and cross-lingual scenarios. The results are depicted in Table
5. This comparison reflects that our model achieves performance
comparable to current leading zero-shot voice cloning TTS models.
Despite being fine-tuned on instruction datasets, it retains its power
capability for mimicking the voice from a speech prompt. Addi-
tionally, our model significantly outperforms VALL-E in terms of
naturalness and speech quality. This improvement is attributed to
the Vocos Decoder and the enriched semantic information provided
by the pre-trained MT5 Text Encoder.

Table 5: The experimental results of voice cloning

Model MCD↓ SECS↑ MOS-Q MOS-S

Vall-E 7.042 0.839 3.48 3.99
VoxInstruct (mono-lingual) 7.503 0.824 4.06 4.01

Vall-E X - 0.811 4.01 3.85
VoxInstruct (cross-lingual) - 0.816 3.68 3.86

5.6 Ablation Studies
To demonstrate the effectiveness of our proposedmethod for human
instruction-to-speech generation, we conducted ablation studies
about the specific designs. The base setting for the ablation studies
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is configured as VoxInstruct with all CFG values set to 1.0 during
inference, and without the pre-training stage to conserve training
costs.

For our proposed multiple CFG strategies, we individually set
the corresponding CFG values to 2.0 (while maintaining others at
1.0) to explore the impact of enhancing condition guidance on the
predictions of different components. We found that enhancing the
instruction guidance for semantic tokens and coarse-grained acous-
tic tokens can improve the accuracy of speech attribute control,
with a more significant impact on acoustic tokens. Additionally,
enhancing the semantic token guidance for coarse-grained acoustic
tokens generation can improve the intelligibility of speech. We
experimented with removing semantic token guidance from the
codec language model and found that it led to a significant increase
in WER. This indicates that incorporating ST sequence helps the
model learn and understand the correct spoken content within the
instructions.

Table 6: Ablation studies on the English test set

Model WER↓ MCD↓ SECS↑ Acc↑
VoxInstruct (w/o CFG) #1 3.0 11.861 0.609 68.51
#1 + CFG of Instruction on ST 3.5 12.441 0.607 69.41
#1 + CFG of Instruction on AT 2.7 11.692 0.615 71.41
#1 + CFG of ST on AT 2.5 11.704 0.614 68.40
#1 - ST guidance 26.2 14.146 0.599 62.34

5.7 Case Study
To further explore the capabilities of our proposed VoxInstruct
in human instruction-to-speech generation, four case studies are
presented. As illustrated in Fig.3, the mel-spectrograms, pitch, and
energy contours of speech generated according to human language
instructions are depicted.

The first two sub-figures show the controllability of VoxInstruct
in generating speech solely from instructions. In Fig.3 (a) and (b),
the content of the speech is the same, but the descriptive infor-
mation differs. The pitch curve rises in Fig.3 (a), corresponding
to a happy emotion, and the speech duration is shorter, matching
the description “quickly”. In Fig.3 (b), the instruction denotes to
emphasize the word “always”, which is reflected in a higher energy
level in the corresponding part of the mel-spectrogram.

In addition, the last two sub-figures showVoxInstruct’s capability
to achieve voice style modification by using human instructions
with speech prompts. The speech prompt used in Fig.3 (c) and (d) is
from a male speaker, p254 in the VCTK corpus, which is in a neutral
emotion. It can be observed that when different instructions are
used, the model can synthesize speech with corresponding global
and local styles. For instance, a long pause matching “heavy heart”
and “very slowly” in Fig.3 (c), while the word “yielding” is stressed
in Fig.3 (d). The SECS values all exceed 0.78, demonstrating that our
model effectively maintains timbre consistency while modifying
the style, which is a crucial aspect.

6 CONCLUSION
In this paper, we propose VoxInstruct, a novel unified multilingual
codec language modeling framework that extends traditional text-
to-speech tasks into a general human instruction-to-speech task.

(a) A happy old man with low pitch and high energy, speaking
quickly, happily recounts his recent activities: “But don’t you al-
ways want to be happy, Bruno?"

(b) Engaging in a dialogue, a youthful male with normal pitch saying
“But don’t you always want to be happy, Bruno?", drawing attention
to “always" by stressing it significantly.

(c) Stated sadly with a heavy heart and spoken very slowly: “For it is
very hard, my LORD. To carry on, to persist without yielding."[with
speech prompt]

(d) In the television series, a general said in a calm tone, “For it is very
hard, my LORD. To carry on, to persist without yielding", emphasizing
the word “yielding".[with speech prompt]

Figure 3: Mel-spectrograms, pitch, and energy contours of
speech generated according to human language instructions
for four test cases are depicted. Each subplot is annotated
with its respective instruction input. In cases (a) and (b), only
the instruction text is provided, whereas cases (c) and (d)
also include a speech prompt. The speaker embedding cosine
similarity (SECS) between these cases and the speech prompt
is displayed in the top left corner.

we introduce speech semantic token as instruction-to-spoken con-
tent guidance, multiple Classifier-Free Guidance (CFG) strategies,
and pre-training with fine-tuning stage. Our approach enhances
the expressiveness of human instruction-guided speech generation
and aligns the speech generation paradigm with other modalities.
Furthermore, our model architecture and training strategies allow
for the simultaneous support of combining speech prompt and de-
scriptive human instruction for expressive speech synthesis, which
is a first-of-its-kind attempt.
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