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A EXPERIMENTS DETAILS

A.1 ENVIRONMENTS

Figure 3: Experiment environments. From left to right: (a) HalfCheetah, (b) Hopper, (c) Inverted-
Pendulum, and (d) Walker2D

(a) HalfCheetah
The HalfCheetah is a two-dimensional simulated robot consisting of 9 body parts and 8
joints. The environment provides a 17-dimensional state space, which includes joint po-
sitions and velocities, and a 6-dimensional continuous action space, corresponding to the
torques applied to the controllable joints.

(b) Hopper
The Hopper is a two-dimensional robot consisting of 4 body parts and 3 controllable joints.
The environment provides an 11-dimensional state space, which includes joint positions
and velocities, and a 3-dimensional continuous action space corresponding to the torques
applied at the thigh, leg, and foot joints.

(c) InvertedPendulum
The InvertedPendulum consists of a cart moving along a one-dimensional track with a pen-
dulum attached to it. The environment provides a 4-dimensional state space, including the
cart position/velocity and pendulum angle/angular velocity, and a 1-dimensional continu-
ous action space representing the force applied to the cart.

(d) Walker2D
The Walker2d is a two-dimensional biped robot composed of 7 body parts and 6 control-
lable joints. The environment provides a 17-dimensional state space, which includes joint
positions and velocities, and a 6-dimensional continuous action space corresponding to the
torques applied at the joints of the legs.

(a) (b) (c) (d)

The dimension of state space 17 11 4 17

The dimension of action space 6 3 1 6

The range of action space [−1, 1] [−1, 1] [−3, 3] [−1, 1]
The dimension of disturbance space 3 2 1 3

The range of disturbance space [−5, 5] [−5, 5] [−3, 3] [−5, 5]

The name of perturbed body
torso
hfoot
foot

torso
foot pole

torso
lfoot
foot

Table 2: Details about state, action, disturbance spaces of each environment: (a):HalfCheetah,
(b):Hopper, (c):InvertedPendulum, (d):Walker2D.
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A.2 ALGORITHM DETAILS

The hyperparameters of algorithms used in experiments are described in Table 3. The overall de-
scriptions of DDPG and RARL are desribed in Algorithm 2 and 3

DDPG RARL RDDPG
Number of Episodes for training 5000 5000 5000

Buffer size 1000000 1000000 1000000

Learning rate for critic αcritic 0.001 0.001 0.001

Learning rate for actor of user αuser 0.0001 0.0001 0.0001

Learning rate for actor of adversary αadv - 0.0001 0.0001

Hidden layer sizes [256, 256] [256, 256] [256, 256]

τ 0.005 0.005 0.005

Batch size |B| 128 128 128

Activation function in actor tanh tanh tanh
Optimizer Adam Adam Adam
Discounted factor γ 0.99 0.99 0.99

Policy noise OU noise OU noise OU noise
Mean of OU noise 0 0 0

Standard deviation of OU noise 0.2 0.2 0.2

Table 3: Details about the hyperparameters of each algorithms

A.3 EXPERIMENT

A.3.1 ROBUSTNESS TO DISTURBANCES

To evaluate the robustness against external disturbances, we applied stronger perturbations than
those used during training (see Table 2). Specifically, the InvertedPendulumn environment was
tested under random disturbances sampled from [−3, 3], while all other environments were subjected
to disturbances in the range of [−10, 10]. For each setting, we conducted 500 test episodes across
ten seeds and reported the mean and standard deviation of the cumulative reward per episode.

A.3.2 ROBUSTNESS TO MODEL UNCERTAINTY

To assess robustness against model parameter uncertainties, we varied both the torso mass and the
ground friction coefficient in the environment. Specifically, each parameter was scaled by one of
the factors [0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6], resulting in a total of 49 different scenarios. For each
scenario, we evaluated the trained policies over 100 test episodes using ten seeds, and the average
cumulative rewards were visualized in the form of a heatmap shown in Figure 2. Furthermore, in
order to examine whether the policies remain robust under simultaneous parameter variations and
external perturbations, we applied the same disturbance settings as in the previous experiment while
varying the model parameters.
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Algorithm 2 Deterministic deep policy gradient (DDPG)
1: Initialize the online critic networks Qψ
2: Initialize the actor networks πθ for the user.
3: Initialize the target parameters ψ′ ← ψ, θ′ ← θ
4: Initialize the replay buffer D
5: for Episode i = 1, 2, ...Niter do
6: Observe the initial state s0
7: for Time step k = 0, 1, 2, ...T − 1 do
8: Select actions ak = πθ(sk) + ξak and wk = µϕ(sk) + ξwk ,
9: where ξak , ξ

w
k are Ornstein-Uhlenbeck (OU) noise for exploration.

10: Observe the next state sk+1 and compute the reward rk+1 := r(sk, ak, sk+1)
11: Store the transition tuple (sk, ak, rk+1, sk+1) in the replay buffer D
12: Uniformly sample a mini-batch B from the replay buffer D
13: Update critic network:

ψ ← ψ − αcritic∇ψLcritic(ψ;B)

where

Lcritic(ψ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(r + γQψ
′
(s′, a)−Qψ(s, a))2

14: Update actor networks by the deterministic policy gradient:

θ ← θ + αuser∇θLactor(θ;B)

where

Lacotr(θ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ(s, πθ(s))

]
15: Soft update target networks:

ψ′ ← τψ + (1− τ)ψ′, θ′ ← τθ + (1− τ)θ′

16: end for
17: end for
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Algorithm 3 Robust adversarial reinforcement learning (RARL)

1: Initialize the online critic networks Qψ1

1 , Qψ2

2
2: Initialize the actor networks πθ, µϕ for the user and adversary, respectively.
3: Initialize the target parameters ψ′

1 ← ψ1, ψ
′
2 ← ψ2, θ′ ← θ, ϕ′ ← ϕ

4: Initialize the replay buffer D
5: for Episode i = 1, 2, ...Niter do
6: Observe the initial state s0
7: for Time step k = 0, 1, 2, ...T − 1 do
8: Select actions ak = πθ(sk) + ξak and wk = µϕ(sk) + ξwk ,
9: where ξak , ξ

w
k are Ornstein-Uhlenbeck (OU) noise for exploration.

10: Observe the next state sk+1 and compute the reward rk+1 := r(sk, ak, wk, sk+1)
11: Store the transition tuple (sk, ak, wk, rk+1, sk+1) in the replay buffer D
12: Uniformly sample a mini-batch B from the replay buffer D
13: Update critic network:

ψi ← ψi − αcritic∇ψi
Lcritic(ψi;B), i ∈ {1, 2}

where

Lcritic,1(ψ1;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(r + γQ
ψ′

1
1 (s′, a)−Qψ1

1 (s, a))2

Lcritic,2(ψ2;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(−r + γQ
ψ′

2
2 (s′, w)−Qψ2

2 (s, w))2

14: Update actor networks by the deterministic policy gradient:

θ ← θ + αuser∇θLuser(θ, ϕ;B)

ϕ← ϕ+ αadv∇ϕLadv(θ, ϕ;B)

where

Luser(θ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ1

1 (s, πθ(s))
]

Ladv(ϕ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ2

2 (s, µϕ(s))
]

15: Soft update target networks:

θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ+ (1− τ)ϕ′

ψ′
i ← τψi + (1− τ)ψ′

i, i ∈ {1, 2}

16: end for
17: end for
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