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1. Introduction 
 
Machine learning is transforming scientific research 
by accelerating and enhancing traditional 
methodologies. This shift is particularly impactful in 
materials science, where understanding material 
properties and optimizing manufacturing processes 
have long been challenging. Machine learning 
techniques now enable faster discoveries, more 
accurate predictions, and better-informed decision-
making [1].  
In the field of energy materials and drug discovery—
the primary research focus of the innovation network 
ARTEMIS (“Artificial Intelligence Powered Material 
Design”) at TUM — this technological shift is especially 
impactful, as material properties play a crucial role in 
determining performance. Here, I will examine the 
application of generative models in enhancing the 
speed and accuracy of numerical simulations for 
exploring material properties for different 
applications, with an emphasis on dynamical 
properties. These models not only accelerate 
simulations by identifying key internal dynamical 
degrees of freedom [2] but also enable the 
construction of faster surrogate dynamics. 
Furthermore, I will discuss how machine learning is 
being utilized to analyze experimental data [3, 4] and 
integrate it with numerical simulations.  
 
2. Method 
     
2.1 Identification of Collective Variables for Dynamical 
Systems using Variational Autoencoders 
 
Collective Variables (CV) of a dynamic system can be 
interpreted in many ways. Two of the most common 
interpretation are of the variables expanding the high 
variance degrees of freedom and that which expand 
the slowest evolving degrees of freedom. Under the 
assumption of ergodicity, the two become equivalent. 
In the context of coarse-grained dynamics of a system, 
CVs allow for retention of the maximum amount of 
information for a given degree of coarsening. This is 
applicable to different scales of dynamics and has been 
used extensively to accelerate molecular dynamics 
(MD) simulations [6] with hand-crafted CVs and more 
recently CVs learned through machine learning 
methods.  By using the disentangled latent space of a 
β-Variational Autoencoders (β-VAEs) instead of 
normal autoencoders, we can benefit from the 
regularization effect for information retention 
capability as well as interpretability of the model. 
We previously applied machine learning methods in 

an unsupervised framework to elucidate the dynamics 
of a host-guest system. We recently used the β-VAEs in 
an iteratively explore the configuration space of 
molecular systems. We show that the regularization 
due to the β parameter leads to the CVs becoming 
orthogonal to each other and maximizes the 
information retention capability of the model. This 
also increases the probability that a single CV 
corresponds to a single geometric feature of the 
structure which we can detect by performing a 
correlation analysis with a set of geometric variables. 
Similarly, for development of a surrogate model for 
dynamics of materials, CVs can be used as course-grain 
dimensions to reduce the computational effort of 
simulating many degrees of freedom in time. This 
leads to a loss in information but if the CVs are so 
constructed that slow degrees of freedom that they 
capture correspond to the timescale of the dynamics 
of interest, the dynamics is accelerated with minimal 
loss of relevant information. 
 
2.1 Learn a Surrogate Dynamics using Temporal Fusion 
Transformers 
 
An excellent surrogate model is the so-called 
Temporal Fusion Transformer (TFT) model. This 
model, introduced in [5] possessed many unique 
properties that make it eminently suitable for 
capturing the dynamic behavior of a system as well as 
shed light to the parameters of relevance for every 
case. In particular, the unique combination of Long 
Short-Term Memory (LSTM) networks [7] and 
transformers [8]. LSTMs allow for the capturing of 
short-term dependencies. In contrast the 
transformers are responsible for capturing long time 
range phenomena. This is of crucial importance in 
dynamical systems that contain rare and far between 
events that still affect the overall dynamics. 
Additionally, the gated mechanisms and the 
introduction of simulation parameters through static 
covariates allows for an inbuilt feature importance. As 
example we can reference the investigation of Solid-
State Electrolyte depletion layer formation. Through 
our model we not only successfully predicted the ion 
evolution, but we also determined the relative 
relevance of the bias, permittivity and ion 
concentration on the material bulk.  
Lastly, TFT allows for future covariates as well as past. 
This has multiple uses. Firstly, in cases such as a 
temperature affected phenomenon, we can create 
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predictions for variable defined temperature at will. 
Further, in cases where we possess multiple levels of 
theory, the prediction of the highest accuracy can 
further be informed by the phenomenon propagation 
as determined by a coarser simulation. 
 
2.3 Application 
 
Concretely, to demonstrate the principle, we have 
applied the model to different case studies, including 
for drug discovery to study drug/target interactions 
[2], or to optimize materials for energy production. As 
an example, the case of a supercapacitor with solid-
state electrolyte (SSE), described in [9,10] in detail, 
was selected. The model describes the formation of a 
space charge layer at the electrode when an external 
voltage is applied (the charging process). The 
numerical model to describe the process is based on 
kinetic Monte Carlo [11]. The mobile ions are 
described like particle that can move under the 
external effect of a voltage from one ionic vacancy to a 
neighbor one. This process is described using hopping 
transport. The different vacancies have different 
energies, which modulates the hopping rate[10]. 
Moreover, the ions can interact not just with the 
external field, but also with each other via Coulomb 
interaction, making the problem a concrete many-
body challenge. Thanks to the TFT characteristics, we 
can introduce side information in terms of 
experimental data, like permittivity and external 
voltage. In figure 1, it is shown that not only we can 
accurately predict the phenomenon evolution, even 
for relatively computationally expensive simulation 
parameters, but we can also reconstruct the kinetic 
Monte Carlo derived uncertainty field. This is crucially 
of high importance as the dynamics alone are not a full 
reflection and adequate representation of the KMC 
capabilities.   
 
 

 
 
Fig. 1: Transient at the cathode of the supercapacitor with 
SSE. The profile shows the normalized ionic density as a 
function of time (t). This is a simulation with permittivity 
100, equilibrium ionic density 3x1018 cm-3 and 0.5 Volt 
applied. Top: kMC simulation. Bottom: TFT prediction. 
 
2.4 Conclusions 
 
     In the present proceeding, we have demonstrated 
the use of machine learning architecture to generate 
surrogate dynamics, including the effects of 
experimental parameters. This integration establishes 
a unified data stream, offering a comprehensive 
perspective on material performance by bridging 
simulated predictions with real-world observations. 
The ultimate objective is to streamline the research 
workflow—from simulation to experimentation [5]—
minimizing the time and resources needed to design, 
test, and optimize novel materials. By harnessing 
machine learning to expedite these processes, we can 
significantly shorten the development cycle of 
advanced materials, driving innovation in energy, 
medical technologies, and beyond. 
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