
A Appendix

A.1 Mapping the inference tracking dynamics onto an LQG control problem

Substituting Eqs 1- 2, and 4-5 in Eq 6.

∆̃t =∆t + ηtf

=(D p̃t + E ot) + ηtf

=D p̃t + E (C xt + ηto) + ηtf

=D p̃t + E C xt + E ηto + ηtf

=D p̃t + E C (A xt−1 + ηtp) + E ηto + ηtf

=D p̃t + E C A xt−1 + E C ηtp + E ηto + ηtf

=D (pt + ηtb) + E C A xt−1 + E C ηtp + E ηto + ηtf

=E C A xt−1 +D pt + E C ηtp + E ηto +D ηtb + ηtf (15)

Combining Eqs 1 and 15, we write the dynamics of augmented state zt =
[
xt ∆̃t

]⊤
as in Eq 16.

The noisy residual can now be written as a partial observation of the augmented state (Eq 17).

zt =

[
xt

∆̃t

]
=

Aaug︷ ︸︸ ︷[
A 0

E C A 0

] zt−1︷ ︸︸ ︷[
xt−1

∆̃t−1

]
+

Baug︷︸︸︷[
0
D

]
pt +

ηt−1
aug︷ ︸︸ ︷[

I 0 0 0
E C E D I

]η
t
p

ηto
ηtb
ηtf

 (16)

∆̃t = [0 I]︸ ︷︷ ︸
Caug

[
xt

∆̃t

]
︸ ︷︷ ︸

zt

(17)

Rewriting Eqs 16-17 using concise notation, we get the LQG dynamics equations where prediction p
is treated as the control.

zt =Aaug z
t−1 +Baug p

t + ηt−1
aug

∆̃t =Caug z
t

A.2 Feedforward and feedback energy costs expressed as the LQG state and control costs
respectively

We express the feedforward and feedback energy costs as the LQG state and control costs respectively.

For the derivation, we introduce the matrices Q =

[
0 0
0 Wf

]
, and R = Wb. We take the feedback

noise ηb as i.i.d ∼ N (0, Σb) .

min
p

lim
T→∞

1

T

T∑
t=1

(
∆̃t⊤Wf ∆̃

t + p̃t
⊤
Wb p̃

t
)
=min

p
lim

T→∞

1

T

T∑
t=1

(
∆̃t⊤Wf ∆̃

t + (pt + ηtb)
⊤
Wb (pt + ηtb)

)
=min

p
lim

T→∞

1

T

T∑
t=1

(
∆̃t⊤Wf ∆̃

t + pt
⊤
Wb p

t + ηtb
⊤
Wb η

t
b

)
=min

p
lim

T→∞

1

T

T∑
t=1

(
∆̃t⊤Wf ∆̃

t + pt
⊤
Wb p

t
)
+ Tr(Wb Σb)

=min
p

lim
T→∞

1

T

T∑
t=1

(
zt

⊤
Q zt + pt

⊤
R pt

)
+ Tr(Wb Σb)

=min
p

lim
T→∞

1

T

T∑
t=1

zt⊤Q zt︸ ︷︷ ︸
state cost

+ pt
⊤
R pt︸ ︷︷ ︸

control cost


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A.3 Minimizing the total energy cost also minimizes the inference cost, for a fixed D& E

The LQG problem of interest is described by Eqs 10–12. The separation principle states that the
solution for LQG problem includes an estimation part and a control part, both of which jointly form
the optimal solution even if treated separately. The estimation part of LQG solution minimizes the
average squared norm error between estimated state ẑ and the true state z, as shown in the left side of
equality in Eq 18. Note that at any time t, we get to observe all the evidence up until that time (i.e
∆̃1, ∆̃2,.., ∆̃t). This enables the simplification from Eq 18 to 19, because the optimal estimate ˆ̃∆t

given ∆̃t is trivially ∆̃t itself. Hence, from Eq 20, we conclude that although we define the LQG
objective function to be just the total energy cost, the LQG solution that minimizes the total energy
cost also minimizes the inference cost for a fixed D and E.

lim
T→∞

1

T

T∑
t=1

(zt − ẑt)⊤ (zt − ẑt) = lim
T→∞

1

T

T∑
t=1

(

[
xt

∆̃t

]
−

[
x̂t

ˆ̃∆t

]
)⊤ (

[
xt

∆̃t

]
−

[
x̂t

ˆ̃∆t

]
) (18)

= lim
T→∞

1

T

T∑
t=1

(xt − x̂t)⊤ (xt − x̂t) (19)

=Costinf (20)

A.4 LQG estimation solution to find F , G, and H in terms of D and E

The optimal estimate of the augmented state based on its noisy partial observations is given as

ẑt =(I −K Caug)Aaug ẑ
t−1 +K ∆̃t + (I −K Caug)Baug p

t (21)

K =Σ̌ CT
aug(Caug Σ̌ C⊤

aug)
−1,

where Σ̌ is the solution to a discrete algebraic Riccati equation (Eq 22), with W as the covariance of
noise vector ηaug.

Σ̌ = Aaug Σ̌ A⊤
aug +W −Aaug Σ̌ C⊤

aug(Caug Σ̌ C⊤
aug)

−1Caug Σ̌ A⊤
aug (22)

For brevity, we rewrite Eq 21 in terms of block matrics using the following substitutions,

Faug =(I −K Caug)Aaug, Haug = (I −K Caug)Baug[
x̂t

∆̃t

]
=

[
(Faug)11 (Faug)12
(Faug)21 (Faug)22

] [
x̂t−1

∆̃t−1

]
+

[
(K)1
(K)2

]
∆̃t +

[
(Haug)1
(Haug)2

]
pt (23)

yielding

x̂t =(Faug)11 x̂
t−1 + (Faug)12 ∆̃

t−1 + (K)1 ∆̃
t + (Haug)1 p

t (24)

∆̃t =(Faug)21 x̂
t−1 + (Faug)22 ∆̃

t−1 + (K)2 ∆̃
t + (Haug)2 p

t.

Since the states are Markovian, consequently the optimal estimates are Markovian as well. This
implies that x̂t given x̂t−1, does not depend on ∆̃t−1. Likewise, ∆̃t given ∆̃t, does not depend on
x̂t−1, ∆̃t−1, and pt. The above two arguments can be used to deduce that

(Faug)12 = 0, (Faug)21 = 0, (Faug)22 = 0 (K)2 = I, (Haug)2 = 0.

which we also verified empirically for the one dimensional case. Substituting (Faug)12 = 0 in Eq 24
and comparing it with Eq 7, we get the optimal solutions for F , G, and H in terms of D and E,
denoted as F ′, G′, and H ′ respectively.

F ′ = (Faug)11, G
′ = (K)1, H

′ = (Haug)1

A.5 LQG control solution to find L in terms of D and E

The optimal LQG control is given as

pt =Laug ẑ
t−1 (25)

Laug =− (R+B⊤
aug P Baug)

−1B⊤
aug P Aaug (26)
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where P is the solution of a discrete algebraic Riccati equation (Eq 27).

P = Q+A⊤
aug P Aaug −A⊤

aug P Baug(R+B⊤
aug P Baug)

−1 B⊤
aug P Aaug (27)

As shown in Eq 16, the last set of columns in Aaug are all zero vectors. As a consequence, since
Aaug is the last multiplier in the right side of equality in Eq 25, the last set of columns of Laug would
also be zero vectors. More specifically, Eq 25 can be further simplified by writing Laug in terms of
block matrices in the following way

pt = [(Laug)1 (Laug)2]

[
x̂t−1

∆̃t−1

]
=(Laug)1 x̂

t−1 + (Laug)2 ∆̃
t−1, then (Laug)2 = 0

=⇒ pt =(Laug)1 x̂
t−1

Hence, the optimal prediction is linearly related to the estimate through (Laug)1. For consistency in
notations, we denote (Laug)1 as L′, yielding

pt = L′ x̂t−1, where L′ = (Laug)1.

A.6 Closed form expressions for total cost in terms of D and E

The optimal inference cost for fixed D and E, which is the same as the augmented state’s estimation
error, is Cost′inf = Tr(Σ). Where Σ is the augmented state’s estimation error covariance matrix,
such that

Σ = Σ̌− Σ̌ C⊤
aug(Caug Σ̌ C⊤

aug)
−1 Caug Σ̌. (28)

The optimal total energy cost for a given D and E, which is the optimal LQG cost, is given as
Cost′energy = Tr(Q Σ) + Tr(P (Σ̌ − Σ)). As Σ is the error covariance matrix in estimating zt,
and since the noisy residual ∆̃t is fully observable at any time point, the corresponding lower block
matrix in Σ will be zero. Also, by definition in Eq 12, we know that the upper block matrix in Q is
zero. As a consequence, Tr(Q Σ) would always be zero. Resulting in Cost′energy = Tr(P (Σ̌−Σ)).
Combining the inference cost and energy cost, we have the total cost in terms of D and E as

Cost′tot = Tr(Σ) + Tr(P (Σ̌− Σ)) (29)

A.7 Condition for useful feedback

It can be algebraically shown that the total cost is an even function in both D and E and hence can
be written as a function of Ď = D2 and Ě = E2. This limits the function domain to non-negative
values, thereby reducing the search space for numerical optimization. We empirically observe that
the cost function now has just one minimum when plotted with Ď and Ě, and that the negative of
gradient at any point always directs toward this minimum.

Let Ě′ denote the optimal Ě that minimizes the total cost at Ď = 0. Ě′ can be computed by equating
the derivative of cost with respect to Ě to 0, at Ď = 0 (Eq 30).

∂Cost′tot
∂Ě

∣∣∣∣
Ď=0,Ě=Ě′

= 0 (30)

We define ψ as the derivative of total cost with respect to Ď, evaluated at Ď = 0 and Ě = Ě′ (Eq 31).

ψ =
∂Cost′tot
∂Ď

∣∣∣∣
Ď=0,Ě=Ě′

(31)

Since the negative of gradient always points to the minimum, the following holds true: If ψ is
negative, then the negative of gradient points towards non-zero Ď, implying the optimal Ď is non-
zero. However, given that the domain of Ď is non-negative, if ψ is non-negative then the optimal Ď
is 0. Therefore, the optimal Ď is non-zero if and only if ψ < 0. These conditions can be concisely
written as

Ubn < Φ(Ufn, A, σ
2
p,
C2

σ2
o

). (32)

where Φ is a complicated function involving the roots Ě′ of the quartic equation Eq 30 substituted
into Eq 31. Ultimately we use these analytic expressions to solve numerically for the remaining
conditions on the optimal prediction-multiplier D and observation-multiplier E.
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A.8 Channel communication in terms of pre and post multipliers

Let s be a random variable describing the signal of interest, following the distribution N
(
0, σ2

signal

)
.

The signal is pre-multiplied with m1 before passing it through an additive Gaussian noise channel.
The channel noise is described using the random variable η ∼ N

(
0, σ2

noise

)
. The message sent

over the channel would then be m1 s + η. The message is then post-multiplied with m2 to form
the channel output, π(s,m1,m2, σ

2
noise) = m2 (m1 s + η). Let w denote the weight of channel’s

energetic cost. Then the energetic cost per message is given as,

ρ
(
s,m1,m2, σ

2
noise, w

)
= w (m2

1 σ
2
signal + σ2

noise). (33)

Lemma A.1. If the weight of energetic cost (w) is scaled up by an arbitrary non-zero factor k,
and noise variance (σ2

noise) is scaled down by k times, then the channel output (π) and energetic
cost per message (ρ) remain unchanged if the pre-multiplier is scaled down by

√
k times and the

post-multiplier is scaled up by
√
k times.

Proof. The notations used is the same as before, except that for the case of scaling we use overline.
That is, w = k w, σ2

noise = σ2
noise/k, and η ∼ N

(
0, σ2

noise

)
.

Below, we show that the channel output for the cases with and without scaling is the same.

π
(
s,m1,m2, σ

2
noise

)
=m2 (m1 s+ η)

=
√
k m2 (

m1√
k
s+ η)

=m2 (m1 s+
√
k η)

=m2 (m1 s+ η) = π
(
s,m1,m2, σ

2
noise

)
.

The energetic cost per message for the cases with and without scaling is the same as shown below,

ρ
(
s,m1, σ

2
noise, w

)
=w (m2

1 σ
2
signal + σ2

noise)

=k w (
m2

1

k
σ2
signal +

σ2
noise

k
)

=w (m2
1 σ

2
signal + σ2

noise) = ρ
(
s,m1, σ

2
noise, w

)
.

∴ We have,

π

(
s,
m1√
k
,
√
k m2,

σ2
noise

k

)
= π

(
s,m1,m2, σ

2
noise

)
(34)

ρ

(
s,
m1√
k
,
σ2
noise

k
, k w

)
= ρ

(
s,m1, σ

2
noise, w

)
(35)

The interpretation of the above result is the following. In comparison to the case without scaling, for
the case with scaling, the noise variance is lower (× 1

k ) and the weight of energetic cost is higher (×k).
Since the noise is lower, a lower amplification (× 1√

k
) would suffice to retain the same information as

for the case without scaling. But since the weight of energetic cost is higher (×k) for the case of
scaling, the lower amplification would still cost the same energetic cost as in the case without scaling.

A.9 Optimal categorical strategy depends on the feedforward/feedback noise costs

Theorem A.2. If the feedback weight of energetic cost is scaled up by an arbitrary non-zero factor k,
and the feedback noise variance is scaled down by k times, then (1) the optimal total cost remains
unchanged, (2) the optimal control gain L scales down by

√
k times, and the optimal prediction

multiplier D scales up by
√
k times, (3) the optimal feedback energetic cost remains the same, (4) the

optimal feedforward energetic cost, optimal inference cost, optimal multipliers E, F , and G remain
unchanged, while the optimal H scales up by

√
k times, and (5) the optimal categorical strategy

remains unchanged.
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Proof. We layout the proof by first considering the case without scaling where the weight of feedback
energetic cost is wb, and noise variance is σ2

b . We express the corresponding optimal control gain
L⋆, optimal prediction multiplier D⋆, and optimal total cost Cost⋆tot in terms of the notations used
in Lemma A.1. We then consider the case with scaling, where the weight of energetic cost is
wb = k wb, and noise variance is σ2

b =
σ2
b

k . We express the corresponding optimal control gain L
⋆
,

optimal prediction multiplier D
⋆
, and optimal total cost Cost

⋆

tot also in terms of the notations used in
Lemma A.1. Finally, we prove the theorem by applying Lemma A.1 and deriving the required equality.
For example, to prove the optimal total cost remains unchanged, we derive Cost

⋆

tot = Cost⋆tot.

Without scaling (wb, σ2
b ): We start by establishing the equivalence between the notations used in

Appendix A.8 and that used for the feedback channel (Eqs 3-5, 8). For the feedback channel, the signal
of interest s is x̂t−1, the pre-multiplier m1 is the control gain L, and the post-multiplier m2 is the
prediction multiplier D. The channel output is then given as π

(
x̂t−1, L,D, σ2

b

)
= D (L x̂t−1 + ηb),

and the energetic cost at time t is ρ
(
x̂t−1, L, σ2

b, wb

)
. The residual (Eq 5) and the feedback energetic

cost (Eq 8) can then be expressed as

∆t =π
(
x̂t−1, L,D, σ2

b

)
+ E ot

Costb = lim
T→∞

1

T

T∑
t=1

ρ
(
x̂t−1, L, σ2

b, wb

)
.

Note that D, L, wb, and σ2
b are involved in the dynamics and the optimization Eqs 1-8 only through

π
(
x̂t−1, L,D, σ2

b

)
and ρ

(
x̂t−1, L, σ2

b, wb

)
as shown above. Therefore, the minimization of total

cost for a given wb, and σ2
b with respect to D, and L can be written as

Cost⋆tot =min
L,D

Costtot(π
(
x̂t−1, L,D, σ2

b

)
,ρ

(
x̂t−1, L, σ2

b, wb

)
) (36)

L⋆, D⋆ =argmin
L,D

Costtot(π
(
x̂t−1, L,D, σ2

b

)
,ρ

(
x̂t−1, L, σ2

b, wb

)
), (37)

With scaling (wb, σ2
b): Just as above, for the scaled case we have

Cost
⋆

tot =min
L,D

Costtot(π
(
x̂t−1, L,D, σ2

b

)
,ρ

(
x̂t−1, L, σ2

b , wb

)
)

L
⋆
, D

⋆
=argmin

L,D
Costtot(π(x̂

t−1, L,D, σ2
b),ρ(x̂

t−1, L, σ2
b, wb))

(1) By applying Eqs 34-35 of Lemma A.1, and Eq 36 from the case without scaling, we show the
optimal costs for both the cases are equal.

Cost
⋆

tot =min
L,D

Costtot(π(x̂
t−1, L,D, σ2

b),ρ(x̂
t−1, L, σ2

b , wb))

=min
L,D

Costtot(π(x̂
t−1, L,D,

σ2
b

k
),ρ(x̂t−1, L,

σ2
b

k
, k wb))

=min
L,D

Costtot(π(x̂
t−1,

√
k L,

D√
k
, σ2

b),ρ(x̂
t−1,

√
k L, σ2

b, wb))

=min
L,D

Costtot(π(x̂
t−1, L,D, σ2

b),ρ(x̂
t−1, L, σ2

b, wb))

=Cost⋆tot

(2) Similarly, we have

L
⋆
, D

⋆
=argmin

L,D
Costtot(π

(
x̂t−1, L,D, σ2

b

)
,ρ

(
x̂t−1, L, σ2

b, wb

)
)

= argmin
L,D

Costtot(π

(
x̂t−1, L,D,

σ2
b

k

)
,ρ

(
x̂t−1, L,

σ2
b

k
, k wb

)
)

= argmin
L,D

Costtot(π

(
x̂t−1,

√
k L,

D√
k
, σ2

b

)
,ρ

(
x̂t−1,

√
k L, σ2

b, wb

)
).

Combining above with Eq 37, we get L
⋆
= L⋆

√
k

, and D
⋆
=

√
k D⋆. See Fig 7 for the plot obtained

using numerical optimization.
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(3) Let Cost
⋆

b be the optimal feedback energetic cost for the scaled case. Applying Eq 35 of
Lemma A.1, we show that the optimal feedback energetic cost does not change for the scaled case.

Cost
⋆

b = lim
T→∞

1

T

T∑
t=1

ρ
(
x̂t−1, L

⋆
, σ2

b, wb

)
= lim

T→∞

1

T

T∑
t=1

ρ

(
x̂t−1,

L⋆

√
k
,
σ2
b

k
, k wb

)

= lim
T→∞

1

T

T∑
t=1

ρ
(
x̂t−1, L⋆, σ2

b, wb

)
=Cost⋆b.

(4) As in Eq 36, the dynamics and total cost optimization depend on the feedback relevant terms (D, L,
wb, and σ2

b) only through the feedback channel output and feedback energetic cost. Under optimal so-
lution, we have that both the feedback channel output and the feedback channel energetic cost remain
the same for the cases with and without scaling. That is, using Eqs 34-35 of Lemma A.1, we have
π
(
x̂t−1, L

⋆
, D

⋆
, σ2

b

)
= π

(
x̂t−1, L⋆, D⋆, σ2

b

)
, and ρ

(
x̂t−1, L

⋆
, σ2

b, wb

)
= ρ

(
x̂t−1, L⋆, σ2

b, wb

)
.

Therefore, the optimization problem and the dynamics for the cases with and without scaling remain
to be equivalent. This results in E

⋆
= E⋆, F

⋆
= F ⋆, G

⋆
= G⋆, and the optimal feedforward

energetic cost and inference cost to be unchanged. For the case with scaling, in addition to the
changes in the optimal control gain and prediction multiplier shown above (L

⋆
= L⋆

√
k
, D

⋆
=

√
k D⋆),

we also haveH
⋆
=

√
k H⋆. Note thatH

⋆
=

√
k H⋆ does not conflict the statement that optimization

problem and the dynamics for the cases with and without scaling remain to be equivalent, but in
fact is in agreement. This is because, for the dynamics and optimization to be exactly the same, the
coefficient of x̂t−1 used in updating the estimate in Eq 7 should also be the same. The coefficient of
x̂t−1 in Eq 7 is F +H L. So, when the optimal L reduces by

√
k factor, optimal H has to increase

by
√
k to keep the coefficient unchanged (L

⋆
= L⋆

√
k
, H

⋆
=

√
k H⋆).

(5) From above, we have L
⋆
= L⋆

√
k
, D

⋆
=

√
k D⋆, E

⋆
= E⋆. Using this we exhaustively show that

whichever is the optimal strategy for the case without scaling, the same would be the optimal strategy
for the case with scaling.

If for the case of without scaling is predictive coding, then L⋆, D⋆, E⋆ ̸= 0. For non-zero k, this
would imply L

⋆
, D

⋆
, E

⋆ ̸= 0, resulting in predictive coding for the case of scaling.

If for the case of without scaling is efficient coding, then L⋆, D⋆ = 0, and E⋆ ̸= 0. This would
imply L

⋆
, D

⋆
= 0, and E

⋆ ̸= 0, resulting in efficient coding for the case of scaling.

If for the case of without scaling is to not send any messages, then L⋆, D⋆, E⋆ = 0. For non-zero k,
this would imply L

⋆
, D

⋆
, E

⋆ ̸= 0, resulting in sending no messages for the case of scaling.

Factor (k)

Control
Gain (L)

Prediction
Multiplier (D)

Total Cost

Figure 7: When the feedback weight of energetic cost is scaled up by k times, and feedback noise variance is
scaled down by k times, the optimal costs remain unchanged, and the magnitude of optimal control gain scales
down by

√
k times and the optimal prediction multiplier scales up by

√
k times. While only the total cost is

shown in the figure, we also observe the inference cost, feedback, and feedforward energetic costs to remain the
same.
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Theorem A.3. If the feedforward weight of energetic cost is scaled up by an arbitrary non-zero
factor k, and the feedforward noise variance is scaled down by k times, then (1) the optimal total
cost remains unchanged, (2) the optimal observation multiplier E scales down by

√
k times, and the

optimal multiplier for noisy residual G scales up by
√
k times, (3) the optimal feedforward energetic

cost remains the same, (4) the optimal feedback energetic cost, optimal inference cost, optimal
multipliers F , H , L remain unchanged, while the optimal prediction multiplier D scales down by√
k times, and (5) the optimal categorical strategy remains unchanged.

Proof. The proof for the feedforward channel is equivalent to the proof for the feedback channel in
Theorem A.2, with observation multiplier E as the pre-multiplier m1, and the multiplier for noisy
residual G as the post multiplier m2. The theorem is verified using numerical optimization as shown
in Fig 8.

Observation 
Multiplier (E) Total Cost

(Scaled)

Factor (k)

Noisy residual
Multiplier (G)

Figure 8: When the feedforward weight of energetic cost is scaled up by k times, and feedforward noise variance
is scaled down by k times, the optimal costs remain unchanged, and the observation multiplier scales down by√
k times, and the multiplier for noisy residual scales up by

√
k times. While only the total cost is shown in the

figure, we also observe the inference cost, feedback, and feedforward energetic costs to remain the same.

Theorem A.4. Under the optimal case, several quantities depend on the feedback weight, feedback
noise variance, feedforward weight, and feedforward noise variance only through the feedback noise
cost, and the feedforward noise cost. The quantities are (1) the total cost, (2) the optimal categorical
strategy, (3) the feedback energetic cost, (4) the feedforward energetic cost, and (5) the inference cost.

Proof. Below, we show the proof for the entity optimal total cost, but the same steps can
be followed for proving for other entities listed as well. The layout of the proof is as fol-
lows. We consider four different cases of channel noise costs, each denoted by the sequence
(feedback weight, feedback noise, feedforward weight, feedforward noise). The four cases
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From Theorem A.2, we directly get
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From Theorem A.3, we get
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Combining Eqs 39-42, we get Eq 38. Hence proved.

A.10 Channel noise and weight for non-sequential and sequential channels

Below, we derive the results for non-sequential and sequential feedback channels, but the derivation
for the feedforward channel is the same. For simplicity, we assume that each neuron has gain gnb,
and is corrupted by i.i.d Gaussian noise N

(
0, σ2

nb

)
. Let wnb be the weight of the energetic cost of
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Figure 9: Example of two different anatomical structures for feedforward/feedback channel. A: The non-
sequential channel comprises a single population of neurons that linearly encodes the message that needs to
be sent. The message received at the end of the channel is the decoding of the population’s representation. B:
The sequential channel comprises two populations of neurons sequentially connected one after the other. The
first population linearly encodes the message to be sent, which is then decoded and then encoded by the second
population. This is equivalently represented as each neuron in second population being connected to all the
neurons in the first population since the weights are all equal. The message received at the end of the channel is
a decoding of the second population’s representation.

a single neuron. The subscript nb indicates a single neuron in feedback channel. For the feedback
channel, the message to be sent at any time t is the noiseless prediction pt. We compute the equivalent
feedback noise variance and weight of the feedback channel in terms of the neuron noise and weight.
The computed feedback noise and weight can then be plugged into the original optimization in Eq 8
to find the corresponding solution.

A.10.1 Non-sequential feedback channel

Let Nb be the number of neurons in the population comprising the feedback channel.

Feedback channel noise variance: When the noiseless prediction pt is linearly encoded by the
population of neurons, the decoded signal is pt + ηtb (as in Eq 4), where ηtb is the feedback noise with

feedback noise variance σ2
nb

Nb g2
nb

.

Feedback channel energetic cost: As each of the Nb neurons in the population encode pt with
gain gnb, noise variance σ2

nb, and weight of energetic cost wnb, the total feedback population energy
Costpopb consumed is
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Note that in Eq 8, the feedback energetic cost in the original formulation was written as
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Therefore, expressing Costpopb in terms of Costb, we have

Costpopb = Costb + (Nb − 1) wnb σ
2
nb (43)

where the weight of feedback channel energetic cost is wb = Nb wnb g
2
nb. Note that now there is an

additional term to Costb in Eq 43 when computing the total feedback energy, and therefore the total
cost would also increase by the same amount in Eq 8. However, the optimization in Eq 9 still remains
to be exactly the same because the additional term does not include any of the parameters we are
optimizing over. Hence, we can solve for the case of non-sequential feedback channel by following
the exact same procedure in Section 4.

Feedback channel noise cost: We computed the feedback noise variance as σ2
b =

σ2
nb

Nb g2
nb

, and the

feedback weight of energetic cost as wb = Nb wnb g
2
nb. Therefore, their product, the feedback
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channel noise cost is wnb σ
2
nb. Note that the feedback channel noise cost is constant for a given noise

variance and weight of energetic cost per neuron.

A.10.2 Sequential feedback channel

Let γ
1+γNb, and 1

1+γNb be the number of neurons in the first and second population of the feedback
channel. Where Nb is the total number of neurons in both the populations together, and γ is the
population size ratio. Population size ratio is the ratio between the number of neurons in the first
population to the number of neurons in the second population.

Feedback channel noise variance: When the noiseless prediction pt is linearly encoded by the
first population of neurons, pt + ηt1b would be the corresponding linearly decoded signal, where

ηt1b ∼ N
(
0, (1+γ)

γ
σ2
nb

Nb g2
nb

)
. Then, when pt + ηt1b is linearly encoded by the second population of

neurons, the corresponding decoded signal would be pt+ηt1b+η
t
2b, where ηt2b ∼ N

(
0,

(1+γ) σ2
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Nb g2
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)
.

Expressing this noisy prediction in the form of Eq 4, we get ηtb = ηt1b + ηt2b, and σ2
b = (1+γ)2

γ
σ2
nb

Nb g2
nb

as the feedback channel noise variance.

Feedback channel energetic cost: As each of the γ
1+γNb number of neurons in the first population

encode pt with gain gnb, noise variance σ2
nb, and weight of energetic cost wnb, the energy consumed

by the first population of neurons is
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And as each of the 1
1+γNb neurons in the second population encode pt + ηt1b, the energy consumed

by the second population of neurons is
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Combining energy of both the populations (adding Eqs 44 and 45), we get total feedback population
energy Costpopb as

Costpopb = lim
T→∞
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Note that in Eq 8, the feedback energetic cost in the original formulation was written as

Costb = lim
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Therefore, expressing Costpopb in terms of Costb, we have

Costpopb = Costb + (Nb − γ − 2) wnb σ
2
nb (46)

where the weight of feedback channel energetic cost is wb = Nb wnb g
2
nb. Note that now there is an

additional term to Costb in Eq 46 when computing the total feedback energy, and therefore the total
cost would also increase by the same amount in Eq 8. However, the optimization in Eq 9 still remains
to be exactly the same because the additional term does not include any of the parameters we are
optimizing over. Hence, we can solve for the case of sequential feedback channel by following the
exact same procedure in Section 4.
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Feedback channel noise cost: We computed the feedback noise variance as σ2
b = (1+γ)2

γ
σ2
nb

Nb g2
nb

, and

the feedback weight of energetic cost as wb = Nb wnb g
2
nb. Therefore, their product, the feedback

channel noise cost is (1+γ)2

γ wnb σ
2
nb. Note that the feedback channel noise cost does not depend on

the number of neurons Nb, but depends on the ratio γ that determines the anatomical structure.
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