
A Implementation details464

Here we lay down the details of the data collection, training, and testing process.465

Collecting human play data and training details. The human play data is collected by letting a human466

operator directly interact with the scene with a single hand for 10 minutes for each scene. The entire467

trajectory ⌧ is recorded at the speed of 60 frames per second and is used without cutting or labeling. The468

3D hand trajectory is detected with an off-the-shelf multi-view human hand tracker [49]. The total number469

of video frames within 10 minutes of human play video is around 36k. We train one latent planner for each470

environment with the collected human play data. For the multi-environment setup (for the experiments in471

Tab. 3), we merge the human play data from each scene to train a single latent planner. The latent planner472

contains two ResNet-18 [54] networks for image processing and MLP-based encoder-decoder networks473

together with a GMM model, which has K=5 distribution components. We train 100k iterations for the474

latent planner which takes a single GPU machine for 12 hours.475

Collecting robot demonstrations and training details. The robot teleoperation data is collected with an476

IMU-based phone teleoperation system RoboTurk [55]. The control frequency of the robot arm is 17-20Hz477

and the gripper is controlled at 2Hz. For each task, we collect 20 demonstrations. In the experiments, we478

also have a 40 demonstration dataset for testing the sample efficiency of different approaches. The robot479

policy model is a GPT-style transformer [52], which consists of four multi-head layers with four heads.480

We train 100k iterations for the policy with a single GPU machine in 12 hours. For a fair comparison481

with our method, the baseline approaches trained without human play data have five more demonstrations482

during training the latent planner P and the low-level policy ⇡.483

Video prompting. In this work, we use a one-shot video V (either human video Vh or robot video Vr)484

to prompt the pre-trained latent planner to generate corresponding plans pt=P(ot,gt,lt),gt2V. During485

training (Fig. 2(b)), we specify the goal image grt (grt 2Vr) as the frame H steps after the input observation486

o
r
t in the robot demonstration. H is a uniformly sampled integer number within the range of [200,600],487

which equals 10-30 seconds in wall-clock time. lt here is the 3D location of the robot’s end-effector. During488

inference (Fig. 2(c)), we assume access to a task video (either human or robot video) which is used as a489

source of goal images. The goal image will start at the 200 frame of the task video and move to the next i490

frame after each step. We use i=1 in all our experiments. Based on the inputs, the latent planner generates491

a latent plan feature embedding pt of shape R1⇥d, which is used as guidance for the low-level robot policy.492

Data visualization. We visualize the collected human play data and robot demonstration data in Tab. 9.493

For the human play data, we use an off-the-shelf hand detector [49] to localize the hand’s 2D location494

on the left and right image frame, which are visualized as red bounding boxes in Tab 9. For the robot495

demonstration data, we directly project the 3D location of the robot end-effector to the left and right image496

frames, which are visualized as blue bounding boxes in Tab 9.497

Testing. We perform real-time inference on a Franka Emika robot arm with a control frequency of 17Hz—498

directly from raw image inputs to 6-DoF robot end-effector and gripper control commands with our trained499

models. The robot is controlled with the Operational Space Control (OSC) [56].500

B Experiment setups501

Environments. We design six environments with a total of 14 tasks for a Franka Emika robot arm, as502

illustrated in Fig. 3. These environments feature several manipulation challenges, such as contact-rich tool503

manipulation (cleaning the whiteboard), articulated-object manipulation (opening the oven and the box on504

the study desk), high-precision tasks (inserting flowers and turning on the lamp by pressing the button),505

and deformable object manipulation (folding cloth).506

Tasks. We design three tasks in the Kitchen environment and four tasks in the Study desk environment.507

All these tasks have different goals. In this work, we focus on long-horizon tasks that require the robot to508

complete several subgoals. To better analyze the performance of each method, we define the Subgoal task509

category that only counts whether the first subgoal of the task has been achieved and the Long horizon510

task category which is the full task. In the Study desk environment, we design three tasks for testing the511
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Figure 6: Qualitative visualization of the learned latent plan. (a) Visualization of the trajectory prediction
results decoded from the latent plans learned by different methods. The fading color of the trajectory from
blue to green indicates the time step from 1 to 10. (b) t-SNE visualization of latent plans, the latent plans of
the same task tend to cluster in the latent space.

compositional generalization ability of the models to novel task goal sequences, which are not included512

in the training dataset. These three tasks are classified as Easy, Medium, and Hard depending on their513

difference compared to the training tasks. The Easy task is a simple concatenation of two trained tasks514

and their subgoals. The Medium task contains an unseen composition of a pair of subgoals that is not515

covered by any trained tasks, i.e., the transition from subgoal A to subgoal B is new. The model needs516

to generate novel motions to reach these subgoals. The Hard task contains two such unseen transitions.517

For the rest four environment, each scene has one task goal and features different types of challenges in518

manipulation, e.g., generalization to new spatial configuration, extremely long horizon, and deformable519

object manipulation.520

Baselines. We compare with five prior approaches: (1). GC-BC (BC-RNN) [20]: Goal-conditioned521

behavior cloning algorithm [5] implemented with recurrent neural networks (RNN) [57]. (2). GC-BC (BC-522

trans) [52]: Another goal-conditioned behavior cloning algorithm implemented with GPT-like transformer523

architecture. (3). C-BeT [6]: Goal-conditioned learning from teleoperated robot play data algorithm524

implemented with Behavior Transformer (BeT) [53]. (4). LMP [5]: A learning from teleoperated robot525

play data algorithm designed to handle variability in the play data by learning an embedding space. LMP526

(single) is a variant by training each task with a separate model. (5). R3M-BC [40]: A goal-conditioned527

imitation learning framework that leverages R3M visual representation pre-trained with internet-scale528

human video dataset Ego4D [42]. R3M-BC (single) is a variant by training each task with a separate529

model.530

Ablations. We compare four variants of our model to showcase the effectiveness of our architecture design:531

(1). Ours: MIMICPLAY with full collection (10 min) of human play data. Ours (single) is a variant by532

training each task with a separate model. (2). Ours (0-human): variant of our model without using human533

play data. The pre-trained latent plan space is trained only with the teleoperated robot demonstrations. (3).534

Ours (50-human): variant of our model where the latent planner is trained with 50% of human play data (5535

min). (4). Ours (w/o GMM): variant without using the GMM model for learning the latent plan space from536

human play data. (5). Ours (w/o KL): Our approach without using KL loss for addressing the visual gap537

between human and robot data when pre-training the latent planner.538

C Supplementary Experiment Results539

Visualization of the trajectory prediction results. We visualize the 3D trajectory decoded from the540

latent plan by projecting it onto the 2D image in Fig. 6. In the last two rows, we showcase the results of541
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(a) Distribution overlap of Ours (w/o KL) (b) Distribution overlap of Ours

Figure 7: t-SNE visualization of the generated feature embeddings by taking human data and robot data as
inputs. The slashes refer to the overlap region of two data distributions. (a) Feature visualization results of
our method without using KL divergence loss. (b) Feature visualization results of our method with KL
divergence loss. Our approach covers 23% more area than the baseline.

two unseen subgoal transitions. The trajectory generated by our model is most similar to the ground truth542

trajectory, while Ours (0-human) is overfitted to the subgoal transitions in the training set and generates the543

wrong latent plan. For instance, in the training data, the robot only learns to open the box after turning off544

the lamp, meanwhile in the Easy setting of generalization tasks, the robot is prompted to pick up the pen545

after turning off the lamp. Ours (0-human) variant still outputs a latent plan to open the box, which causes546

the task to fail since the box is already open.547

Visualization of the learned latent plans. We use t-SNE [58] to visualize the generated latent plans548

conditioned on different tasks, as shown in Fig. 6(b). We find that the latent plans of the same task tend to549

cluster in the latent space, which shows the effectiveness of our approach in distinguishing different tasks.550

Transformer architecture helps multi-task learning. In Tab. 1, GC-BC (BC-trans) with the GPT551

transformer architecture outperforms GC-BC (BC-RNN) by more than 30% in a 40-demos Subgoal setting.552

However, the performance of GC-BC (BC-trans) quickly drops to the same level as GC-BC (BC-RNN) in553

20-demos settings. The result showcases that training vision-based transformer policy end-to-end requires554

more data.555

Analysis of the visual gap between human and robot data. As is introduced in the method Sec. 3.2, to556

minimize the visual gap between human play data and robot demonstration data, we use a KL divergence557

loss over the feature embeddings outputted by the visual encoders. In Fig. 7, we use t-SNE to process and558

visualize the learned feature embeddings generated by Ours and the model variant Ours (w/o KL) on the559

2D distribution plots. To better visualize the distribution overlap, we use slashes to highlight the overlap560

area in both plots. We observe that our approach with KL loss has a 23% larger overlap between the human561

data and the robot data compared to Ours (w/o KL). This result showcases the effectiveness of our KL562

divergence loss and supports the result in Tab. 2 (Ours (w/o KL) is inferior to Ours in task success rate).563

D Details of system setups564

We illustrate the system designs for the data collection in Fig. 8. The human play data is collected by565

having a human operator directly interact with the environment with one of its hands (Fig. 8(a)). The left566

and right cameras record the video at the speed of 100 frames per second. During the collection process of567
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human play data, no specific task goal is given and the human operator freely interacts with the scene for568

interesting behaviors based on its curiosity. For each scene in our experiments, we collect 10 minutes of569

human play data.570

Left camera

Right camera

Human play

(a) Human play data collection

Phone teleoperation 
(RoboTurk)

(b) Robot demonstration data collection

Left camera

Right camera

Wrist camera

Figure 8: System setups for the data collection. (a) Hu-
man play data collection. A human operator directly
interacts with the scene with one of its hand and perform
interesting behaviors based on its curiosity without a spe-
cific task goal. (b) Robot demonstration data collection.
A human demonstrator uses a phone teleoperation system
to control the 6 DoF robot end-effector. The gripper of
the robot is controlled by pressing a button on the phone
interface.

The robot teleportation demonstration is col-571

lected with a phone teleoperation system Robo-572

Turk [55] (Fig. 8(b)). The left, right, and end-573

effector wrist cameras record the video at the574

speed of 20 frames per second, which is aligned575

with the control speed of the robot arm (20Hz).576

Each sequence of robot demonstration has a577

pre-defined task goal. During the data collec-578

tion, the human demonstrator completes the as-579

signed sub-goals one by one and finally solves580

the whole task. For each training task in our ex-581

periments, we collect 20 demonstrations. In the582

Kitchen environment, we collect 40 demonstra-583

tions for each task to figure out which approach584

is more sample inefficiency.585

E Details of the task designs586

The definition of our long-horizon tasks is587

listed below. For each task, the initial state588

and subgoals are pre-defined. The whole task589

is completed if and only if all subgoals are590

completed in the correct order.591

E.1 Kitchen592

• Task-1593

– Initial state: A drawer is placed on594

the left side of the table. The drawer595

is not fully open and contains pump-596

kin and lettuce. A closed microwave597

oven is placed on the right side of598

the desktop. A bowl and a stove599

are placed on the lower edge of the600

tabletop. There is a carrot inside the601

bowl. A pan is placed on top of the602

stove.603

– Subgoals: a) Open the microwave604

oven door. b) Pull out the mi-605

crowave oven tray. c) Pick up the606

bowl. d) Place the bowl on the mi-607

crowave tray.608

• Task-2609

– Initial state: same as Kitchen Task-1.610

– Subgoals: a) Open the drawer. b) Pick up the carrot. c) Put the carrots in the drawer.611

• Task-3612

– Initial state: same as Kitchen Task-1.613

– Subgoals: a) Pick up the pan. b) Place the pan on the table. c) Pick up the bowl. d) Place the614

bowl on the stove.615
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E.2 Study desk616

• Task-1617

– Initial state: The book is on the rack. The lamp is on. The box is opened and closed in a random618

state. The pen is located either in the center of the table or in the box.619

– Subgoals: a) Turn off the lamps. b) Pick up the book. c) Place the book on the shelf position.620

• Task-2621

– Initial state: The location of the book is either on the shelf or on the rack. The lamp is off. The622

box is closed. The pen is in the center of the table.623

– Subgoals: a) Turn on the lamps. b) Open the box. c) Pick up the pen. d) Put it in the box.624

• Task-3625

– Initial state: The book is on the rack. The state of the lamp is random. The box is closed. The626

pen is in the center of the table.627

– Subgoal a) Open the box. b) Pick up the pen. c) Place the pen in the box. d) Pick up the book.628

e) Place the book on the shelf.629

• Task-4630

– Initial state: The location of the book is either on the shelf or on the rack. The lamp is on. The631

box is closed. The pen is located either in the center of the table or in the box.632

– Subgoals: a) Open the box. b) Turn off the lamp.633

• Easy634

– Initial state: The location of the book is either on the shelf or on the rack. The lamp is off. The635

box is closed. The pen is located either in the center of the table or in the box.636

– Subgoals: a) Turn on the lamp. b) Open the box. c) Turn off the lamp.637

• Medium638

– Initial state: The location of the book is either on the shelf or on the rack. The lamp is on. The639

box is closed. The pen is in the center of the table.640

– Subgoals: a) Open the box. b) Turn off the lamp. c) Pick up the pen. d) Place the pen in the box.641

• Hard642

– Initial state: The book is on the shelf. The lamp is on. The box is closed. The pen is located643

either in the center of the table or in the box.644

– Subgoals: a) Turn off the lamp. b) Open the box. c) Pick up the book. d) Place the book on the645

shelf.646

E.3 Flower647

• Initial state: Two flowers and a vase are placed on the table. The vase will randomly be placed on the648

top left or top right corner of the table.649

• Subgoals: a) Picking up a flower. b) Insert the flower into the vase. c) Pick up the other flower. d)650

Insert the flower into the vase.651

E.4 Whiteboard652

• Initial state: A whiteboard and board eraser are placed on the table. The board eraser is placed on the653

left side of the whiteboard.654

• Subgoals: a) Pick up the board eraser. b) Moves over the curve line. c) Erase the curve line. d) Return655

the eraser to the original location.656

17



E.5 Sandwich657

• Initial state: A circular ingredient selector is placed in the upper right corner of the table. Half of the658

circle holds ingredients for a sandwich (bread, lettuce, sliced tomato) and half holds ingredients for a659

cheeseburger (bread, cheese, burger patty). A white plate is placed in the lower left corner of the table.660

• Subgoals for a sandwich: a) Rotate the ingredient selector to the right position. Pick up a piece of661

bread from it and place it on the plate. b) Rotate the ingredient selector to the correct position. Pick662

up the lettuce and place it on top of the bread. c) Rotate the ingredient selector to the right position.663

Pick up the sliced tomato and place it on top of the lettuce. d) Rotate the ingredient selector to the664

right position. Pick up another piece of bread and place it on top of the tomato.665

E.6 Cloth666

• Initial state: An unfolded brown cloth is randomly placed on the table.667

• Subgoals: a) The robot folds the cloth in half once to become 1/2 of its original size. b) The robot668

folds the cloth once more to become 1/4 of its original size.669

F Training hyperparameters670

We list the hyperparameters for training the models in Tab. 4 for the latent planner P and Tab. 5 for the robot671

policy ⇡. The hyperparameters that are named starting with GMM are related to the MLP-based GMM672

model. The hyperparameters that are named starting with GPT are related to the transformer architecture.673

We also list the hyperparameters for the baseline GC-BC (BC-trans) in Tab. 6.674

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 1000
LR Decay None

KL Weights � 1000
MLP Dims [400, 400]

Image Encoder - Left View ResNet-18
Image Encoder - Right View ResNet-18

Image Feature Dim 64
GMM Num Modes 5

GMM Min Std 0.0001
GMM Std Activation Softplus

Table 4: Hyperparameters - Ours (La-
tent Planner P)

Hyperparameter Default

Batch Size 16
Learning rate (LR) 1e-4

Num Epoch 1000
Train Seq Length 10
LR Decay Factor 0.1
LR Decay Epoch [300, 600]

MLP Dims [400, 400]
Image Encoder - Wrist View ResNet-18

Image Feature Dim 64
GMM Num Modes 5

GMM Min Std 0.01
GMM Std Activation Softplus

GPT Block Size 10
GPT Num Head 4
GPT Num Layer 4
GPT Embed Size 656

GPT Dropout Rate 0.1
GPT MLP Dims [656, 128]

Table 5: Hyperparameters -
Ours (Robot Policy ⇡)

Hyperparameter Default

Batch Size 16
Learning rate (LR) 1e-4

Num Epoch 1000
Train Seq Length 10
LR Decay Factor 0.1
LR Decay Epoch [300, 600]

MLP Dims [400, 400]
Image Encoder - Wrist View ResNet-18
Image Encoder - Left View ResNet-18

Image Encoder - Right View ResNet-18
Image Feature Dim 64
GMM Num Modes 5

GMM Min Std 0.01
GMM Std Activation Softplus

GPT Block Size 10
GPT Num Head 4
GPT Num Layer 4
GPT Embed Size 656

GPT Dropout Rate 0.1
GPT MLP Dims [656, 128]

Table 6: Hyperparameters -
GC-BC (BC-trans)675

G Network Architecture676

Transformer-based policy network. The embedding sequence of T time steps is represented as s[t:t+T ]=677

[wt,et,pt,···,wt+T ,et+T ,pt+T ], which passes through a transformer architecture [51]. The transformer678

model ftrans processes the input embeddings using its N layers of self-attention and feed-forward neural679

networks. Given an embedding sequence of T�1 time steps, ftrans generates the embedding of trajectory680

prediction in an autoregressive way - xT =ftrans(w1:T�1,e1:T�1,p1:T�1), where xT is the predicted action681

embedding at time step T . The transformer architecture uses the multi-head self-attention mechanism to682

gather context and dependencies from the entire history trajectory at each step. The final robot control683

commands at are computed by processing the action feature xt with a two-layer fully-connected network.684

To handle the multimodal distribution of robot actions, we also use a MLP-based GMM model [50] for the685

action generation.686
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Figure 9: Dataset visualization.
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