
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EXPERIMENTS DETAILS

A.1 ENVIRONMENTS

Figure 3: Experiment environments. From left to right: (a) HalfCheetah, (b) Hopper, (c) Inverted-
Pendulum, and (d) Walker2D

(a) HalfCheetah
The HalfCheetah is a two-dimensional simulated robot consisting of 9 body parts and 8
joints. The environment provides a 17-dimensional state space, which includes joint po-
sitions and velocities, and a 6-dimensional continuous action space, corresponding to the
torques applied to the controllable joints.

(b) Hopper
The Hopper is a two-dimensional robot consisting of 4 body parts and 3 controllable joints.
The environment provides an 11-dimensional state space, which includes joint positions
and velocities, and a 3-dimensional continuous action space corresponding to the torques
applied at the thigh, leg, and foot joints.

(c) InvertedPendulum
The InvertedPendulum consists of a cart moving along a one-dimensional track with a pen-
dulum attached to it. The environment provides a 4-dimensional state space, including the
cart position/velocity and pendulum angle/angular velocity, and a 1-dimensional continu-
ous action space representing the force applied to the cart.

(d) Walker2D
The Walker2d is a two-dimensional biped robot composed of 7 body parts and 6 control-
lable joints. The environment provides a 17-dimensional state space, which includes joint
positions and velocities, and a 6-dimensional continuous action space corresponding to the
torques applied at the joints of the legs.

(a) (b) (c) (d)

The dimension of state space 17 11 4 17

The dimension of action space 6 3 1 6

The range of action space [−1, 1] [−1, 1] [−3, 3] [−1, 1]
The dimension of disturbance space 3 2 1 3

The range of disturbance space [−5, 5] [−5, 5] [−3, 3] [−5, 5]

The name of perturbed body
torso
hfoot
foot

torso
foot pole

torso
lfoot
foot

Table 2: Details about state, action, disturbance spaces of each environment: (a):HalfCheetah,
(b):Hopper, (c):InvertedPendulum, (d):Walker2D.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 ALGORITHM DETAILS

The hyperparameters of algorithms used in experiments are described in Table 3. The overall de-
scriptions of DDPG and RARL are desribed in Algorithm 2 and 3

DDPG RARL RDDPG
Number of Episodes for training 5000 5000 5000

Buffer size 1000000 1000000 1000000

Learning rate for critic αcritic 0.001 0.001 0.001

Learning rate for actor of user αuser 0.0001 0.0001 0.0001

Learning rate for actor of adversary αadv - 0.0001 0.0001

Hidden layer sizes [256, 256] [256, 256] [256, 256]

τ 0.005 0.005 0.005

Batch size |B| 128 128 128

Activation function in actor tanh tanh tanh
Optimizer Adam Adam Adam
Discounted factor γ 0.99 0.99 0.99

Policy noise OU noise OU noise OU noise
Mean of OU noise 0 0 0

Standard deviation of OU noise 0.2 0.2 0.2

Table 3: Details about the hyperparameters of each algorithms

A.3 EXPERIMENT

A.3.1 ROBUSTNESS TO DISTURBANCES

To evaluate the robustness against external disturbances, we applied stronger perturbations than
those used during training (see Table 2). Specifically, the InvertedPendulumn environment was
tested under random disturbances sampled from [−3, 3], while all other environments were subjected
to disturbances in the range of [−10, 10]. For each setting, we conducted 500 test episodes across
ten seeds and reported the mean and standard deviation of the cumulative reward per episode.

A.3.2 ROBUSTNESS TO MODEL UNCERTAINTY

To assess robustness against model parameter uncertainties, we varied both the torso mass and the
ground friction coefficient in the environment. Specifically, each parameter was scaled by one of
the factors [0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6], resulting in a total of 49 different scenarios. For each
scenario, we evaluated the trained policies over 100 test episodes using ten seeds, and the average
cumulative rewards were visualized in the form of a heatmap shown in Figure 2. Furthermore, in
order to examine whether the policies remain robust under simultaneous parameter variations and
external perturbations, we applied the same disturbance settings as in the previous experiment while
varying the model parameters.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Deterministic deep policy gradient (DDPG)
1: Initialize the online critic networks Qψ
2: Initialize the actor networks πθ for the user.
3: Initialize the target parameters ψ′ ← ψ, θ′ ← θ
4: Initialize the replay buffer D
5: for Episode i = 1, 2, ...Niter do
6: Observe the initial state s0
7: for Time step k = 0, 1, 2, ...T − 1 do
8: Select actions ak = πθ(sk) + ξak and wk = µϕ(sk) + ξwk ,
9: where ξak , ξ

w
k are Ornstein-Uhlenbeck (OU) noise for exploration.

10: Observe the next state sk+1 and compute the reward rk+1 := r(sk, ak, sk+1)
11: Store the transition tuple (sk, ak, rk+1, sk+1) in the replay buffer D
12: Uniformly sample a mini-batch B from the replay buffer D
13: Update critic network:

ψ ← ψ − αcritic∇ψLcritic(ψ;B)

where

Lcritic(ψ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(r + γQψ
′
(s′, a)−Qψ(s, a))2

14: Update actor networks by the deterministic policy gradient:

θ ← θ + αuser∇θLactor(θ;B)

where

Lacotr(θ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ(s, πθ(s))

]
15: Soft update target networks:

ψ′ ← τψ + (1− τ)ψ′, θ′ ← τθ + (1− τ)θ′

16: end for
17: end for

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Robust adversarial reinforcement learning (RARL)

1: Initialize the online critic networks Qψ1

1 , Qψ2

2
2: Initialize the actor networks πθ, µϕ for the user and adversary, respectively.
3: Initialize the target parameters ψ′

1 ← ψ1, ψ
′
2 ← ψ2, θ′ ← θ, ϕ′ ← ϕ

4: Initialize the replay buffer D
5: for Episode i = 1, 2, ...Niter do
6: Observe the initial state s0
7: for Time step k = 0, 1, 2, ...T − 1 do
8: Select actions ak = πθ(sk) + ξak and wk = µϕ(sk) + ξwk ,
9: where ξak , ξ

w
k are Ornstein-Uhlenbeck (OU) noise for exploration.

10: Observe the next state sk+1 and compute the reward rk+1 := r(sk, ak, wk, sk+1)
11: Store the transition tuple (sk, ak, wk, rk+1, sk+1) in the replay buffer D
12: Uniformly sample a mini-batch B from the replay buffer D
13: Update critic network:

ψi ← ψi − αcritic∇ψi
Lcritic(ψi;B), i ∈ {1, 2}

where

Lcritic,1(ψ1;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(r + γQ
ψ′

1
1 (s′, a)−Qψ1

1 (s, a))2

Lcritic,2(ψ2;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

(−r + γQ
ψ′

2
2 (s′, w)−Qψ2

2 (s, w))2

14: Update actor networks by the deterministic policy gradient:

θ ← θ + αuser∇θLuser(θ, ϕ;B)

ϕ← ϕ+ αadv∇ϕLadv(θ, ϕ;B)

where

Luser(θ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ1

1 (s, πθ(s))
]

Ladv(ϕ;B) :=
1

|B|
∑

(s,a,w,r,s′)∈B

[
Qψ2

2 (s, µϕ(s))
]

15: Soft update target networks:

θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ+ (1− τ)ϕ′

ψ′
i ← τψi + (1− τ)ψ′

i, i ∈ {1, 2}

16: end for
17: end for

15

	Introduction
	Preliminaries
	Adversarial Reinforcement Learning
	H Control

	Method
	Robust Deterministic Policy Gradient
	Robust deep deterministic policy gradient
	Critic update
	Actor update
	Exploration

	Experiment and results
	Experiment setup
	Results
	Robustness to disturbances
	Robustness to model uncertainty

	Related works
	Conclusion
	Experiments details
	Environments
	Algorithm details
	Experiment
	Robustness to disturbances
	Robustness to model uncertainty

