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Abstract
Learning policies for multi-entity systems in 3D
environments is far more complicated against
single-entity scenarios, due to the exponential
expansion of the global state space as the num-
ber of entities increases. One potential solution
of alleviating the exponential complexity is di-
viding the global space into independent local
views that are invariant to transformations includ-
ing translations and rotations. To this end, this
paper proposes Subequivariant Hierarchical Neu-
ral Networks (SHNN) to facilitate multi-entity
policy learning. In particular, SHNN first dy-
namically decouples the global space into local
entity-level graphs via task assignment. Second,
it leverages subequivariant message passing over
the local entity-level graphs to devise local ref-
erence frames, remarkably compressing the rep-
resentation redundancy, particularly in gravity-
affected environments. Furthermore, to overcome
the limitations of existing benchmarks in captur-
ing the subtleties of multi-entity systems under
the Euclidean symmetry, we propose the Multi-
entity Benchmark (MEBEN), a new suite of envi-
ronments tailored for exploring a wide range of
multi-entity reinforcement learning. Extensive ex-
periments demonstrate significant advancements
of SHNN on the proposed benchmarks compared
to existing methods. Comprehensive ablations are
conducted to verify the indispensability of task
assignment and subequivariance.
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Figure 1. Illustration of the symmetry in our 3D multi-entity phys-
ical environments. In this example, there are two agents (red
and blue) navigating towards two objects (grey). To mitigate the
exponential-growth complexity, we conduct task assignment to de-
couple the whole state space into local views (the orange and green
transparent coordinate frames), where one agent is assigned for
one object. These local views can be represented by local reference
frame (LRF), leading to representations that are independent of any
translation, or rotation around the gravity direction of the global
coordinates of the entities. Such symmetry is called E(3) subequiv-
ariance, distinct from conventional E(3) equivariance, accounting
for gravitational effects. In form, subequivariance is encapsulated
by the group Eg⃗(3)—translations/rotations/reflections along grav-
ity g⃗ (a 3D Euclidean subgroup of E(3) in Section 2). Codes are
available on our project page: https://alpc91.github.io/SMERL/.

1. Introduction
Learning to navigate, control, cooperate, and compete in
the 3D physical world is a fundamental task in developing
intelligent agents. Deep reinforcement learning (RL) has
made impressive breakthroughs, particularly in single-entity
systems, with agent policies evolving through environmen-
tal interactions (Mnih et al., 2015; Silver et al., 2016; Mnih
et al., 2016; Schulman et al., 2017; Bansal et al., 2018;
Liu et al., 2018; 2022). However, an intricate challenge
is generalizing across configurations like transformations,
morphologies, and tasks, which are interlinked and compli-
cate the learning process. In particular, multi-entity systems,
which include agents, objects, and other entities defined
in (Spelke, 2022), present considerable challenges com-
pared to single-entity scenarios, partly due to exponential
expansion of global transformations as the number of enti-
ties increases (Deng et al., 2023). In Figure 1, for example,
any horizontal rotation of the entities, although producing
different global coordinates and representations, does not
change the essential geometry and their local views of dif-
ferent entities. Such symmetry, defined as subequivariance

1

https://alpc91.github.io/SMERL/


Subequivariant Reinforcement Learning in 3D Multi-Entity Physical Environments

(formal definition is given in Section 2) in this paper, pro-
vides a potential way to reduce the complexity of the state
space. There are certain previous studies leveraging this
type of symmetry in RL. For instance, the methods based
on heading normalization (HN) (Won et al., 2020; 2022)
transform global coordinates into a local reference frame
(LRF), which is yet non-learnable and non-adjustable with
respect to the goal of the task. Morphology-based RL ad-
vances (Chen et al., 2023) for single entity have incorporated
subequivariance (Han et al., 2022) into policy modeling, re-
ducing reliance on hand-crafted LRFs. However, extending
subequivariance from single-entity to inter-entity transfor-
mations reveals unexplored challenges due to the coupled
local space of each entity.

To tackle the difficulties of interdependence and generaliza-
tion, we introduce a novel framework, named Subequivari-
ant Hierarchical Neural Networks (SHNN), integrating task
assignment and local entity-level subequivariant message
passing within a hierarchical network architecture. SHNN
offers two key advancements: 1. We implement the task
assignment using bipartite graph matching to dynamically
construct local entity-level graphs. This approach aids in
managing interdependence among entities by decoupling
local transformations from the overall structure. 2. We im-
plement local entity-level subequivariant message passing,
effectively compiling information from related entities. To
guide body-level control, we utilize entity-level information
to define a LRF for each entity, effectively compressing
the global state space and facilitating the generalization of
body-level policy in a lossless way.

Moreover, another reason for this limited exploration is the
absence of suitable environments in existing morphology-
based (Huang et al., 2020; Chen et al., 2023; Furuta
et al., 2023) and multi-agent reinforcement learning
(MARL) (Samvelyan et al., 2019; de Witt et al., 2020; Ellis
et al., 2022; Rutherford et al., 2023; Lechner et al., 2023)
frameworks. These benchmarks inadequately probe com-
plex entity interactions, especially in scenarios involving
multi-agent dynamics under a diverse range of inter-entity
transformations. To bridge this gap, we present a new suite
of Multi-entity Benchmark (MEBEN) in 3D space. Built
upon JAX-based RL environments (Bradbury et al., 2018;
Godwin* et al., 2020; Heek et al., 2023; Freeman et al.,
2021; Gu et al., 2021), MEBEN is designed to investigate
multi-entity interactions, encompassing both cooperative
and competitive dynamics, within physical geometric sym-
metry constraints that include a diverse range of inter-entity
transformations.

Our contributions are summarized as follows:

• To effectively optimize the policy in 3D multi-entity
physical environments, we propose SHNN, a novel
framework that offers a superior plug-in alternative to

hand-crafted LRFs. It decouples local transformations
from the overall structure and compresses the state
space by leveraging local physical geometric symmetry,
particularly in gravity-affected environments.

• We introduce MEBEN, a collection of subequivariant
morphology-based MARL environments, designed for
in-depth exploration of multi-entity interactions within
physical geometric symmetry constraints. These en-
vironments, including a diverse range of inter-entity
transformations, facilitate both cooperative and com-
petitive dynamics.

• We demonstrate the effectiveness of SHNN in the pro-
posed 3D multi-entity physical environments, includ-
ing Team Reach and Team Sumo 1. Our extensive
ablations and comparative analyses also reveal the effi-
cacy of the proposed ideas.

2. Preliminaries
Geometric Symmetry The symmetrical structure in 3D
environments is E(3), which is a 3-dimensional Euclidean
group (Dresselhaus et al., 2007) that consists of rotations,
reflections, and translations.

Definition 2.1 (Group). A group G is a set of transforma-
tions with a binary operation “·” satisfying these properties:
“·” is closed under associative composition, there exists an
identity element, and each element must have an inverse.
Symmetrical structure enforced on the model (Worrall et al.,
2017; van der Pol et al., 2020; Thomas et al., 2018; Fuchs
et al., 2020; Jing et al., 2020; Deng et al., 2021; Villar et al.,
2021; Satorras et al., 2021; Huang et al., 2022; Han et al.,
2022; Luo et al., 2022; Chen et al., 2023; Joshi et al., 2023;
Wang et al., 2024; Han et al., 2024) is formally described
by the concept of equivariance.

Definition 2.2 (Equivariance). Suppose Z⃗ 2 to be 3D geo-
metric vectors (positions, velocities, etc) that are steerable
by a group G, and h non-steerable features. The func-
tion f is G-equivariant, if for any transformation g ∈ G,
f(g · Z⃗,h) = g ·f(Z⃗,h), ∀Z⃗ ∈ R3×m,h ∈ Rd. Similarly,
f is invariant if f(g · Z⃗,h) = f(Z⃗,h).
Specifically, the E(3) operation “·” is instantiated as g ·Z⃗ :=
OZ⃗ for the orthogonal group that consists of rotations and
reflections where O ∈ O(3) := {O ∈ R3×3|O⊤O = I},
and is additionally implemented as the translation g · x⃗ :=
x⃗+ t⃗ for the 3D coordinate vector where t⃗ ∈ T(3) := {t⃗ ∈
R3}. To align with the principles of classical physics under
the influence of gravity, we introduce a relaxation of the
group constraint. Particularly, we consider equivariance

1For detailed task settings, see Section 4.1.
2Note that for the input of f , we have added the right-arrow su-

perscript on Z⃗ to distinguish it from the scalar h that is unaffected
by the transformations.
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within the subgroup of E(3) induced by gravity g⃗ ∈ R3,
defined as Og⃗(3) := {O ∈ R3×3|O⊤O = I,Og⃗ = g⃗}
and Tg⃗(3) := {t⃗ ∈ R3|t⃗g⃗ = 0⃗}. By this means,
the Eg⃗(3)-equivariance is only restrained to the transla-
tions/rotations/reflections along the direction of g⃗. We term
subequivariance primarily refers to Eg⃗(3)-equivariance.

Problem Definition and Notation Our investigation
in 3D physical environments delves into the interac-
tions among multiple entities (Spelke, 2022), including
agents with distinct morphologies that enable sophisti-
cated form and motion control, objects that critically in-
fluence the system’s symmetry and dynamics. We model
this intricate setting as a Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP) (Bernstein
et al., 2002; Oliehoek et al., 2016), represented by G =
⟨S,A, P,O, r, γ,Ω⟩, where S indicates the state space, A
the action space, P the transition probability, O the ob-
servation function, r the reward function, and γ the dis-
count factor. The complete set of all entities is denoted
as Ω = {1, · · · , N +M}, where N denotes the number
of cooperative agents, while M represents the count of
objects (or competitive agents). 1. Observation. Each
agent, denoted as i, is composed of Ki bodies. At any
given timestep t, agent i obtains a unique observation
oi(t) := O(s(t), i) from the global state s(t) ∈ S, cap-
turing its individual perspective of the environment. This
observation encompasses detailed state information about
agent i itself, represented as {si,k(t)}Ki

k=1. However, an
agent’s awareness of other entities is confined to states of
their root bodies, denoted as sj,1(t) for each j ∈ Ω \ {i}.
Thus, the complete observation for agent i at time t is for-
mulated as oi(t) := {{si,k(t)}Ki

k=1, sj,1(t) | j ∈ Ω \ {i}}.
2. Action and Reward. The decision-making process
for each agent i at timestep t involves selecting an ac-
tion ai(t) := {ai,k(t)}Ki

k=2 ∈ A based on its policy
πθi(ai(t)|oi(t)). Each actuator k of the agent, ranging
from 2 to Ki, contributes by generating a torque ai,k(t) ∈
[−1, 1]. Consequently, the aggregated action a(t) =
(a1(t), · · · ,aN (t)) ∈ AN arises from the combined ac-
tions of all agents. The environment reacts by transitioning
to a new global state s(t + 1) ∼ P (s(t + 1)|s(t),a(t))
and allocates a shared team reward r(s(t),a(t)). 3. Ac-
tor and Critic. Multiple entities interactions, depending
on the number of agents and their relational dynamics, are
typically categorized into single-agent, cooperative, com-
petitive, and mixed interactions. To effectively navigate this
complex multi-agent environment, Multi-Agent Proximal
Policy Optimization (MAPPO) (Schulman et al., 2017;
Yu et al., 2022) is employed to optimize a joint policy
πθ = (πθ1 , · · · , πθN ) in this intricate environment. Our
objective is to maximize the expected global return:

J (θ) = Eπθ

∞∑
t=0

[
γtr(s(t),a(t))

]
. (1)

MAPPO involves the development of both the joint policy
πθ and a value function Vϕ, crucial for variance reduction
and integrating information beyond the agents’ local obser-
vations, adhering to the Centralized Training with Decen-
tralized Execution (CTDE) paradigm (Lowe et al., 2017;
Sunehag et al., 2018; Rashid et al., 2018; Foerster et al.,
2018; Kuba et al., 2021; Wen et al., 2022; Yu et al., 2022;
Jeon et al., 2022).

3. Subequivariant Hierarchical Neural
Networks

In this section, we introduce our entire framework Subequiv-
ariant Hierarchical Neural Networks (SHNN), visualized in
Figure 2, consisting of an input processing module, a novel
task assignment to decouple local transformations from the
overall structure, a local entity-level subequivariant mes-
sage passing for expressive information passing and fusion,
a local reference frame transform to addresses local transfor-
mations by leveraging local physical geometric symmetry in
environments with gravity and a body-level control module
to obtain the final policy. Building upon these, the global
state space is effectively compressed.

Input Processing The observation input for agent i at
time t is formulated as oi(t) = {{si,k(t)}Ki

k=1, sj,1(t) |
j ∈ Ω \ {i}}3. To adhere to the constraints of physical
geometric symmetry, the state si,k is subdivided into di-
rectional geometric vectors Z⃗i,k and scalar features hi,k.
Elements in Z⃗i,k will rotate according to the transformation
g ∈ Og⃗(3), while those in hi,k remain unchanged. Specifi-
cally, in our 3D environment, Z⃗i,k ∈ R3×3 comprises the
position p⃗i,k ∈ R3, positional velocity v⃗i,k ∈ R3, and
rotational velocity ω⃗i,k ∈ R3. Here, p⃗i,k is transformed
into a translation-invariant representation by redefining it
as p⃗i,k − c⃗, where c⃗ = 1

N+M

∑N+M
i=1 p⃗i,1. This opera-

tion subtracts c⃗, the average root position of all entities,
thereby ensuring translation invariance. The scalar features
hi,k ∈ R13 include the rotation angles κi,k, ζi,k, δi,k of the
joint axes and their corresponding ranges, along with a 4-
dimensional one-hot vector indicating the type of body such
as “torso”, “limb”, or “ball”. The direction of gravity g⃗ is
set to be along the z-axis.

Task Assignment In multi-entity environments, it is cru-
cial to manage complex interactions among entities. Ini-
tially, we consider a fully connected entity-level graph
G = (V, E), with V = Ω and E = {(i, j) : i, j ∈ Ω, i ̸= j}.
To decouple local transformations from the overall structure,
we introduce task assignment which dynamically adjusts
the edges, forming local graphs of associated entities. The
graph is then redefined as a task assignment entity-level
graph, where E = {(i, j) : i, j ∈ Ω, C(i) = C(j)} and C

3For simplicity, we omit the index t henceforth in the above
notations at time t.
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Figure 2. The flowchart of SHNN. On the left, The states of each entity i are processed into scalar features hi and directional geometric
vectors Z⃗i, and are updated by local entity-level subequivariant message passing in a task assignment entity-level graph. Finally, the
invariant local reference frame body-level control policy is obtained. Here, function φo serves as the local entity-level subequivariant MP
and E is the local entity-level graph topology. The right side illustrates our key innovation: the dynamic task assignment leveraging bipartite
graph matching, and the construction of an Eg⃗(3)-equivariant local reference frame for each entity to address local transformations.

are the assignment labels. This assignment, akin to part
segmentation (Deng et al., 2023), selectively links related
entities, like agents and their objects. Specifically, in this
study, we employ a rule-based task assignment approach us-
ing bipartite graph matching, guided by inter-entity distance
costs. Due to the static programming characteristics of JAX,
implementing the Hungarian matching algorithm proves
challenging. Consequently, we employ a greedy strategy-
based bipartite graph matching (refer to Algorithm 1).

Local Entity-level Subequivariant Message Passing We
propose enhancing mainstream Neural Networks (such as
MLPs) in RL with an additional local entity-level subequiv-
ariant message passing (MP). This task assignment entity-
level graph adeptly integrates local entity-level information
from related entities and, through local subequivariant MP,
efficiently instills the desired local physical geometric sym-
metry in environments with gravity into mainstream Neural
Networks to address local transformations.

For each entity i ∈ Ω, input node features are initialized
using the entity’s root state. Specifically, Z⃗i is assigned
as Z⃗i,1, and hi is set as [hi,1, p⃗

z
i,1], where [ ] is the stack

along the last dimension and p⃗z
i,1 represents the projection

of the coordinate p⃗i,1 onto the z-axis. This projection effec-
tively indicates the relative height of entity i, considering
the ground as the reference point.

Within the context of entity-level interactions, our function
φo serves as the local entity-level subequivariant MP. It
updates each entity’s node features by considering the col-
lective input features and the established graph connectivity.

{(Z⃗ ′
i,h

′
i)}N+M

i=1 = φo

(
{(Z⃗i,hi)}N+M

i=1 , E
)
. (2)

Specifically, φo is unfolded as the following MP and aggre-
gation computations:

Z⃗ij = [(p⃗j,1 − p⃗i,1), Z⃗i, Z⃗j ], (3)
hij = [∥p⃗j,1 − p⃗i,1∥2,hi,hj ], (4)

M⃗ij ,mij = ϕg⃗

(
Z⃗ij ,hij

)
, (5)

M⃗i,mi =
∑

j∈N (i)
M⃗ij ,

∑
j∈N (i)

mij , (6)

(Z⃗ ′
i,h

′
i) = (Z⃗i,hi)

+ ψg⃗

(
[M⃗i, Z⃗i], [mi,hi]

)
,

(7)

where [ ] denotes the stack along the last dimension,N (i) =
{j : (i, j) ∈ E} is the neighbors of node i, and both ϕg⃗ and
ψg⃗ are subequivariant (Han et al., 2022; Chen et al., 2023),
simplified as follows:

fg⃗(Z⃗,h) = [Z⃗, g⃗]Mg⃗,

s.t. Mg⃗ = σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h),
(8)

where σ (·) is an Multi-Layer Perceptron (MLP) and
[Z⃗, g⃗] ∈ R3×(m+1) is a stack of Z⃗ and g⃗ along the last
dimension. The specific form of the function is detailed in
Appendix C.1.

We establish a subequivariant edge representation Z⃗ij and
invariant edge features hij . The edge features Z⃗ij and
hij are then input into ϕg⃗, as defined in Equation (5), to
yield vector and scalar messages M⃗ij and mij , respectively.
Message aggregation and state updates are performed as
outlined in Equation (6) and Equation (7) using the function
ψg⃗, leading to the updated states Z⃗ ′

i and h′
i. This process

ensures the generation of outputs maintaining the desired
subequivariance or invariance properties.
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Local Reference Frame Transform Following the local
entity-level subequivariant MP, we integrate the resultant
entity-level information h′

i and Z⃗ ′
i with body-level informa-

tion to guide body-level control. Here, u⃗i represents a local
reference frame (LRF) transform vector, derived through
the linear transformation u⃗i = Z⃗ ′

iWu⃗, with Wu⃗ ∈ Rm×1.

We normalize and orthogonalize the transform vector u⃗i for
each entity:

e⃗i1 =
u⃗i − ⟨u⃗i, e⃗i3⟩e⃗i3
∥u⃗i − ⟨u⃗i, e⃗i3⟩e⃗i3∥

,

e⃗i2 = e⃗i1 × e⃗i3,

e⃗i3 = [0, 0, 1]⊤.

(9)

Here, ⟨·, ·⟩ denotes the inner product, and × the cross prod-
uct. We refer to the aforementioned procedure as OP, follow-
ing which we proceed to construct an entity-wise rotation
matrix on transform vectors.

Oi = [e⃗i1, e⃗i2, e⃗i3] = OP(u⃗i), i ∈ Ω. (10)

Theorem 3.1. The learned entity-wise rotation matrix, de-
noted as Oi = OP(u⃗i), are SOg⃗(3)-equivariant, satisfying
any transformation g ∈ SOg⃗(3), g ·Oi = OP(g · u⃗i).

Proof. See Appendix A.

At this stage, we establish the LRF for each agent i, with
c⃗ as the origin and e⃗i1 as the orientation of the x-axis.
Notably, with the task assignment, the origin of each
agent’s LRF shifts from the collective average root position
c⃗ = 1

N+M

∑N+M
i=1 p⃗i,1, to the specific entity’s position,

c⃗ = p⃗C(i),1. This LRF construction enables us to achieve
invariant observation inputs:

o′
i = O⊤

i oi = [{O⊤
i Z⃗i,k,hi,k}Ki

k=1,O
⊤
i Z⃗j,1,hj,1], (11)

where j ∈ N (i), and [ ] is the stack along the last dimension,
with adjustments for relative positioning in assignment as
p⃗i,k = p⃗i,k − p⃗C(i),1, p⃗j,1 = p⃗j,1 − p⃗C(j),1, thus achieving
decoupled translation and rotation invariance.

Our methodology integrates subequivariant information
across entity and body levels via LRF Transform. While
disrupting reflection symmetry, the necessity to construct
an orthogonal rotation matrix significantly enhances the ca-
pabilities of subequivariant networks. This emphasis on
rotation symmetry substantially outweighs the reduced fo-
cus on reflection symmetry, particularly in diminishing the
massive search space for optimal policies. Empirical valida-
tions of this enhancement are detailed in Section 5.4.

Body-level Control We are now equipped to output the
invariant actor policy πθ and invariant critic value-function
Vϕ for the training objective in Equation (1). For each agent

Team Sumo: cooperation & competitionTeam Reach: cooperation

Task assignment entity-level graph Fully connected entity-level graph

Fixed ball Team0 agent Team1 agentAssignment edgeConnected edge

task assignment

E𝒈(3)

𝒈

E𝒈(3)

𝒈

Figure 3. Illustration of MEBEN: Team Reach (left) where agents
cooperate to collectively reach all fixed balls, and Team Sumo
(right) where agents engage in both cooperation and competition
to push opponents away from the fixed ball. These tasks neces-
sitate the decoupling of local transformations via dynamic task
assignment graph construction from the overall structure (depicted
by a fully connected graph), while employing Eg⃗(3)-equivariance
to effectively compress global state space.

i, the invariant actor policy πθi leverages the invariant o′
i

and h′
i, defined by

πθi = σπi(o
′
i,h

′
i), (12)

where σπi
is a MLP. Here, πθi ∈ R2×(Ki−1) represents

the loc and scale parameters of a Tanh-Normal Distribution
for the (Ki − 1) actuators of agent i. Consequently, each
actuator samples its corresponding torque ai,k ∈ [−1, 1]
from this distribution.

Besides, the invariant critic value-function Vϕ utilizes the
entity-level invariant features {h′

i}
N+M
i=1 , formulated as

Vϕ = σV ({h′
i}N+M

i=1 ), (13)

where σV is a MLP, and Vϕ ∈ R. Formal proof of the
SOg⃗(3)-invariance of the output action and value are pre-
sented in Appendix A.

4. Multi-entity Benchmark (MEBEN)
4.1. Environments descriptions

In this subsection, we present the details involved in con-
structing our environments: Team Reach and Team Sumo,
as illustrated in Figure 3.

Agents In our studies, we leverage a variety of mor-
phologies, including ants, claws, and centipedes from MxT-
Bench (Furuta et al., 2023), as well as unimals from Gupta
et al. (2022). Notably, centipedes and unimals exhibit asym-
metrical forms, potentially influencing the overall system’s
symmetry and dynamics. This diverse range of agent mor-
phologies enables a nuanced exploration of agent dynamics
in multi-entity, morphology-based RL environments.
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Figure 4. Training and Evaluation Curves in Team Reach Environments. The shaded area represents the standard error.

Team Reach We expand the “Reach” task from a single-
agent challenge to a collaborative “Team Reach” task, as
shown in Figure 9. 1. Initial Conditions. Entities set Ω
include N agents and M fixed balls, N ≥ M . Within an
area of radius R, we randomly position N agents and M
fixed balls, also setting the initial orientations of the agents
randomly. Specific details for N , M , R, and the agents’
morphology are provided in Table 4. 2. Termination. The
goal of this task is for M fixed balls to be simultaneously
occupied by agents. An episode is considered successfully
completed and terminates once this condition is fulfilled. 3.
Reward. The designed reward is detailed in Appendix C.2.

Team Sumo We evolve the “Sumo” task from a purely
competitive challenge to a mixed cooperative-competitive
“Team Sumo” task, as shown in Figure 10. 1. Initial Con-
ditions. Entities set Ω comprise one fixed ball, N agents
forming Team 1, and another M agents constituting Team
2. The sumo arena, a circle with radius R, has its center
marked by the fixed ball. Around this fixed ball, within
a radius of R − 1, we randomly position N agents from
Team 1 and another M from Team 2, ensuring each agent’s
orientation is also randomized. Specific details for N , M ,
R, and the agents’ morphology are provided in Table 4. 2.
Termination. The objective is for either Team 1 or Team
2 to win by having an opposing team’s agent disqualified,
which occurs if it exceeds a distance R from the fixed ball.
The team with the disqualified agent loses, triggering the ter-
mination of the episode. 3. Reward. The reward designed
for each team is detailed in Appendix C.2.

Table 1. Comparison of Morphology-based Environment Setup.

Aspect SGRL MxT-Bench MEBEN

Multi-Morphology ✓ ✓ ✓
Multi-Agent × × ✓
Diverse-Task × ✓ ✓
Supported-Symmetry ✓ × ✓
Accelerated-Hardware × ✓ ✓

4.2. Design considerations

We present the key features and limitations of existing bench-
marks in Table 1, comparing them with our introduced
MEBEN. More comprehensive details are provided below.

Multi-Entity Dynamics Diverging from the single-agent
focus in SGRL (Chen et al., 2023) and MxT-bench (Furuta
et al., 2023), MEBEN expands to include environments with
multiple entities (Spelke, 2022), enabling a detailed explo-
ration of dynamics and interactions among varied entities,
such as agents with complex morphologies, and other sig-
nificant objects impacting system symmetry and behavior.
MEBEN’s unique design, makes it an ideal platform for a
wide range of morphology-based reinforcement learning
studies, encompassing single-agent and multi-agent systems
(cooperative, competitive, and mixed scenarios).

Geometric Symmetry In contrast to the fixed agent initial-
ization in MxT-bench (Furuta et al., 2023), MEBEN provides
a more realistic and geometric symmetric setup through its
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Figure 5. Training and Evaluation Curves in Team Sumo Environments. The shaded area represents the standard error.

stochastic initial conditions. The positions and orientations
of all entities, including agents and objects, are uniformly
randomized in MEBEN’s environments. This strategy elim-
inates any bias towards specific orientations or positions,
maintaining geometric symmetry and providing a robust test
bed for evaluating the generalization capabilities of models
in environments with gravity.

Accelerated-Hardware In contrast to traditional CPU-
based environments such as SGRL (Chen et al., 2023),
MEBEN harnesses the advanced capabilities of the Brax
physics simulator (Freeman et al., 2021) and Composer (Gu
et al., 2021), and further builds upon the MxT-bench frame-
work (Furuta et al., 2023). This advancement propels
MEBEN into facilitating efficient and scalable hardware-
accelerated iterations on GPUs or TPUs, making it excep-
tionally suitable for morphology-based reinforcement learn-
ing experiments.

5. Experiments
5.1. Experimental Setup

Baselines We compare our method SHNN, against main-
stream neural networks, particularly MLP (Furuta et al.,
2023), and its variant utilizing heading normalization tricks,
denoted as MLP+HN (Chen et al., 2023). Please refer to
Appendix C.3 for details about baselines.

Metrics 1. Team Reach: Success Rate = #suc-
cess episode / #evaluation episode. 2. Team Sumo: For
each team, Win Rate = #win episode / #evaluation episode.

Each experiment is conducted with 10 seeds to report the
Success (or Win) Rate over #evaluation episode of 1024.

Implementations The environments used in this work
are detailed in Table 4. To ensure fairness, all baselines,
ablations, and our SHNN model use the same input infor-
mation and employ MAPPO (Yu et al., 2022) as the train-
ing algorithm for MARL. SHNN is developed based on
the MxT-bench(Furuta et al., 2023) codebase, leveraging
JAX(Bradbury et al., 2018) and Brax (Freeman et al., 2021;
Gu et al., 2021) for efficient, hardware-accelerated simula-
tions. The value of the maximum timesteps per episode is
1000. Hyperparameter details are in Appendix C.9. Within
the same team, agents share only the weights of entity-level
message passing, not the body-level MLP. For the Team
Reach environments, we construct a directed graph by dy-
namically assigning a fixed ball to each agent. For the Team
Sumo environments, we assign each agent an opponent from
the opposing team and assign each with the arena’s center
ball. Additionally, in Team Sumo environments, we adopt
Bansal et al. (2018)’s approach where teams employing
baseline methods and SHNN compete within an arena.

5.2. Evaluations in Diverse Environments

We begin by evaluating our method on diverse multi-entity
tasks in 3D environments. Team Reach in Figure 4: 1. The
MLP generally fails to achieve meaningful returns in most
Team Reach cases, which is due to its vulnerability to lo-
cal extremes within the expansive exploration space of our
environments. 2. While MLP enhanced with Heading Nor-
malization (MLP+HN) shows close performance to SHNN

7



Subequivariant Reinforcement Learning in 3D Multi-Entity Physical Environments

Table 2. Evaluations on Basic Architectures. Training and Evaluation in Team Reach Environments. We report Success Rate (%) on the
final step.

Methods 1 ant 1 centipede 2 ants 2 ant claw 2 unimals 2 ant claw centipede

MLP+HN 93.39 ± 5.25 11.28 ± 3.21 5.25 ± 1.399 4.52 ± 3.93 10.86 ± 8.74 3.98 ± 1.83
SHNN 97.26 ± 1.51 47.82 ± 20.62 77.93 ± 22.22 17.40 ± 3.54 11.97 ± 2.31 8.70 ± 2.42

Transformer+HN 5.47 ± 2.84 5.55 ± 2.99 2.47 ± 0.73 0.51 ± 0.19 0.25 ± 0.10 2.26 ± 1.92
SHTransformer 63.61 ± 39.57 11.52 ± 2.39 11.37 ± 15.50 1.17 ± 0.70 0.26 ± 0.15 7.12 ± 2.29

in specific environments like 1 ant and 2 unimals, their
effectiveness diminishes in other scenarios. This variation
in performance can be attributed to factors such as the sym-
metry in morphology and the complexities arising from
multi-agent interactions. 3. Our proposed SHNN demon-
strates a clear advantage, outperforming all baselines across
various scenarios. Team Sumo in Figure 5: with an increase
in the number and complexity of agent morphologies, the
advantage of our method over baselines progressively am-
plifies. These observations underscore that our proposed
SHNN method not only exhibits superior capabilities in
compressing the global state space of multi-entity tasks and
significantly enhances the generalization of body-level poli-
cies, but also sees these advantages magnified in scenarios
with increasingly complex agent morphologies and a greater
number of agents.

5.3. Extended Evaluations on Transformer

Additionally, building upon our initial exploration with MLP,
our exploration extended to Transformers, utilizing the same
backbone as Amorpheus (Kurin et al., 2020) and MxT-
Bench (Furuta et al., 2023) for σπi in Equation (12) and
σV in Equation (13). Despite Transformers’ advances in
morphology-based RL (Kurin et al., 2020; Hong et al., 2021;
Dong et al., 2022; Chen et al., 2023; Furuta et al., 2023),
their training complexity and computational demands limit
their performance improvement over MLPs in environments
with restricted agent morphology diversity, as detailed in
Table 5 and Table 2, with curves in Figure 14. Moreover,
SHTransformer (our plug-in applied to body-level Trans-
former control) consistently outperforms standard Trans-
former models. This evidence confirms the plug-in’s broad
applicability and effectiveness across varied architectural
frameworks.

5.4. Ablation Studies

Ablations on Assignment We evaluate the impact of
task assignment by comparing several variants, as depicted
in Figure 6 and Figure 11. We consider the following
configurations: greedy, a default model that employs a
greedy strategy-based bipartite matching for task assign-
ment; stochastic, a variant based on stochastic assignments;
w/o assignment, a variant where no task assignment is per-
formed, with the entity-level graph configured as a fully con-
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Figure 6. Ablations on Assignment. Training and Evaluation
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Figure 7. Ablations on Equivariance. Training and Evaluation
Curves in 3 ant claw centipede Team Reach.

nected graph and sparse root mean c⃗ = 1
N+M

∑N+M
i=1 p⃗i,1

serving as the origin of LRF in Equation (11). Our empir-
ical findings affirm that assignment consistently enhances
performance across various neural networks architectures in
the Team Reach environments. Specifically, MLP networks
exhibit marked improvement when incorporating task as-
signments. For SHNN, the greedy graph matching strategy
of task assignment significantly outperforms both stochastic
and non-assignment strategies. This evidence underscores
that our task assignment effectively facilitates task-specific
dynamics, managing complex entity interactions by decou-
pling local transformations from the overall structures while
compressing the search space through local physical sym-
metry. For Team Sumo, see Appendix C.5.

Ablations on Equivariance We ablate the following
variants in Figure 7 and Figure 12: SHNN:SOg3, our
full model, which is SOg⃗(3)-equivariant; SHNN:Og3, an
Og⃗(3)-equivariant variant, where Oi = Z⃗ ′

i in Equation (10);
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SHNN:SO3, a SO(3)-equivariant variant, where g⃗ is omit-
ted in the computation in Equation (8); HNN+DN, a non-
equivariant variant, where Z⃗ are treated as scalars, but
which utilizes the goal direction to construct the LRF;
HNN+HN, a non-equivariant variant, where Z⃗ are treated
as scalars, but which utilizes the agent’s heading direction to
construct the LRF; HNN, a non-equivariant variant, where
Z⃗ are treated as scalars. 1. Which symmetry group works
best within our network framework? Comparative experi-
ments between the SOg⃗(3) group and the Og⃗(3) group show
that the positive impact of emphasizing rotational symmetry
significantly outweighs any disadvantages from the reduced
focus on reflection symmetry, particularly in terms of reduc-
ing the massive search space. Furthermore, the comparison
between the SOg⃗(3) group and the SO(3) group demon-
strates the importance of sensing the direction of gravity in
policy learning. 2. Can equivariant network methods re-
place or even surpass methods based on hand-crafted LRF?
Experiments demonstrate that whether using goal orienta-
tion or the agent’s heading orientation to construct the LRF,
the performance is inferior compared to ours. This indicates
that for current mainstream neural networks, entity-level
subequivariant message passing emerges as a simpler yet
more effective alternative to hand-crafted LRF, providing a
plug-in solution for equivariant modifications.

Importance of Local Symmetry The analysis of local
symmetry in the Team Reach environments, illustrated by
comparing the red and green lines in the left plot of Figure 6,
and the red and purple lines in the right plot of Figure 7,
underscores the indispensable roles of task assignment and
equivariance. Their integration is pivotal for surmounting
the benchmark’s challenges, validating the SHNN method’s
design philosophy. To further substantiate the criticality of
local symmetry, we embarked on ablation studies exploring
the influence of local translation invariance with the follow-
ing variants: without subtraction, where no translation in-
variance implemented; with sparse root mean subtraction:
c⃗ = 1

N+M

∑N+M
i=1 p⃗i,1, i.e., without decoupling transla-

tion transformations; with dense body mean subtraction,

Table 3. Analyses of Morphology-shared Policy. We report Suc-
cess Rate (%) on the final step in Team Reach Environments.

Methods 2 ants 3 ant claw centipede

SHNN 77.93 ± 22.22 8.70 ± 2.42
SHGNN 41.41 ± 29.47 31.07 ± 26.84

c⃗ = 1∑N+M
i=1

∑Ki
k=1 1

∑N+M
i=1

∑Ki

k=1 p⃗i,k, i.e., without decou-

pling translation transformations; with relative positions in
assignment, c⃗ = p⃗C(i),1, i.e., with decoupling of translation
transformations. The results in Figure 8 clearly indicate that
without achieving translation invariance or properly decou-
pling it, the model struggles to mitigate complexity chal-
lenges, leading to significantly poorer performance. This
observation further emphasizes the pivotal importance of
local symmetry.

5.5. Analyses of Morphology-shared Policy

Previous works have achieved generalization across agents
with different morphologies using morphology-aware Graph
Neural Networks (Wang et al., 2018; Huang et al., 2020).
In addition to the previously mentioned SHTransformer
(our plug-in applied to body-level Transformer control), we
have also developed a new variant, denoted as SHGNN
(our plug-in applied to body-level message passing control).
This variant learns a shared policy network across different
agents, detailed in Appendix C.6. As observed in Table 3
and Table 5, despite body-level message passing excelling in
complex, multi-morphological environments by enhancing
knowledge sharing and performance, its implementation
significantly slows down the training process. Above all,
our benchmark provides the community with a test bed that
takes into account both agent-interaction and morphology-
aware considerations.

6. Limitations and Future Works
To learn policies in 3D multi-entity physical environments,
we propose the SHNN, a framework that uniquely integrates
task assignment with local subequivariant message passing
in a hierarchical structure. However, in the Team Sumo envi-
ronments, as shown in Figure 11, the impact of assignment
is not as significant as that of equivariance. Therefore, the
interdependence of task assignment and equivariance neces-
sitates a novel co-learnable formulation. Our model’s re-
liance on the Eg⃗(3) symmetry encompasses a broad range of
physical interactions but does not extend to non-Euclidean
or highly irregular environments not governed by classical
physics. Additionally, our model predominantly leverages
state-based inputs, which are often costly to acquire in prac-
tice due to the need for precision sensors. Addressing the
challenge of applying our equivariance-focused approach to
vision-based inputs remains an open area for future research.
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Gonzalez, A. Jraph: A library for graph neural net-
works in jax., 2020. URL http://github.com/
deepmind/jraph.

Gu, S. S., Diaz, M., Freeman, D. C., Furuta, H.,
Ghasemipour, S. K. S., Raichuk, A., David, B., Frey, E.,
Coumans, E., and Bachem, O. Braxlines: Fast and inter-
active toolkit for rl-driven behavior engineering beyond
reward maximization. arXiv preprint arXiv:2110.04686,
2021.

Guan, H., Cai, G., and Xu, H. Automatic requirement
dependency extraction based on integrated active learn-
ing strategies. Machine Intelligence Research, pp. 1–18,
2024.

Gupta, A., Fan, L., Ganguli, S., and Fei-Fei, L. Metamorph:
Learning universal controllers with transformers. In Inter-
national Conference on Learning Representations, 2022.

Han, J., Huang, W., Ma, H., Li, J., Tenenbaum, J. B., and
Gan, C. Learning physical dynamics with subequivariant
graph neural networks. In Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 26256–26268,
2022.

Han, J., Cen, J., Wu, L., Li, Z., Kong, X., Jiao, R., Yu, Z.,
Xu, T., Wu, F., Wang, Z., et al. A survey of geomet-
ric graph neural networks: Data structures, models and
applications. arXiv preprint arXiv:2403.00485, 2024.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL http://
github.com/google/flax.

Hong, S., Yoon, D., and Kim, K.-E. Structure-aware trans-
former policy for inhomogeneous multi-task reinforce-
ment learning. In International Conference on Learning
Representations, 2021.

Huang, W., Mordatch, I., and Pathak, D. One policy to con-
trol them all: Shared modular policies for agent-agnostic
control. In International Conference on Machine Learn-
ing, pp. 4455–4464. PMLR, 2020.

Huang, W., Han, J., Rong, Y., Xu, T., Sun, F., and Huang, J.
Equivariant graph mechanics networks with constraints.
In International Conference on Learning Representations,
2022.

Iqbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. In International Conference on
Machine Learning, pp. 2961–2970. PMLR, 2019.

Jeon, J., Kim, W., Jung, W., and Sung, Y. Maser: Multi-
agent reinforcement learning with subgoals generated
from experience replay buffer. In International Confer-
ence on Machine Learning, pp. 10041–10052. PMLR,
2022.

Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., and
Dror, R. Learning from protein structure with geomet-
ric vector perceptrons. In International Conference on
Learning Representations, 2020.

Joshi, C. K., Bodnar, C., Mathis, S. V., Cohen, T., and
Lio, P. On the expressive power of geometric graph
neural networks. In International Conference on Machine
Learning. PMLR, 2023.

Kraemer, L. and Banerjee, B. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neuro-
computing, 190:82–94, 2016.

Kuba, J. G., Chen, R., Wen, M., Wen, Y., Sun, F., Wang, J.,
and Yang, Y. Trust region policy optimisation in multi-
agent reinforcement learning. In International Confer-
ence on Learning Representations, 2021.
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A. Proofs
In this section, we theoretically prove that our proposed SHNN ensures the final output action and critic value preserve the
symmetry as desired.

Theorem A.1. The learned entity-wise rotation matrix, denoted as Oi = OP(u⃗i), are SOg⃗(3)-equivariant, satisfying any
transformation g ∈ SOg⃗(3), g ·Oi = OP(g · u⃗i).

Proof. To prove that the entity-wise rotation matrix Oi = OP(u⃗i) are SOg⃗(3)-equivariant, we need to show that under
any transformation g ∈ SOg⃗(3), the transformation of Oi through g is equivariant to the rotation matrix obtained from the
transformed vectors g · u⃗i.

Let g be a transformation in SOg⃗(3), which includes a rotation O along the direction of g⃗. Specifically, the transformation
is applied as follows:

g ·Oi = OOi,

g · u⃗i = Ou⃗i,

Let O∗
i = OP(g · u⃗i). By the properties of the orthogonalization process, we have:

e⃗∗i1 =
Ou⃗i − ⟨Ou⃗i, e⃗

∗
i3⟩e⃗∗i3

∥Ou⃗i − ⟨Ou⃗i, e⃗∗i3⟩e⃗∗i3∥
,

e⃗∗i2 = e⃗∗i1 × e⃗∗i3,

e⃗∗i3 = [0, 0, 1]⊤.

Since Og⃗ = g⃗, O⊤O = I and det(O) = 1, it preserves inner products and norms. And, the cross product obeys the
following identity under matrix transformations: (M a⃗) × (M b⃗) = (detM)

(
M−1

)T
(a⃗ × b⃗). Therefore, e⃗∗i3 = Oe⃗i3,

∥Ou⃗i∥ = ∥u⃗i∥ and ⟨Ou⃗i,Oe⃗i3⟩ = ⟨u⃗i, e⃗i3⟩. This implies:

e⃗∗i1 =
Ou⃗i − ⟨Ou⃗i,Oe⃗i3⟩Oe⃗i3
∥Ou⃗i − ⟨Ou⃗i,Oe⃗i3⟩Oe⃗i3∥

=
Ou⃗i − ⟨u⃗i, e⃗i3⟩Oe⃗i3
∥Ou⃗i − ⟨u⃗i, e⃗i3⟩Oe⃗i3∥

=
O(u⃗i − ⟨u⃗i, e⃗i3⟩e⃗i3)
∥u⃗i − ⟨u⃗i, e⃗i3⟩e⃗i3∥

= Oe⃗i1,

e⃗∗i2 = Oe⃗i1 ×Oe⃗i3 = det(O)O(e⃗i1 × e⃗i3) = Oe⃗i3,

e⃗∗i3 = [0, 0, 1]⊤ = Oe⃗i3.

Therefore, with O∗
i = OP(g · u⃗i) = [Oe⃗i1,Oe⃗i2,Oe⃗i3] = OOi = g ·Oi, we confirm the SOg⃗(3)-equivariance of Oi.

Besides, for reflection transformations O, characterized by O⊤O = I and det(O) = −1, e⃗∗i2 = −Oe⃗i2 → O∗
i ̸= OOi

where the equivariance is disrupted due to the properties of the cross product. Hence, although we utilize an Og⃗(3)-
equivariant message passing network in Equation (8), the orthogonalization process can transform a Og⃗(3)-equivariant
vector into a SOg⃗(3)-equivariant matrix.

As for the actor and critic, we additionally have the following corollary.

Corollary A.2. Let πθi , Vϕ be output of the actor and the critic of SHNN with Z⃗, g⃗,h as input. Let π∗
θi
, V ∗

ϕ be the actor and
critic with OZ⃗,Og⃗,h as input, O ∈ SOg⃗(3). Then, (π∗

θi
, V ∗

ϕ ) = (πθi , Vϕ), indicating the output actor and critic preserve
SOg⃗(3)-invariance.

Proof. Given the subequivariance of Equation (8) as per (Han et al., 2022; Chen et al., 2023), we have h′
i
∗ = h′

i.

Hence,

V ∗
ϕ = σV ({h′

i
∗}N+M

i=1 ) (14)

= σV ({h′
i}N+M

i=1 ) (15)
= Vϕ. (16)
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Then, we get o∗
i with OZ⃗,Og⃗,h as input:

o∗
i = [{OZ⃗i,k,hi,k}Ki

k=1,OZ⃗j,1,hj,1]. (17)

By Theorem A.1, we can obtain O∗
i = OOi with OZ⃗,Og⃗,h as input.

Therefore, the LRF invariant observation inputs o′
i
∗ with OZ⃗,Og⃗,h as input:

o′
i
∗ = O∗

i
⊤o∗

i (18)

= [{O∗
i
⊤OZ⃗i,k,hi,k}Ki

k=1,O
∗
i
⊤OZ⃗j,1,hj,1] (19)

= [{O⊤
i O

⊤OZ⃗i,k,hi,k}Ki

k=1,O
⊤
i O

⊤OZ⃗j,1,hj,1] (20)

= [{O⊤
i Z⃗i,k,hi,k}Ki

k=1,O
⊤
i Z⃗j,1,hj,1] (21)

= O⊤
i oi = o′

i. (22)

Hence,

π∗
θi = σπi(o

′
i
∗,h′

i
∗) (23)

= σπi(o
′
i,h

′
i) (24)

= πθi . (25)

B. Related Works
Morphology-based RL In the field of reinforcement learning (RL), recent years have witnessed the emergence and
evolution of morphology-based approaches, particularly within the context of inhomogeneous morphology settings. This
setting is distinguished by varying state and action spaces across different tasks (Devin et al., 2017; Chen et al., 2018;
D’Eramo et al., 2020). Morphology-based RL decentralizes the control of multi-joint robots by learning a shared policy
for each joint, applying a multitude of message-passing strategies. To tackle the challenges of the inhomogeneous setting,
methods such as NerveNet (Wang et al., 2018), DGN (Pathak et al., 2019), and SMP (Huang et al., 2020) represent
the agent’s morphology as a graph and implement Graph Neural Networks (GNNs) for their policy networks. On the
other hand, Amorpheus (Kurin et al., 2020), SWAT (Hong et al., 2021), ModuMorph (Xiong et al., 2023), SGRL (Chen
et al., 2023), and Solar (Dong et al., 2022) opt for transformers over GNNs for direct communication. Both approaches
demonstrate that graph-based policies offer significant benefits compared to conventional monolithic policies. Furthermore,
MxT-Bench (Furuta et al., 2023) serves as a testbed for morphology-task generalization, though its primary focus remains
on single-agent tasks. Our work, however, expands upon these methodologies to encompass multi-entity environments,
facilitating comprehensive exploration of dynamics and interactions among a variety of entities, including agents with
intricate morphologies, objects, and other crucial factors affecting system symmetry and behaviors.

Multi-Agent RL In the realm of Multi-Agent RL (MARL), decision-making is predominantly guided by frameworks
such as the decentralized partially observable Markov decision process (Dec-POMDP) (Bernstein et al., 2002; Oliehoek
et al., 2016; Lechner et al., 2023), with strategies typically categorized into cooperative (Xu et al., 2023; Rashid et al., 2018),
competitive (Bansal et al., 2018), and mixed interactions (Lowe et al., 2017). Addressing challenges like high-dimensional
action spaces and the necessity for agent coordination, decentralized learning (Littman, 1994; Foerster et al., 2016) aims
to independently optimize each agent’s policy. While scalable, this approach often struggles with issues of instability,
especially under conditions of partial observability. On the other hand, centralized learning (Claus & Boutilier, 1998;
Kraemer & Banerjee, 2016) offers a more comprehensive view but faces computational hurdles in complex environments.
The Centralized Training with Decentralized Execution (CTDE) paradigm (Lowe et al., 2017; Sunehag et al., 2018; Rashid
et al., 2018; Foerster et al., 2018; Iqbal & Sha, 2019; Kuba et al., 2021; Wen et al., 2022; Yu et al., 2022; Jeon et al., 2022)
emerges as a balanced solution to these extremes. It allows agents to make decisions based on local observations, while
global state information is utilized in the construction of the value function. This synergy of individual autonomy and
collective insight enhances the efficacy of the decision-making process. Notably, Yu et al. (2022) revisited the application
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of Proximal Policy Optimization (PPO) in MARL within the CTDE structure, achieving remarkably strong performance.
Moreover, existing multi-agent reinforcement learning (MARL) environments (Samvelyan et al., 2019; de Witt et al., 2020;
Ellis et al., 2022; Rutherford et al., 2023; Lechner et al., 2023) often lack scenarios that encompass both geometric symmetry
and morphology-based control. We expand existing environments (Chen et al., 2023; Furuta et al., 2023) into a suite of new
multi-entity benchmark (MeBen) in 3D space, not only facilitating a comprehensive exploration of multi-entity dynamics
but also ensuring a realistic emulation of real-world scenarios through randomized initial conditions and orientations. Our
work aligns with the Dec-POMDP framework and capitalizes on the strengths of MAPPO (Yu et al., 2022) to optimize
policies effectively. Furthermore, our environment is implemented using JAX (Bradbury et al., 2018), ensuring efficient
simulations on advanced hardware accelerators such as GPUs and TPUs.

Geometrically Equivariant Models The physical world exhibits specific symmetries, extensively explored in studies on
group equivariant models (Cohen & Welling, 2016; Cohen & Welling, 2017; Worrall et al., 2017). Building upon this, the
field of geometrically equivariant graph neural networks (Han et al., 2024) has emerged, utilizing symmetry as a fundamental
bias in learning. These models are designed to ensure that outputs will rotate, translate, or reflect in the same manner as their
inputs, thereby retaining inherent symmetries. Techniques such as group convolution via irreducible representation (Thomas
et al., 2018; Fuchs et al., 2020) and invariant scalarization methods, like inner product computation (Villar et al., 2021;
Satorras et al., 2021; Huang et al., 2022; Han et al., 2022), are employed to achieve this symmetry preservation. Our method,
similar to GMN (Huang et al., 2022) and SGNN (Han et al., 2022), especially focuses on scalarization strategies. In Markov
decision processes (MDPs) that exhibit symmetries (van der Pol et al., 2020), these symmetries in the state-action space
enable the optimization of policies within a simplified abstract MDP. The work of van der Pol et al. (2020) concentrates
on learning equivariant policies and invariant value networks in 2D environments. In contrast, Chen et al. (2023) explores
body-level equivariant policy networks in more complex 3D physics environments, facilitating policy generalization across
different directions. Our work diverges by introducing an entity-level subequivariant message-passing mechanism, which
proves to be highly effective in 3D multi-body scenes (Han et al., 2022).

C. More Experimental Details
C.1. Subequivariant Function

We resort to subequivariant function with Z⃗, g⃗,h as input (Han et al., 2022; Chen et al., 2023) to instill desired geometric
symmetry into the model:

Z⃗ ′,h′ = M⃗g⃗Wg⃗,Wg⃗,

s.t. Wg⃗ = σ(M⃗⊤
g⃗ M⃗g⃗,h),

(26)

where M⃗g⃗ = [Z⃗, g⃗]W is a mixing of the vectors to capture the interactions between channels, with a learnable weight
matrix W ∈ R(m+1)×m and [Z⃗, g⃗] ∈ R3×(m+1) is a stack of Z⃗ and g⃗ along the last dimension. The inner product
M⃗⊤

g⃗ M⃗g⃗ ∈ Rm×m is computed and concatenated with h. The resultant invariant term is then transformed by a Multi-Layer
Perceptron (MLP)) σ : Rm×m+h 7→ Rm×m producing Wg⃗ ∈ Rm×m.

C.2. Environments

In this subsection, we present the technical details involved in constructing our challenging MEBEN. The environments
utilized in this work are listed in Table 4.

Agents In our studies, we leverage a variety of morphologies, including ants, claws, and centipedes from MxT-Bench (Fu-
ruta et al., 2023), as well as unimals from Gupta et al. (2022). Significantly, the asymmetrical forms of centipedes and
unimals have the potential to influence the overall system’s symmetry and dynamics. This diversity in agent morphologies
facilitates a nuanced exploration of agent dynamics within multi-entity, morphology-based RL environments.

Team Reach We expand the “Reach” task from a single-agent challenge to a collaborative “Team Reach” task, as shown
in Figure 9. 1. Initial Conditions. Entities set Ω include N agents and M fixed balls, N ≥ M . Within an area of
radius R, we randomly position N agents and M fixed balls, also setting the initial orientations of the agents randomly.
Specific details for N , M , R, and the agents’ morphology are provided in Table 4. 2. Termination. The goal of this
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fixed ball

centipede ant claw

fixed ball

fixed ball

fixed ball
fixed ball

unimal_1

unimal_2

𝒈 𝒈

Figure 9. Team Reach Environments. Here, displaying 2 unimals and 3 ant claw centipede environments.

task is for M fixed balls to be simultaneously occupied by agents. An episode is considered successfully completed and
terminates once this condition is fulfilled. 3. Reward. The designed reward structure comprises four components: a.
Success Bonus: A significant sparse reward of 10,000 is awarded. b. Distance Reward: A dense reward to incentivize
the achievement of the task objective. It is computed as 5×

∑M
j=1 exp(−distj), where distj represents the distance from

the nearest agent to ball j. c. Moving Reward: Designed to motivate agents to move closer to any ball, it is quantified as
0.2×

∑N
i=1

∑M
j=1 max(v⃗i · (p⃗j − p⃗i), 0). d. Control Cost: This penalty discourages agents from executing excessively

large actions, and is calculated as −0.2×
∑N

i=1

√∑Ki

k=1(ai,k)
2. Thus, the shared team reward is equal to the sum of the

aforementioned rewards.

fixed ball

Team0: claw

Team1: ant

Team0: ant

Team1: claw

fixed ball

Team0:
centipede

Team1:
centipede

𝒈 𝒈

Figure 10. Team Sumo Environments. Here, displaying 1 centipede and 2 ant claw environments.

Team Sumo We evolve the “Sumo” task from a purely competitive challenge to a mixed cooperative-competitive “Team
Sumo” task, as shown in Figure 10. 1. Initial Conditions. Entities set Ω comprise one fixed ball, N agents forming Team
1, and another M agents constituting Team 2. The sumo arena, a circle with radius R, has its center marked by the fixed
ball. Around this fixed ball, within a radius of R− 1, we randomly position N agents from Team 1 and another M from
Team 2, ensuring each agent’s orientation is also randomized. Specific details for N , M , R, and the agents’ morphology are
provided in Table 4. 2. Termination. The objective is for either Team 1 or Team 2 to win by having an opposing team’s
agent disqualified, which occurs if it exceeds a distance R from the fixed ball. The team with the disqualified agent loses,
triggering the termination of the episode. 3. Reward. The reward designed for Team 1 (for Team 2, simply swap N and
M ) is divided into five parts: a. Win Bonus: A sparse reward of 1000 for achieving the win condition. b. Lose Bonus: A
sparse penalty of -1000 for the losing condition. c. Distance Reward: A dense reward to encourage achieving the task’s
objective, computed as 5× exp(dist−R), where dist denotes the distance of the farthest agent from the opposing team to
the fixed ball. d. Moving Reward: This motivates agents to move closer to any member of the opposing team, calculated as
5×

∑N
i=1

∑M
j=1 max(v⃗i · (p⃗j − p⃗i), 0). e. Control Cost: A penalty for excessively large actions by agents, quantified as

−0.1×
∑N

i=1

√∑Ki

k=1(ai,k)
2. In line with the Exploration Curriculum suggested by Bansal et al. (2018), the shared team

reward is calculated as α× dense reward + (1− α)× sparse reward, where α is a linear annealing factor. Agents train with
the dense reward for 25% of the training epochs.

C.3. Baselines

We compare our method SHNN against mainstream neural networks, particularly MLP as utilized in (Furuta et al., 2023),
and a variant employing heading normalization technique, denoted as MLP+HN (Chen et al., 2023).
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Table 4. Full list of environments used in this work.
Benchmark Environment Morphology N M R (meter)

Team Reach

1 ant ant 1 1 5
1 centipede centipede 1 1 5

2 ants ant 2 2 3
2 ant claw ant, claw 2 2 5
2 unimals unimal 1, unimal 2 2 2 5

3 ant claw centipede ant, claw, centipede 3 3 5

Team Sumo

1 centipede vs 1 centipede centipede 1 1 3
2 ants vs 2 ants ant 2 2 3

2 ant claw vs 2 ant claw ant, claw 2 2 3
3 ants vs 3 ants ant 3 3 4

MLP Our implementation of MLP consists of three linear layers. The middle two layers are activated by ReLU activation
functions. The input layer is designed to accommodate the size of the observation space, while the output layer matches the
dimensionality of the action space. The intermediate layers facilitate the non-linear transformation of input features. For
specific hyperparameters, please refer to Table 8.

MLP+HN Heading Normalization technique has been widely utilized in the 3D RL literature. For instance, in morphology
control, the presence of gravity allows for the normalization of state and action spaces in the heading (yaw) direction, as
demonstrated in a recent work (Won et al., 2020; 2022; Chen et al., 2023). This heading normalization (HN) technique
transforms the global coordinate frame into the LRF, enabling the input geometric information to be mapped to a rotation-
and translation-invariant representation.

Specifically, we acquire the quaternion of the root body from the simulation environment and calculate the heading angle
to construct the rotation matrix Oi. This matrix is then multiplied by Z⃗i,k to transform it into an invariant representation.
Finally, all invariant representations are input into the MLP. It is noteworthy that Chen et al. (2023) discusses the limitations
of this technique in their appendix.

Algorithm 1 Greedy Bipartite Matching for Task Assignment
Input: p⃗i,1, i ∈ Ω, N {agents (Team0) set},M{objects (Team1) set}
Output: A local entity-level graph G = (V, E)
Initialize the graph G with vertices V ← Ω and edges E ← ∅
Initialize the assignment labels C ← ∅
Initialize distance matrix D between N andM
for each i ∈ N and j ∈M do
D[i, j]← ∥p⃗j,1 − p⃗i,1∥2

end for
for each j ∈M do
i = argmink∈N D[k, j]
D[i, :]←∞ {Prevent re-matching}
Add (i, j) to E : C(i) = i, C(j) = i

end for
return A local entity-level graph G = (V, E)

C.4. Task Assignment

Greedy Bipartite Matching Algorithm The Greedy algorithm is a fundamental optimization algorithm, this part is about
the process of applying the greedy matching algorithm to allocate a fixed ball (or an opposing agent) to each agent in the
environments. Algorithm 1 provides a pseudo-code implementation of the Greedy Bipartite Matching algorithm.
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C.5. Additional Ablations

Additional Ablations on Assignment In the Team Sumo environments, task assignment yields limited improvement. This
could be attributed to the environments’ complex mixture of cooperative and competitive dynamics, which are challenging
to effectively decouple using bipartite matching methods, as demonstrated in Figure 11.
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Figure 11. Additional Ablations on Assignment. Training and Evaluation Curves in 2 ants Team Sumo Environment.

Additional Ablations on Equivariance In the Team Sumo environments, task assignment leads to the formation of local
graphs composed of triplets of agents from both sides and a fixed ball, making it challenging to determine the specific goal
orientation learned by equivariant networks. Consequently, our method was primarily compared against HNN+HN. The
experimental outcomes align with the main text findings, as demonstrated in Figure 12.
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Figure 12. Additional Ablations on Equivariance. Training and Evaluation Curves in 2 ants Team Sumo Environment.

Importance of Local Symmetry By comparing the red and blue lines in the left plot of Figure 11 and in the right plot of
Figure 12, it becomes evident that in the Team Sumo environments, the impact of assignment is not as significant as that of
equivariance. Therefore, careful design of assignment strategies is crucial to harness the advantages offered by equivariance
effectively.
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Figure 13. Additional Ablations on Entity Abstraction. Training and Evaluation Curves in 1 ant, 1 centipede, and
3 ant claw centipede Team Reach Environments.
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Ablation Study on Entity Abstraction The additional ablation study examines the effects of using different ab-
straction for each entity. Our hierarchical structure dictates a representative abstraction for each entity, and within
RL environments, the reward is often contingent on the root body’s state. Utilizing the first (root) body as a rep-
resentative aligns with the common computational practices in RL, focusing on the pivotal elements that influence
agent behavior and reward structures. Moreover, representing entity-level information through the mean of all K
bodies is a viable alternative, offering a more comprehensive local dynamic. The ablation study examines the ef-
fects of using the root body versus the average of all K bodies: Root body: Z⃗i is assigned as Z⃗i,1, hi is set as
[hi,1, p⃗

z
i,1], Z⃗ij = [(p⃗j,1 − p⃗i,1), Z⃗i, Z⃗j ], and hij = [∥p⃗j,1 − p⃗i,1∥2,hi,hj ]; Average of all K bodies: Z⃗i is as-

signed as 1
Ki

∑Ki

k=1 Z⃗i,k, hi is set as [ 1
Ki

∑Ki

k=1 hi,k,
1
Ki

∑Ki

k=1 p⃗
z
i,k],Z⃗ij = [( 1

Kj

∑Kj

k=1 p⃗j,k − 1
Ki

∑Ki

k=1 p⃗i,k), Z⃗i, Z⃗j ],

and hij = [∥ 1
Kj

∑Kj

k=1 p⃗j,k − 1
Ki

∑Ki

k=1 p⃗i,k∥2,hi,hj ]. The empirical results in Figure 13, particularly for the asymmetric
1 centipede scenario, reveal a significant performance gap, clearly demonstrating the superiority of using the root body’s
state over the average of all K bodies.
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Figure 14. Evaluations on Transformer Architecture. Training and Evaluation Curves in Team Reach Environments.

C.6. Analyses of Morphology-shared Policy

We provide an extended example of our methodology applied to morphology tasks. Previous works have achieved
generalization across agents with different morphologies using morphology-aware Graph Neural Networks (Wang et al.,
2018; Huang et al., 2020).

Our variant, referred to as SHGNN, replaces the body-level MLP with body-level message passing. This adaptation enables
the learning of a shared policy network across different agents.

First, we utilize the morphology topology information of each agent i to construct a body-level inner-entity graph, denoted
as Gi = (Vi, Ei). For each body, k ∈ Vi, input node features are initialized using the body’s state. Specifically, Z⃗k is
assigned as Z⃗i,k, and hk is set as [hi,k,h

′
i, p⃗

z
i,k], where [ ] is the stack along the last dimension and p⃗z

i,k represents the
projection of the coordinate p⃗i,k onto the z-axis. In a body-level overview, we denote our body-level message passing as the
function φb that updates each body’s node features given the input node features of all body and graph connectivity:

{(Z⃗ ′
k,h

′
k)}

Ki

k=1 = φb

(
{(Z⃗k,hk)}Ki

k=1, Ei
)
. (27)

Notably, the unfolding of φb is similar to that of φo, and will not be elaborated further here.

For each agent i, the invariant actor policy πθi is defined as

πθi = {πθi,k}
Ki

k=2 = {σπ(O⊤
i Z⃗

′
k,h

′
k)}

Ki

k=2, (28)

where σπ is a linear layer with bias. Here, πθi ∈ R2×(Ki−1) represents the location and scale parameters of a Normal Tanh
Distribution for the (Ki − 1) actuators of agent i. Each actuator samples its corresponding torque ai,k ∈ [−1, 1] from this
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distribution. The invariant critic value-function Vϕ remains as described in the main text. Within the same team, different
agents share the weight parameters of the body-level message passing.
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Figure 15. Analysis of Morphology-shared Policy. Training and Evaluation Curves in Team Reach Environments.
As observed in Figure 15, while body-level message passing struggles to learn effective control strategies for a
single morphology (e.g., 2 ants), it interestingly excels in more complex, multi-morphological environments like
3 ant claw centipede. In such scenarios, knowledge sharing across different morphologies leads to mutual en-
hancement, significantly outperforming the body-level MLP approach. However, as indicated in Table 5, the implementation
of message passing considerably slows down the training process.

C.7. Model Comparison: Parameters and Training Time

Table 5 compares the parameters and Training Wall Times of our model with several model variants in the
3 ant claw centipede Team Reach Environments. Here, total timesteps are 50M. Since Transformer and GNN
can share parameters across different morphologies, they have fewer parameters.

Table 5. Comparison of Models in Terms of Parameters and Training Wall Time in 3 ant claw centipede Team Reach Environ-
ments.

Model Parameters (M) Training Wall Time (h)

MLP+HN 1.759 0.299±0.003
Transformer+HN 0.416 1.545±0.001
SHNN 0.772 1.302±0.012
SHTransformer 0.711 2.487±0.014
SHGNN 0.613 5.538±1.411

C.8. Equivariance Test

We conduct an experiment, as depicted in Figure 16, to evaluate the rotational generalization of both the baselines and our
method. Training and evaluation are conducted in the fixed initial conditions of the 1 centipede and 2 ants Team
Reach environments. Additionally, we conduct an evaluation with a 180° rotation of the entire scene. The results presented
in Table 6, with detailed curves provided in Figure 17, illustrate that both our SHNN method and the MLP+HN approach
exhibit stable performance pre- and post-rotation. Conversely, MLP demonstrates rotational generalization for symmetric
morphologies, such as ants, yet entirely lacks this capability with asymmetric morphologies like centipedes, evidenced by the
underline in Table 6 and the green line in the first plot of Figure 17. These results empirically validate that both our SHNN
method and the HN approach are rotation equivariance, which can robustly generalize to unseen rotation transformations.

Table 6. Equivariance Test. We report Success Rate (%) on the final step in Team Reach Environments.

Methods 1 centipede 2 ants
0◦ 180◦ 0◦ 180◦

MLP 41.55± 19.70 0.18± 0.22 44.00± 12.90 40.03± 12.03
MLP+HN 38.02± 24.98 37.92± 25.91 39.19± 12.85 38.60± 12.53

SHNN 40.23± 22.28 41.39± 21.89 87.78± 6.59 87.84± 6.42
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Training on 0° Generalization on 180°

𝒈

𝒈

𝒈

𝒈

Figure 16. Equivariance Test Scenarios. Training are conducted in the fixed initial conditions, a generalization evaluation is conducted
with a 180° rotation of the entire scene.
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Figure 17. Equivariance Test. Training and Evaluation Curves in Team Reach Environments. MLP+HN and SHNN, by explicitly
addressing local transformations, exhibit overlapping curves in equivariance tests.

C.9. Hyperparameters

Table 7 and Table 8 provide the hyperparameters needed to replicate our experiments. Code and Environments are available
on our project page: https://alpc91.github.io/SMERL/.

Table 7. Hyperparameters of MAPPO.
Hyperparameter Value

total timesteps Team Reach: 50M / Team Sumo: 20M
eval frequency 50
num envs 2048
action repeat 1
batch size Team Reach: 1024 / Team Sumo: 128
reward scaling 1.0
episode length 1000
entropy cost 1e-2
unroll length 5
discounting 0.97
learning rate 3e-4
num minibatches 32
num update epochs 4
gradient clipping 0.1
normalize observations True

Table 8. Hyperparameters of Network.
Module Hyperparameters Value

MLP

hidden dim 256
output dim π: 2 × (Ki − 1) / V : 1

# linear layers 3
activation relu

Message Passing

hidden dim 64
vector dim 32

# MLP layers 2
activation relu

propagation steps 2

Transformer

model dim 128
feedforward dim 256

# layers 3
# heads 2

activation relu
transformer norm LayerNorm
condition decoder True

positional encoding False
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