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ABSTRACT

Personalized text-to-image diffusion models have grown popular for their ability
to efficiently acquire a new concept from user-defined text descriptions and a few
images. However, in the real world, a user may wish to personalize a model on
multiple concepts but one at a time, with no access to the data from previous con-
cepts due to storage/privacy concerns. When faced with this continual learning
(CL) setup, most personalization methods fail to find a balance between acquiring
new concepts and retaining previous ones – a challenge that continual person-
alization (CP) aims to solve. Inspired by the successful CL methods that rely
on class-specific information for regularization, we resort to the inherent class-
conditioned density estimates, also known as diffusion classifier (DC) scores, for
CP of text-to-image diffusion models. Namely, we propose using DC scores for
regularizing the parameter-space and function-space of text-to-image diffusion
models, to achieve continual personalization. Using several diverse evaluation
setups, datasets, and metrics, we show that our proposed regularization-based CP
methods outperform the state-of-the-art C-LoRA, and other baselines. Finally, by
operating in the replay-free CL setup and on low-rank adapters, our method incurs
zero storage and parameter overhead, respectively, over C-LoRA. Project page.

1 INTRODUCTION

With their photorealistic generation quality and text-guided steerability, text-to-image diffusion
models (Saharia et al., 2022; Rombach et al., 2022) have emerged as one of the most flourishing
areas in the computer vision community. This has led to their deployment across diverse domains
involving the generation of audio/video/3D content, and has, in turn, seen a boost in their commer-
cial value. Despite achieving extraordinary performance, these models typically demand a huge
amount of training resources and data. A practical user-centric personalization of these, e.g., us-
ing limited data and compute, thus calls for efficient finetuning methods (Kumari et al., 2023; Gal
et al., 2023). However, the existing finetuning methods perform poorly on a common real-world
scenario, where a model needs to be personalized on sequentially arriving concepts, while being
able to generate high-quality images for the previously acquired concepts.

Continual personalization (Smith et al., 2024b) aims to address the above challenge through contin-
ual learning (CL) and incorporating of new tasks with unseen concepts while retaining the previously
acquired concepts. Naively adapting the existing (non-continual) personalization methods (Kumari
et al., 2023; Gal et al., 2023) to acquire a new concept in CL setup often requires a complete re-
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training on data from all the seen concepts that the user desires to generate. However, storing a
user’s personal data may raise resource/privacy concerns, and can be practically infeasible for edge
devices. This calls for a replay-free CL solution, which does away with the seen data once a given
concept has been acquired. C-LoRA (Smith et al., 2024b) handles these challenges by learning low-
rank adapters (LoRAs) (Hu et al., 2022) per task, where each CL task acquires a single concept. It
tackles the forgetting of previous concepts by penalizing the modification of any low-rank matrix
spots allocated to these. We find that such a penalty leads to a degenerate CL solution where all
LoRA parameter values are encouraged to be near zero (Sec. 3.1). This has further catastrophic
consequences for the first task wherein the LoRA parameters are modified in an unconstrained man-
ner and are thus more liable to the penalty. Nevertheless, given their edge in mitigating forgetting
(Biderman et al., 2024), we resort to finetuning task-specific LoRAs while still consolidating their
previous task knowledge for enabling CL. To the latter end, we note that merging the LoRA param-
eters based on task arithmetic (Ilharco et al., 2023) remains insufficient at retaining high generation
quality. Instead, we propose to exploit the class-specific information of text-to-image diffusion mod-
els, with which we can consolidate the model’s discriminative semantic knowledge from previous
tasks. Our inspiration for this comes from the broader CL literature on classification models where
class-specific information, e.g., logits and softargmax scores, are often employed in countering for-
getting with regularization (Li & Hoiem, 2017; Buzzega et al., 2020; Jha et al., 2023; 2024).

Namely, we exploit the diffusion classifier (DC) (Li et al., 2023; Clark & Jaini, 2024) scores that
encode the semantic concept information inherent to conditional density estimates of pretrained text-
to-image diffusion models. We note that leveraging DC scores directly for continual personalization
is non-trivial. Instead, we incorporate these into two popular regularization-based CL approaches
(Wang et al., 2024): parameter-space and function-space. For parameter-space regularization, we
acknowledge C-LoRA’s limitation, and propose Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017) in the LoRA parameter space. We then employ DC scores for improving the task-
specific Fisher information estimates of EWC for LoRA parameters. For function-space regulariza-
tion, inspired by deep model consolidation (Zhang et al., 2020), we propose a double-distillation
framework that leverages DC scores and noise prediction scores of a diffusion model. Hence, we
dub this distillation framework as diffusion scores consolidation (DSC). We consider the practical
inefficiencies for computing DC scores in EWC and DSC, and design strategies to overcome these.

We evaluate our proposed consolidation methods qualitatively and quantitatively on four datasets,
where the number of images per concept range from 4 to 20. In doing so, we notice the flaw
in the existing forgetting metric that quantifies the relative change in previous concept generation
quality. Subsequently, we propose to adopt a more robust backward transfer metric that measures
the absolute forgetting over tasks. Our experiments on diverse task sequence lengths validate the
effectiveness of our methods, all the while requiring zero inference time overhead over C-LoRA. In
the spirit of parameter-efficient CL, we explore the compatibility of our method for VeRA (Kopiczko
et al., 2024) and multi-concept generation. Lastly, we provide detailed ablations of our design
choices with the hope of aiding future personalization works in leveraging DC scores.

2 BACKGROUND AND RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are score-based generative models
that learn to reverse a gradual noising process. Given an observation x0 ∈ Rd drawn independently
from an underlying data distribution q(x0), they approximate q(x0) with a variational distribution
pθ(x0), where θ is the learnable parameter of the diffusion model ϵθ. To achieve this, a forward
process corrupts x0 into increasingly noisy latent variables x1, . . . ,xT using Gaussian conditional
distributions

∏T
t=1 q(xt|xt−1) with a time-dependent variance schedule βt. A reverse process then

learns pθ by starting from N (xT ;0, I) and predicting the gradually decreasing noise at each step
(Song & Ermon, 2019; 2020). Although, in general, the shape of the posterior q(xt−1|xt) is un-
known, when βt → 0, it converges to a Gaussian (Sohl-Dickstein et al., 2015). Hence, by setting
αt = 1− βt, q(xt−1|xt) can be approximated by modelling the mean µθ and the variance Σθ of pθ:
pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt), where pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). The

training objective involves maximizing a variational lower bound on data likelihood, and is achieved
by denoising score matching for noise samples ϵ ∼ N (0, I) and timesteps t ∼ U [1, T ]:

Ldenoise = Ex,ϵ,c,t

[
∥ϵ− ϵθ(xt, c, t)∥22

]
, (1)
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where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ᾱt =

∏t
i=1 αi, and c is the conditioning information (e.g., class).

Text-to-image diffusion (Saharia et al., 2022; Rombach et al., 2022) uses a cross-attention mecha-
nism (Vaswani, 2017) in the U-Net (Ronneberger et al., 2015) to guide each reverse process step with
a text prompt encompassing c. The keys K and values V to the cross-attention are rich semantic
embeddings of c obtained from a pretrained text encoder ϕ (like CLIP (Radford et al., 2021a)).

Personalization of a text-to-image diffusion model aims to embed a new concept into the model
with the goal of generating novel images that incorporate the model’s new and prior knowledge.
This is achieved by steering the reverse process through a mapping from the textual embedding
ϕ(c) to the distribution of the latent image features x (see App. A for further details). DreamBooth
Ruiz et al. (2023) and Textual Inversion Gal et al. (2023) perform single-concept personalization by
finetuning either all parameters θ of the diffusion models or by learning a new word vector V ∗ per
new concept. Improving upon these, Custom diffusion (Kumari et al., 2023) performs parameter-
efficient personalization with the goal of acquiring multiple concepts given only a few examples.
They finetune only the weights W of the key K and value V projection layers in the cross-attention
blocks: W = [WK ,WV ], together with regularization on a pretraining prior concept dataset.

Continual Learning (CL) (Rolnick et al., 2019; Jha et al., 2020) aims to train a deep neural network
on sequentially arriving tasks’ data to acquire new knowledge while retaining previously learned
knowledge. A popular approach to CL comprises regularization-based methods that mitigate forget-
ting by imposing a penalty term on the learning objective. Based on how the penalty is computed,
regularization may act on the parameter-space or the function-space. Parameter-space regulariza-
tion, such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), constrains the changes
to model weights that were important to previous tasks. EWC uses Fisher information (Fisher, 1922)
to measure the parameter importance. Function-space regularization, like Learning without Forget-
ting (LwF) (Li & Hoiem, 2017) and Deep Model Consolidation (DMC) (Zhang et al., 2020), aims
to preserve the model’s output behavior on previous tasks. These typically rely on knowledge dis-
tillation to ensure that the model’s predictions on previous tasks remain consistent. Our work uses
EWC and DMC as representatives for the aforesaid regularization techniques.

Continual Personalization (Smith et al., 2024b) extends CL to diffusion models for acquiring N
sequentially arriving personalization tasks where each task comprises a single user-defined custom
concept n ∈ {1, 2, . . . , N}. To respect the real-world privacy and storage concerns, a replay-free
CL setup is assumed such that there is no data available from previous tasks. Under such setup,
as the number of tasks grow, single-concept adapters stand as poor candidates in terms of resource
efficiency and knowledge transferability across tasks. These limitations call for consolidating the nth

task adapter using previous knowledge to enrich it with the nuances of various concepts collectively.

C-LoRA (Smith et al., 2024b) proposes parameter-efficient continual personalization through se-
quential training of low-rank adapters (LoRA) (Hu et al., 2022) acting on the nth task key and
value projection layers Wn ∈ Rd1×d2 . This allows decomposing Wn into low-rank residuals:
Wn = WK,V

init +
∑n−1

n′=1 An′Bn′ +AnBn, where An ∈ Rd1×r, Bn ∈ Rr×d2 , r is the weight ma-
trix rank, and WK,V

init is the initial pretrained model weight. To tackle forgetting, a self-regularization
loss penalizes the nth task LoRA parameters for altering any previously occupied spot in Wn:

Lforget = ∥

∣∣∣∣∣
n−1∑
n′=1

An′Bn′

∣∣∣∣∣⊙AnBn∥2, (2)

where ∥ · ∥ is the Frobenius norm, ⊙ is the element-wise dot product, and | · | is the element-wise
absolute value. C-LoRA exploits LoRA for CL to reduce the parameters undergoing interference in
incremental training, and to maintain small training/storage overhead (Biderman et al., 2024).

Classification with diffusion models (Li et al., 2023; Clark & Jaini, 2024) involves predicting how
likely a class ci is for an input x by using a uniform Bayesian prior over all classes {c1, c2, .., cN}:

pθ(ci | x) =
exp{−Ex,ϵ,ci,t[∥ϵ− ϵθ(xt, ci, t)∥2]/τ}∑N
j=1 exp{−Ex,ϵ,cj ,t[∥ϵ− ϵθ(xt, cj , t)∥2]/τ}

, (3)

where τ > 0 is the temperature, and the probabilities pθ = {pθ(c1 | x), pθ(c2 | x), . . . , pθ(cn | x)}
together comprise the Diffusion classifier (DC) scores. The expectation E is approximated over
Monte-Carlo (MC) estimates across (inference) trials. Each trial samples a timestep t ∼ U [1, T ],
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computes a noisy input xt ∼ q(xt|x0) and then denoises it using the diffusion model ϵθ conditioned
on the class ci. DC scores thus help leverage a diffusion model’s rich pretrained generation knowl-
edge for classification. Unlike existing works exploiting it only for zero-shot classification, we aim
to use DC score as a regularization prior during training such that it can help mitigate forgetting
in CL. We note that the computational costs for deriving DC scores are subject to the number of
conditional inputs, and the number of trials. To circumvent these, existing works rely on iterative
pruning of uninformative classes (Clark & Jaini, 2024), and appropriately choosing the diffusion
timesteps across trials (Li et al., 2023). However, these methods still remain practically infeasible
during training – iterative pruning per training iteration is computationally intensive while restricting
the diffusion timesteps range leads to a loss in the signal reconstruction information. Accordingly,
we propose practical considerations for efficient computation of DC scores during training.

3 METHOD

In this section, we propose adapting the existing parameter-space and function-space regularization
frameworks into our continual personalization setup with LoRA. For each framework, we propose
incorporating the class-specific information from DC scores to enrich their regularization. Next,
we brief our general CL setup structured to accommodate these frameworks. We then discuss the
limitation of C-LoRA that keeps it from being our choice for parameter-space regularization method.

How do we structure our CL framework for DC scores? Using DC scores directly while acquir-
ing new concepts can incur significant additional training cost (over single forward pass) given the
need for several class-conditional forward passes per training image (Eq. 3). Instead, following
Custom Diffusion (Kumari et al., 2023), we learn the nth concept with a new word vector V ∗

n and a
LoRA layer by optimizing the diffusion loss (Eq. 1), the prior regularization loss using a common
prior concept c0, and additionally a parameter-regularization loss in case of paremeter-space con-
solidation. After training, we freeze the word vector, and plug DC scores into two relatively shorter
consolidation phases, one for each regularization method. Fig. 2 shows that these phases can work
on their own as well as in tandem. Note that we train only one LoRA per task. After consolidation,
the nth task LoRA serves two purposes: (a) handling inference-time queries for {1, 2, . . . , n} tasks,
(b) sequentially initializing the (n+ 1)th task LoRA. Next, we detail on each consolidation phase.

3.1 DC SCORES FOR PARAMETER-SPACE CONSOLIDATION
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Figure 1: Task-wise evolution of
C-LoRA’s: (a) weights, (b) losses.

Limitation of C-LoRA. Despite being a relevant parameter-
space consolidation candidate, C-LoRA has been shown to
exhibit a loss of plasticity as the self-regularization penalty
Lforget (Eq. 2) increases on longer task sequences (Smith et al.,
2024a). Here, we find that Lforget allows for a more general
degeneracy where any learning on new tasks pushes the LoRA
weight values toward zero. This not only effects the plasticity
but also the stability of C-LoRA, right from the first incremen-
tal task (n = 2), i.e., when Lforget first comes into effect. We
also find that Lforget has particularly catastrophic consequences
for the first task concept (n = 1), where the LoRA weights are
learned without any forgetting constraint (see Fig. 1a). This is
shown in Fig. 1b, where for task 2, Lforget decreases through-
out training, thus losing most of the information learned for
task 1. While imposing a sparsity constraint on the function
space of the task 1 LoRA parameters might look plausible at
first, we observe that this additional penalty at best delays the
degeneracy rather than resolving it (see App. Fig. 7).

In light of the above, we instead opt for Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) as our method for parameter-space regularization. While training on nth task, EWC selectively
penalizes the change of parameters θn−1 → θn based on their importance to previous tasks. The
importance is given by the Fisher Information Matrix (FIM), computed as the expected outer product
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Figure 2: Framework for Continual personaliza-
tion with Diffusion Classifier (DC) scores.

Algorithm 3 One iteration of DSC
Input: Dn: Training data of nth task, {ϵθ1 , . . . , ϵθn}: teacher models
from n tasks, k: number of concepts to use for computing DC scores
Output: Student diffusion model ϵθs that has been consolidated

1: Initialize: ϵθs = ϵθn , and set teacher-1: ϵθn
2: for x0 ∈ Dn do
3: Sample t ∼ U([0, 1]), t′ ∼ U([0, 1])
4: Sample ϵ ∼ N (0, I), ϵ′ ∼ N (0, I)
5: Sample teacher-2 id: j ∼ U([1, n − 1])
6: Set teacher-2: ϵθj
7: xt =

√
αtx0 +

√
1 − αtϵ ▷ For LMSE

8: xt′ =
√
αtx0 +

√
1 − αtϵ

′ ▷ For LDC

9: ck = {c0, cj , cn} ▷ c0 = a prior concept
10: –, pθb, predb = GETDCS(n, ϵ′, ϵθb , t, xt′ , ck) for b in [s,n,j]
11: Ldenoise = ||ϵ − ϵθs (xt, ϕ(cn), t)||22
12: LDC = H (pθn, pθs) + H (pθj , pθs)

13: LMSE = ∥preds − predn∥
2
2 + ∥preds − predj∥

2
2

14: L = Ldenoise + γLMSE + λLDC
15: Perform gradient descent on ∇L
16: end for

Algorithm 1 Function for computing Denois-
ing and DC scores during consolidation
1: function GETDCS(n, ϵ, ϵθ , t, xt, ck)

Input: n: number of seen concepts, ϵ: noise, ϵθ : diffusion
model, t: timestep, xt: noisy input, ck: a subset of seen con-
cepts to be considered for computing DC scores
Output: Ldenoise: Ldenoise scores, pθ : DC scores, pred: Noise
predictions

2: pred[ci] = ϵθ(xt, ϕ(ci), t) for ci ∈ ck

3: Ldenoise[ci] = ||ϵ − pred[ci]||22 for ci ∈ ck

4: ω = 1e−10 ▷ Dummy softmax score
5: pθ = {ci: ω for i ∈ [0, n]} ▷ DC scores placeholder
6: pθ[ci] =

exp{−Ldenoise[ci]/τ}∑|ck|
j=1

exp{−Ldenoise[cj ]/τ}
for ci ∈ ck

7: return Ldenoise, pθ, pred
8: end function

Algorithm 2 One iteration of online EWC
Input: Dn: Training data of nth task, ϵθn : diffusion model for
nth task, k: number of concepts to use for computing DC scores
Output: Task-shared Fisher Information Matrix F
1: for x0 ∈ Dn do
2: Sample t ∼ U([0, 1]), ϵ ∼ N (0, I)
3: ck−2 = {ci ∼ [c1, cn−1]} ▷ sample w/o replacement
4: ck = ck−2+{c0, cn} ▷ c0 = a prior concept
5: xt =

√
αtx0 +

√
1 − αtϵ

6: Ldenoise, pθ, – = GETDCS(n, ϵ, ϵθn , t, xt, ck)
7: Lewc = 0
8: for ci ∈ ck:
9: gt = [0, . . . , 0, i = 1, 0, . . . , 0] ▷ n + 1-D vector
10: LDC = H (pθ , gt) if i = n else − H (pθ , gt)
11: Lewc += Ldenoise[ci] + δLDC
12: Update FIM F based on ∇Lewc
13: end for

of the gradients of log-likelihood wrt the model parameters:

F ≈
∑

j
∇θ log pθ(c|xj

n)∇θ log pθ(c|xj
n)

T ≈
∑

j
∇θLj

ewc(θ)∇θLj
ewc(θ)

T , (4)

where c is the class label prediction for an nth task input xj
n. The rightmost approximation general-

izes the negative log-likelihood to an arbitrary loss function Lewc. EWC can be viewed as a Laplace
approximation to the true Bayesian posterior over the parameters, where the FIM is a proxy for the
posterior precision. The choice for the loss function Lewc is thus crucial to approximating F. With
the goal of improving on this approximation, we incorporate DC scores pθ into Lewc:

Lewc = Ldenoise + δEx

[ n∑
i=0

(2I{i=n} − 1) ·H(pθ, ci)
]
, (5)

where I is the indicator function, and H(a, b) = −a log b is the cross-entropy between the DC scores
pθ and the class label ci. The intuition behind Eq. 5 is that for the nth task images xn, the DC scores
distribution pθ should remain closer to the one-hot ground truth for concept cn, and should be farther
from all other class labels ci<n. Fig. 3a and Algo. 2 outline our FIM computation framework.

How do we adapt EWC to our CL framework? We emphasize that for each task, we use only one
LoRA, which is initialized from the previous task LoRA. While training the nth task LoRA, we
incorporate the EWC regularization term to the loss function. This regularization term uses the FIM
computed using the n − 1th task LoRA. Lastly, we rely on online EWC (Schwarz et al., 2018) to
store/update task-shared FIM weights, which are computed using Eq. 5 after training each task.

How can we compute DC scores efficiently? Deriving DC scores involves two major computational
hurdles: a large number of timestep samples and forward passes for all seen concepts. Previous
works using DC scores for test-time classification exploit restricting the timesteps (Li et al., 2023)
and iterative pruning of uninformative classes (Clark & Jaini, 2024) as getarounds. However, as we
detail below, our training-time setup helps us with tackling these efficiency issues.

Large number of inference trials: For the DC scores to converge, the variance of the expectation
(Eq. 3) must be low. At test time, this is achieved by averaging the scores accumulated from a
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Figure 3: Our consolidation frameworks for: (a) parameter-space, (b) function-space.

large number (> 100) of trials per class. However, during consolidation, we estimate the FIM as an
average over multiple epochs (Masana et al., 2023). By using single trial per class per minibatch, our
estimated FIM thus incorporates DC scores from diverse range of timesteps over multiple epochs.

Large number of seen concepts: Note that the number of class-conditional forward passes for DC
score derivation grows linearly with the number of concepts. Here, iteratively pruning the uninfor-
mative classes (Clark & Jaini, 2024) still requires multiple passes. Instead, we propose reducing
the cost of forward passes to a constant factor using a subset ck of the number of seen concepts for
DC scores computation. This subset always comprises at least two concepts: the task-shared prior
concept c0, and the ground truth current task’s concept cn. On top of these, we randomly sample
|k − 2| previous concepts without replacement from the set {c1, ..., cn−1}, where k > 2 is a hy-
perparameter chosen by grid search. Note that freezing the word vector V ∗

i helps us compute the
textual embedding per concept ϕ(ci) once and reuse it throughout the consolidation phase.

3.2 DC SCORES FOR FUNCTION-SPACE CONSOLIDATION

As EWC only targets the LoRA parameter values, to fully exploit the information from DC scores,
we consider distilling the old LoRA knowledge through function-space consolidation. The intuition
behind this (see App. fig. 8) is to guide the diffusion model for generating images that exhibit traits
of a conditioned class (Cywiński et al., 2024). For our replay-free CL setup, we use the nth task im-
ages to distill the nth task LoRA by matching the predictions of a previous task LoRA conditioned
on the corresponding previous class of the latter. This involves tackling two intertwined CL chal-
lenges: (a) alleviating previous concepts’ forgetting, and (b) merging the knowledge of old/current
LoRAs. To this end, we turn to the Deep Model Consolidation (DMC) framework (Zhang et al.,
2020) that uses double distillation to consolidate a student model based on two teachers: the new nth

task model, and the previous (n−1)th task model (Fig. 3b). Given that our distillation uses diffusion
(denoising/DC) scores, we dub our DMC adaptation as Diffusion Scores Consolidation (DSC).

How do we adapt DMC to our DSC framework? DMC relies on an external dataset that is chosen
to be different from the training data to prevent the consolidation bias towards old or new tasks.
However, for large pretrained models like ours, it is practically infeasible to ensure if the external
dataset has a distribution that is different from the pre-training data. Moreover, a constant need for
external downloads can defeat the purpose of end-to-end CL (Smith et al., 2024b). We thus fall back
to the available nth task training data for DSC. Accordingly, we introduce two structural changes
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to DMC to improve its effectiveness. First, as we use the current nth task data, we initialize our
student LoRA from the first teacher, i.e., the nth task LoRA. This makes the consolidation phase a
smooth continuation of the nth task training. Second, given that our learners comprise LoRA rather
than heavily parameterized networks, we find that only using the (n− 1)th task LoRA as the second
teacher is insufficient for consolidating the student with knowledge of all previous tasks (see App.
fig. 9). Instead, we employ all old task LoRA as potential teachers during consolidation. Namely,
in each iteration, our second teacher is an old task LoRA sampled at random.

Fig. 3b and Algo. 3 outline the working of DSC. Similar to EWC, we compute DC scores using
three concepts: the readily available prior concept c0, the nth task concept cn learned by the first
teacher, and a previous task concept cj<n learned by the second teacher. The teacher LoRAs should
thus generate low-entropy DC scores for their corresponding concepts. The student LoRA is trained
to match the DC score distributions from both teachers by minimizing the cross-entropy H for
its parameters (Caron et al., 2021). Lastly, while DC scores encode class-specific information for
DSC, our primary goal lies in improving the generation quality. We find that relying solely on
discriminative DC scores for consolidation is insufficient for noise estimation (see App. fig. 10).
Hence, we also incorporate a noise score-matching loss LMSE into our DSC learning objective:

LDSC = γ(H (pθn , pθs) +H (pθj , pθs)) + λ(LMSE(ϵθn , ϵθs) + LMSE(ϵθj , ϵθs)), (6)

where LMSE(a, b) = ∥a− b∥22, pθ is the DC score, n and j ∼ U([1, n− 1]) are the first and second
teacher task ids, respectively, s is the student id, and γ and λ are the loss weights. Note that after
this consolidation, we discard ϵθn , and instead use the student ϵθs as the nth task LoRA (see Fig. 2).

How does DSC differ from existing distillation models? We note a concurrent branch of distillation
methods (Salimans & Ho, 2022; Meng et al., 2023) designed to reduce the number of sampling steps
for diffusion model evaluations. While distilling helps us acquire a previous concept using a fraction
of the training sample steps, our main purpose behind DSC is to retain the previous task knowledge
in a CL setup, and not to optimize on the number of sampling steps for generation. We also note
another line of work where distillation is done over a certain timestep range to learn selective features
(generic vs domain-specific) from a source diffusion model (Hur et al., 2024). However, we wish to
distill the overall knowledge from a teacher, and hence, sample from the entire timestep range [0, 1].

4 EXPERIMENTS

Baselines. We compare our method with three recent customization methods: Textual Inversion
(TI) (Gal et al., 2023), Custom Diffusion (CD) (Kumari et al., 2023), and C-LoRA (Smith et al.,
2024b). For CD, we use the best performing variant of Kumari et al. (2023) that trains separate
KV parameters per task and then merges them into a single model using a constrained optimization
objective; CD EWC uses EWC (Kirkpatrick et al., 2017) with a sequentially trained variant of CD.
LoRA sequential trains a LoRA adapter (Hu et al., 2022) for the KV parameters of the CD model in
a sequential manner. LoRA merge fuses all the LoRAs with equal weights (Ilharco et al., 2023).

Implementation. We use Stable Diffusion v1.4 and v2.0 (Rombach et al., 2022) as backbones based
on the Diffusers library (von Platen et al., 2022). Following CD (Kumari et al., 2023), we train all
the models for 1000 iterations on all but the Celeb-A setup, where we use 2000 training iterations to
capture more fine-grained facial attributes (Smith et al., 2024b). In favor of zero-shot generalization,
we finetune our hyperparameters only on the six task sequence of Custom Concept. For both EWC
and DSC, we set the number of consolidation iterations to 1/5

th of that of the training iterations
number. For computing DC scores, the temperature τ is set to 1.0 for all but the teacher LoRA in
DSC where we set τ to 0.05. The cardinality of ck for EWC is set to 5. The DSC loss weights γ and
λ are set to 0.1 and 1.5, respectively. We detail on implementation and hyperparameters in App. H.

Evaluation. For each concept, we use DDPM sampling with 50 inference steps to generate 400
images using the prompt “a photo of a V∗

i ”, where V∗
i is the modifier token learned for the ith task

(Kumari et al., 2023). For CD and TI, we additionally include the concept name after the modifier
token. We encode the generated and the target (real) images using CLIP image encoder (Radford
et al., 2021a), and use the features for computing our metrics. We quantify a task’s performance us-
ing the following metrics computed as the average over all seen concepts: (a) AMMD: the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012) between target and synthetic image feature distri-
bution, (b) CLIP I2I: the CLIP image-alignment (Gal et al., 2023) and (c) KID: the Kernel Inception
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(a) Qualitative results for Custom Concept setup with 6 tasks.
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(b) Qualitative results for Landmarks setup with 10 tasks.
Figure 4: Qualitative results on CL setups generated after training on all tasks.

Distance (KID) (Bińkowski et al., 2018). To quantify forgetting, we use the forgetting metric FMMD
(Smith et al., 2024b), which is the average change in past task concept generations from task to task.
Given the relative nature of FMMD, we opt for a more robust backward transfer of MMD: BwTMMD,
which measures the absolute change in MMD scores for previous concept generations. We also
mention the percentage (wrt the U-Net) of parameters trained for a task as Nparam Train, and the
percentage of parameters stored between tasks as Nparam Store. We detail these metrics in App. E.

4.1 RESULTS

Continual Personalization of Custom Concepts. We evaluate our method on the Custom Concept
dataset (Kumari et al., 2023) that comprises diverse categories such as plushies, wearables, and toys
(see App. D). We randomly sample six such concepts to form six tasks. Figure 4a shows the samples
generated for tasks 1, 3, and 6 after training on all 6 tasks: the upper row compares the baselines
while the lower row compares our variants. We report the quantitative results in Table 1. Marked
by its low BwTMMD scores, we find that CD is prone to forgetting the category attributes such as
the color, background, and appearance while also struggling with plasticity loss that leads to the
generation of incorrect backgrounds for task 6. While Textual Inversion Gal et al. (2023) has zero
forgetting due to its frozen backbone, it remains poor at acquiring categories. LoRA (sequential)
undergoes catastrophic forgetting of past tasks’ concepts (it has the highest BwTMMD scores among
LoRA-based methods) while C-LoRA displays a higher degree of interference for past tasks. Both
these methods have reduced plasticity for acquiring the last task images – sunglasses appear in in-
correct numbers/styles. LoRA with EWC shows an improvement on both plasticity and forgetting.
Incorporating DC scores into it further helps reduce the forgetting, with an improvement of 3.19
points for BwTMMD. On the contrary, a naive DSC undergoes huge forgetting as it performs distil-
lation without the previous task data. Using DSC with EWC helps remedy this forgetting, albeit at
the cost of reduced plasticity, e.g., task 6 sunglasses with three pairs of glasses. Incorporating DC
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Table 1: Custom Concept results at the end of 6 tasks (avg. over 3 seeds)

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103)

BwTMMD (↑) CLIP I2I (↑)
(x100) FMMD (↓)

Textual Inversion 0.0 100.0 205.69 185.74 0 60.74 0
CD 2.23 100 179.4 121.89 -273.41 69.53 0.62
CD EWC 2.23 101.34 177.99 121.02 -245.7 69.44 0.506
LoRA sequential 0.09 100.0 203.11 176.38 -118.56 61.30 0.052
LoRA merge 0.09 100.54 261.74 312.44 -338.06 58.29 0.043
C-LoRA 0.09 100.54 173.8 117.2 -107.47 64.89 0.034

EWC 0.09 100.54 156.91 105.07 -99.34 73.19 0.008
Ours: EWC DC 0.09 100.54 154.25 102.81 -102.53 73.41 0.0005
Ours: DSC 0.09 100.54 187.2 198.45 -105.79 73.36 0.049
Ours: DSC EWC 0.09 100.54 143.92 98.0 -94.63 72.92 0.02
Ours: DSC EWC DC 0.09 100.54 140.18 94.1 -92.44 73.17 0.003

Table 2: Landmarks results at the end of 10 tasks (avg. over 3 seeds)

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103)

BwTMMD (↑) CLIP I2I (↑)
(x100) FMMD (↓)

Textual Inversion 0.0 100.0 107.03 95.1 0 80.26 0
CD 2.23 100 376.3 249.85 -183.02 56.95 0.047
CD EWC 2.23 102.23 377.76 250.79 -191.2 56.88 0.007
LoRA sequential 0.09 100.0 169.83 92.55 -112.79 74.6 0.063
LoRA merge 0.09 100.9 225.11 144.69 -173.5 67.81 0.009
C-LoRA 0.09 100.9 104.63 68.77 -16.47 78.06 0.014

EWC 0.09 100.9 66.76 44.53 -43.06 81.84 0.008
Ours: EWC DC 0.09 100.9 56.98 38.43 -5.57 82.86 0.035
Ours: DSC 0.09 100.9 111.69 73.2 -72.07 77.44 0.056
Ours: DSC EWC 0.09 100.9 87.57 57.75 -5.91 80.15 0.004
Ours: DSC EWC DC 0.09 100.9 51.22 36.09 -3.85 82.19 0.043

scores with DSC EWC further helps improve on these results, and is our best performing variant as
it displays the least KID, AMMD, and BwTMMD scores (see App. F for taskwise performances).

Continual Personalization of Landmarks. We study the compared methods on natural landmarks,
using a 10 task sequence from the Google Landmarks dataset v2 (Weyand et al., 2020). We create
tasks by sampling global waterfall landmarks with 20 images each (see App. D). This is a chal-
lenging setup given the distinct geographical features of the waterfall landmarks despite them being
overall similar. Fig. 4b shows the qualitative results from tasks 1, 5, and 10 generated after training
on all 10 tasks. Table 2 reports the quantitative results. Here, CD displays catastrophic forgetting of
the middle task 5. LoRA sequential shows reduced plasticity for acquiring task 10, as also marked
by its high KID and AMMD scores. Similar to Custom Concept, C-LoRA displays a high degree of
forgetting for task 1 while LoRA EWC helps remedy this to some extent. Our DSC-only variant
remembers the generic previous task traits but struggles to accurately generate their finer details,
e.g. multiple waterfalls for task 1. Using EWC with DSC helps resolve this, and plugging in the DC
scores further helps improve on the results. Namely, our DSC EWC DC variant performs the best
on 3 out of 5 performance metrics including the robust backward transfer score. Finally, we note
that our proposed variants have zero parameter overhead over C-LoRA for training and storage.

Continual Personalization of Household objects and Real Faces. We further compare the LoRA-
based methods on finegrained images of household objects from the Textual Inversion (TI) dataset
(Gal et al., 2023), and that of celebrity faces from the CelebA dataset (Liu et al., 2015). These
setups comprise task sequences of length 9 and 10, respectively (see App. D for details). We leave
the qualitative and quantitative results in App. F.2. We find the results to follow the same pattern
as with Custom Concept and Landmarks. For both these setups, C-LoRA fails to remember the
finegrained details of previous concepts, e.g., exact object/facial attributes, and instead, only retains
the overall feature, e.g., the dominant color. Also, our DSC EWC DC variant performs the best here.

Long task sequence. We study the scalability of our proposed methods to a sequence of 50 concepts
chosen at random from the Custom Concept dataset (Kumari et al., 2023), with variable number of
training images per concept. To avoid any learning bias from large early tasks with more training
images, we pick all 50 tasks at random rather than adding them over our six tasks sequence. App.
fig. 13 compares the results of C-LoRA, LoRA EWC, and Ours (EWC DC). Similar to Smith et al.
(2024b), we find that the performance of C-LoRA saturates as the number of tasks grow. Instead,
applying EWC on the LoRA parameters emerges as a better performer on the long run. EWC with
DC retains the performance particularly on the latter (> 35) tasks (see App. F.1 for further results).
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4.2 ABLATION STUDIES

We ablate the influence of DC scores in our training objective. We list two sanity checks to ensure
that our framework leverages DC scores. We discuss the impact of the number of concepts used for
computing DC scores, and leave further hyperparameter ablations in App. H.
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Figure 5: Top-k eigenvalue analysis for FIM.

Sanity check I: DC scores reduce the uncertainty
in FIM estimation. We perform top-5 Eigenvalue
analysis for the FIM computed with and without
DC scores. Fig. 5 shows that DC scores helps cap-
ture larger eigenvalues for the same LoRA param-
eter. Intuitively, this means that the parameters are
more strongly informed by the data regarding the
directions of high likelihood changes. We leave the
analyses of further layers in App. fig. 17.
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Figure 6: Training set accuracy of different
methods on the Custom Concept setup.

Sanity check II: DC scores help with training set
classification. For DC scores to help enhance the
generative quality of tasks, their classification infor-
mation needs to be reliable, i.e., consolidation with
wrong classification scores should interfere with the
generation results. To validate this, we probe the
classification accuracy of different methods on train-
ing data of incremental tasks, after training on all six
tasks of Custom Concept. As shown in Fig. 6, con-
solidating with DC scores endows us with classifica-
tion gains on the overall training data.

Impact of the number of concepts k for DC scores computation. We study how the number
of randomly sampled previous task concepts effects the performance of EWC DC (see App. fig.
15). We notice that excluding the common prior concept c0 in DC scores computation, i.e., k = 2,
leads to the worst performance overall. All setups with k > 2 perform similar until task 2 as there
is only one available previous concept. From task 3 onward, k = 3 still gets to sample only one
previous concept per iteration while k = 7 can use all previous concepts at each step. We find that
the performance of EWC DC saturates as k increases beyond 5. This is because not all previous
concepts carry useful discriminative information for reliable DC scores. We use k = 5 throughout.

Training time complexity. App. table 9 shows that our proposed consolidation methods scale
linearly in the training sample size whereas C-LoRA scales bilinearly in the training sample size
and the number of tasks. This implies that while on shorter task sequences, the average runtime
per training iteration of our methods remains higher than C-LoRA (5.3s for EWC, 5.7s for DSC,
0.8s for C-LoRA on 6 tasks) given the several conditional forward passes needed for DC scores
computation, the time gap per iteration between C-LoRA and our methods bridges as the number of
tasks grow: 5.5s for EWC, 5.72s for DSC, 3.8s for C-LoRA on 50 tasks (see App. I for discussion).

Compatibility for VeRA and Multi-task generation. In App. Sec. G.2- G.3, we show that our
proposed method is compatible with VeRA (Kopiczko et al., 2024) (where we replace LoRA with
VeRA, and train as usual) and with multi-concept generation (where prompts include two concepts).

5 CONCLUSION

In this paper, we propose continual personalization of pretrained text-to-image diffusion models us-
ing their inherent class-conditional density estimates, i.e., Diffusion classifier (DC) scores. Namely,
we alleviate forgetting using DC scores as regularizers for parameter-space and function-space con-
solidation. We show the superior performance of our methods through extensive quantitative and
qualitative analyses across diverse CL task lengths. While DC scores have previously been utilized
for test-time classification (Clark & Jaini, 2024), we are the first to advocate that such pre-trained
class-specific knowledge of diffusion models can further be reinforced through fine-tuning and can
help enhance the performance of downstream generation tasks. We thus hope that our work paves the
general way for leveraging DC scores in personalization of pretrained conditional diffusion models.
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Algorithm 4 Algorithm summarizing our training and consolidation workflow.
Input: Dn: Training data of nth task, {ϵθ1 , . . . , ϵθn−1

}: teacher models from previous n − 1
personalization tasks, k: the number of concepts to use for computing DC scores, F : the task-
shared Fisher Information Matrix (FIM) encoding the Fisher information from n− 1 tasks
Output: the diffusion model ϵθn consolidated with the knowledge of all n personalization tasks, the
task-shared FIM F updated with the parameter importance for the nth task

1: ϵθn ← ϵθn−1
▷ Sequential initialization

2: ϵθn ← Train ϵθn on Dn using the standard denoising score matching objective (Eq. 1) and the
Fisher penalty (Kirkpatrick et al., 2017) based on F ▷ Parameter-space consolidation

3: ϵθs ← Perform DSC based on Algo. 3 ▷ Function-space consolidation
4: ϵθn ← ϵθs ▷ Replace the nth task LoRA with the consolidated LoRA
5: F← Perform online EWC based on Algo. 2 ▷ Update F with Fisher information for nth task
6: return ϵθn ,F

A PERSONALIZATION IN TEXT-TO-IMAGE DIFFUSION MODELS

Personalization of a text-to-image diffusion model aims to embed a new concept into the model by
steering the reverse process through a mapping from the textual embedding ϕ(c) to the distribution
of the latent image features x, where ϕ is the text encoder. To do so, the text-to-image cross-attention
blocks in the U-Net consider the query Q = WQx, the key K = WKϕ(c), the value V =

WV ϕ(c), and perform the weighted sum operation: softmax
(

QKT

√
d′

)
V, where the weights WQ,

WK , and WV map the input x and c to Q,K, and V, respectively, and d′ is the output dimension.
Custom diffusion (Kumari et al., 2023) perform parameter-efficient personalization with the goal of
acquiring multiple concepts given only a few examples. They show that upon finetuning on a new
concept, the text-projection weights WK ,WV of the text-to-image cross-attention blocks in the U-
Net undergo the highest rate of changes. Subsequently, they finetune only the cross-attention weights
W = [WK ,WV ] together with regularization, rare token embedding initialization, and constrained
weight merging. C-LoRA builds upon this parameter-efficient setup and further proposes training
low rank adaptrs (LoRA) (Hu et al., 2022) for the cross-attention layers in the U-Net. Subsequently,
we consider using LoRA as well.

How do we obtain and leverage the new word vector V ∗
n in the training process? Following TI (Gal

et al., 2023) and CD (Kumari et al., 2023), to personalize our text-to-image diffusion model on a
new concept cn, we introduce a new token representing this concept and learn its corresponding
word vector V ∗

n by optimizing only this embedding and the nth task LoRA while keeping the rest
of the model’s parameters frozen. To do so, we create prompts for the nth concept that include the
new token (e.g.,“a photo of [V ∗

n ]”). By inputting these prompts into the model and comparing the
generated images with the training images, our standard denoising score matching objective (Eq. 1)
measures how well the model reproduces the concept. Minimizing this loss adjusts the word vector
V ∗
n so that the model associates the new token with the visual characteristics of cn, enabling it to

generate images of the concept when the token is used in prompts. Lastly, as mentioned in Sec.
3, V ∗

n is acquired during the training stage and remains frozen thereafter, i.e., while we perform
consolidation using the DC scores.
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B C-LORA WITH SPARSITY CONSTRAINT ON TASK-1 LORA PARAMETERS
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Figure 7: C-LoRA with sparsity constraint on the first task: To overcome the catastrophic for-
getting of first task in C-LoRA (Smith et al., 2024b) (see Sec. 3.1), we consider restricting LoRA
weight updates during first task by incorporating a sparsity (L1 norm) constraint into the training
objective for the first task. However, as shown in Fig. 7a and 7b, this merely results in the degener-
ate solution shifted by one task, i.e., now the task 2 weights (instead of task 1) undergo significant
updates, which in turn causes Lforget for task 3 to decrease throughout training (as most of the task
2 spots get edited). Fig. 7c shows the results generated by this model for the first four tasks on
our Custom Concept setup. Compared to the results of C-LoRA in Fig. 7d, now even task 2 image
generation (for the pet cat concept) is seen to exhibit catastrophic forgetting.

C DIFFUSION SCORES CONSOLIDATION (DSC) FOR FUNCTION-SPACE
REGULARIZATION

plushie panda
plushie tortoise

pet cat
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wearable sunglasses

Figure 8: Motivation behind function-space consolidation: conditioning current task images
(wearable sunglasses) on previous classes (those around the circumference) helps generate images
that share features with the previous classes (Cywiński et al., 2024). In the absence of replay sam-
ples (real images) from previous personalization tasks, we exploit the aforesaid property using the
current (nth) task images to distill the current task LoRA (finetuned on wearable sunglasses) by
matching the predictions of the LoRA corresponding to the previous tasks on their respective previ-
ous task concepts. Images have been resized to highlight the subject of interest. The real images for
previous concepts have been provided for the sake of reference.
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Figure 9: Design choices and their results for our DSC framework (from left to right): (A) the
ground truth target images for tasks 1, 3, and 6 of our Custom Concept CL setup; (B) generated
results for our proposed DSC EWC DC framework, as also reported in Fig. 4a; (C) generated results
for the DSC EWC DC framework where we follow DMC (Zhang et al., 2020) to initialize our
student LoRA using random weights: the consolidated student fails to properly acquire the previous
and current task custom categories; (D) generated results for the DSC EWC DC framework where
we follow DMC (Zhang et al., 2020) to use the (n − 1)th task LoRA as our fixed second teacher,
rather than randomly sampling the second teacher from the pool of all previous task LoRAs: the
consolidated student undergoes catastrophic forgetting of previous concepts.

Figure 10: LoRA consolidated using only DC scores in DSC (after training on task 2) generates
unintelligible images. We thus opt for using DC scores together with Denoising score matching in
our DSC framework (Eq. 6).

D DATASETS AND THEIR CONCEPTS

Four our Custom Concept setup, we select the following 6 classes from the CustomConcept101
dataset (Kumari et al., 2023) with at least nine images each: furniture sofa1, plushie panda, plushie
tortoise, garden, transport car 1, and wearable sunglasses 1.

For our Google Landmarks v2 (Weyand et al., 2020) setup, we select 10 such geographically
diverse waterfall landmarks and download 20 images for each. These landmarks (and their countries)
include: Bow falls (Canada), Davis falls (Nepal), Fukuroda falls (Japan), Huka falls (New Zealand),
Iguazu falls (Argentina), Korbu falls (Russia), Mang falls (China), Niagara falls (Canada), Rufabgo
falls (Russia), and Shin falls (the UK).

Our Textual Inversion dataset (Gal et al., 2023) setup simply uses all nine available household
categories and their images: cat statue, clock, colorful teapot, elephant, mug skulls, physics mug,
red teapot, round bird, and thin bird. Note that some of these concepts contain as few as four images.

For our Celeb-A (Liu et al., 2015) setup, we rely on its 256×256 resized version from Kaggle.1 We
choose 10 such celebrities at random that have at least 15 images. Their IDs include: 2079, 3272,
4407, 4905, 5239, 5512, 5805, 7779, 8692, 9295.

1https://www.kaggle.com/datasets/badasstechie/celebahq-resized-256x256
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E METRICS DEFINITION

Following Smith et al. (2024b), we report (i) Nparam Train as the percentage of parameters (with
respect to the U-Net backbone) that are trainable while learning a task and (ii) Nparam Store as the
percentage of parameters that are stored over the entire task sequence. Let N be the number of
personalization tasks, where each task j ∈ {1, 2, . . . , N} comprises a dataset D hosting a single
personal concept. Let Xi,j be the generated images for the jth task by a model trained sequentially
until the ith task, and XD,j be the corresponding original dataset images for the jth task. Then, using
a pretrained CLIP model Fclip (Radford et al., 2021b) as the feature extractor, we define (iii) the
average of the maximum mean discrepancy (MMD) AMMD metric (where lower is better) over N
tasks as:

AMMD =
1

N

N∑
j=1

MMD(Fclip(XD,j),Fclip(XN,j)) (7)

where the MMD is computed using a quadratic kernel function (Gretton et al., 2012). Accordingly,
(iv) the forgetting metric FMMD (where lower is better) quantifies how much the generated images
have diverged due to sequential training:

FMMD =
1

N − 1

N−1∑
j=1

MMD(Fclip(Xj,j),Fclip(XN,j)) (8)

As also stated in Sec. 4, the forgetting metric FMMD is a relative measure of divergence with respect
to the results generated by the jth task model. It can thus be misleading for cases where the jth task
model is itself a poor learner but does not forget much (possibly because it allocates only a tiny
fraction of the parameter space for learning new tasks). To the end goal of quantifying forgetting
more reliably, we introduce (v) the backward transfer metric BwTMMD that measures how much
the generated images have diverged from their absolute ground truth counterparts as a result of
sequential training:

BwTMMD =
1

N − 1

N−1∑
j=1

(
MMD

(
Fclip(XD,j),Fclip(Xj,j)

)
−MMD

(
Fclip(XD,j),Fclip(XN,j)

))
(9)

Contrary to FMMD, a larger BwTMMD is desirable as it implies that learning the N th task helps im-
prove the generative quality of the jth task images. Following Kumari et al. (2023), we additionally
include the following metrics that leverage the pretrained CLIP model’s features: (vi) the image
alignment quantifying the visual similarity of the generated images with their ground truth targets
in the CLIP visual feature space, (vii) the text alignment quantifying the text-to-image similarity of
the generated images with their respective prompts in the CLIP multimodal feature space, and (viii)
the Kernel Inception Distance (KID) Bińkowski et al. (2018) quantifying overfitting on the target
concept (e.g., V ∗ panda) due to the forgetting of the pretrained knowledge (e.g., panda).

In terms of magnitude, the higher the better (↑) holds for: the image alignment (I2I) and the
backward transfer (BwTMMD) metrics, while the lower the better (↓) holds for all other metrics.

F MAIN RESULTS (CONTINUED)

We study the taskwise performance (AMMD and KID) evolution of the compared methods on our
CL setups of Custom Concept and Landmarks. Fig. 11a and 11b show that overall, our DC score-
based variants perform better against their non-DC score-based counterparts as well as against other
baselines on every incremental task.
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(a) Taskwise performance evolution on Custom Concept CL setup.
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(b) Taskwise performance evolution on Landmarks CL setup.

Figure 11: Taskwise performances.

F.1 RESULTS FOR LONG TASK SEQUENCE
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Figure 12: Qualitative results for 50 tasks Custom Concept setup: we compare the results of
our EWC DC variant with that of C-LoRA for generating the images from tasks 1, 25, and 50. We
find that C-LoRA does not only suffer from a loss of plasticity to acquire the 50th task images but
has also undergone catastrophic forgetting of the first task images, which is inline with our findings
from Sec. 3.1. On the contrary, our method scales well to mitigate the forgetting of the previous
tasks while still remaining plastic enough to acquire the 50th task.
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Figure 13: Performance evolution on a sequence of 50 custom concepts (Kumari et al., 2023).
Shaded lines represent absolute values while solid lines denote the simple moving averages over
tasks.

F.2 RESULTS ON HOUSEHOLD OBJECTS AND REAL FACES
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Figure 14: Qualitative results for LoRA-based methods on Textual Inversion dataset (Gal et al.,
2023) setup with 9 tasks.

Table 3: TI results after 9 tasks (avg. over 3 seeds): (↓) indicates lower is better.

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103) BwTMMD (↑) CLIP I2I (↑)

(x100) FMMD (↓)

CD 2.23 100.0 296.11 187.4 -204.31 68.13 0.025
LoRA sequential 0.09 100.0 261.07 132.58 -125.03 67.1 0.008
C-LoRA 0.09 100.81 181.33 105.7 -106.16 69.04 0.047

EWC 0.09 100.81 158.93 88.21 -93.18 71.46 0.003
Ours: EWC DC 0.09 100.81 139.66 82.75 -79.0 73.08 0.047
Ours: DSC 0.09 100.81 168.09 96.41 -135.74 69.81 0.008
Ours: DSC EWC 0.09 100.81 135.61 80.6 -84.11 71.08 0.008
Ours: DSC EWC DC 0.09 100.81 121.08 78.34 -73.18 72. 66 0.005

G ADDITIONAL RESULTS

G.1 COMPATIBILITY WITH STABLE DIFFUSION V2.0

For a fair comparison with the state-of-the-art (Smith et al., 2024b), we report our main results using
Stable Diffusion v1.4. We further note that Stable Diffusion v1.4 and v1.5 remain architecturally
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Table 4: Celeb-A results after 10 tasks (avg. over 3 seeds): (↓) indicates lower is better.

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103) BwTMMD (↑) CLIP I2I (↑)

(x100) FMMD (↓)

CD 2.23 100.0 317.0 219.82 -215.14 42.9 0.006
LoRA sequential 0.09 100.0 286.55 308.2 -156.22 60.79 0.061
C-LoRA 0.09 100.9 151.51 101.01 -101.97 64.38 0.012

EWC 0.09 100.9 141.16 95.07 -92.78 66.37 0.01
Ours: EWC DC 0.09 100.9 127.0 87.06 -86.43 67.34 0.004
Ours: DSC 0.09 100.9 185.62 112.44 -97.5 66.81 0.003
Ours: DSC EWC 0.09 100.9 138.69 92.49 -94.13 66.29 0.061
Ours: DSC EWC DC 0.09 100.9 119.5 91.72 -82.71 68.3 0.004
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Figure 15: Effect of the number of concepts k for DC scores computation on the six-tasks Custom
Concept setup performance (refer to Algo. 2 on the usage of k). Interpretation: k dictates the
cardinality of the set ck that we leverage for preventing the cost of DC scores computation to grow
with the number of seen concepts. ck usually comprises the current nth task concept cn and the
readily available common prior concept c0. On top of these, we randomly sample k − 2 previous
task concepts that are to be employed in the DC scores computation. As such, all setups with k > 2
perform similar until task 2 as there is only one available previous concept in the pool to sample
from. From task 3 onward, k = 3 still gets to sample only one previous concept per iteration while
k = 5 can use all previous concepts per iteration (note that our Custom Concept setup has a total of
six concepts, and thus the maximum number of previous task concepts is 5 which is during training
on the sixth task). We find that the performance of EWC DC saturates as k increases beyond 5. This
is because not all previous concepts carry useful discriminative information for deriving reliable DC
scores. We thus use k = 5 across all our setups. Lastly, note that DC scores comprise probability
distribution over concepts and thus require the minimum number of 2 concepts for derivation. As a
result, we include the pre-trained common prior concept c0 besides the current nth task concept cn
into ck on all but the k = 2 setting. On the latter setting, we sample 1 previous concept at random
per iteration, which is similar to the k = 3 setup except for the common prior concept included
in ck. We find that excluding the common prior concept leads to the worst performance overall.
This could be because the prior concept images might help preserve more discriminative semantic
information in the DC scores when compared to other downstream task concepts.

very similar in that they both leverage the CLIP ViT-L/14 text encoder and a U-Net capable of pro-
cessing 64× 64 latent representations corresponding to 512× 512 images. As Stable Diffusion v2.0
improves upon these with better text encoder and support for higher resolution images, we report
the results for v2.0 on our Custom Concept and Landmarks setup in tables 5 and 6, respectively.

Table 5: Custom Concept results for Stable Diffusion v2.0 (avg. over 3 seeds)

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103) BwTMMD (↑) CLIP I2I (↑)

(x100) FMMD (↓)

C-LoRA 0.05 100.29 158.9 114.5 -103.88 68.10 0.015

EWC 0.05 100.29 141.3 100.97 -96.50 75.81 0.011
Ours: EWC DC 0.05 100.29 134.97 93.59 -88.30 77.29 0.0009
Ours: DSC 0.05 100.29 177.92 155.06 -102.55 75.01 0.003
Ours: DSC EWC 0.05 100.29 139.76 93.71 -91.02 77.90 0.006
Ours: DSC EWC DC 0.05 100.29 126.43 88.54 -82.15 78.22 0.001
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Table 6: Landmarks results for Stable Diffusion v2.0 (avg. over 3 seeds)

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103) BwTMMD (↑) CLIP I2I (↑)

(x100) FMMD (↓)

C-LoRA 0.05 100.32 101.33 62.40 -12.99 80.50 0.009

EWC 0.05 100.32 59.21 38.66 -39.05 85.37 0.002
Ours: EWC DC 0.05 100.32 52.80 32.65 -5.19 87.22 0.001
Ours: DSC 0.05 100.32 116.83 67.32 -65.70 80.01 0.009
Ours: DSC EWC 0.05 100.32 59.40 45.27 -5.71 86.88 0.0007
Ours: DSC EWC DC 0.05 100.32 46.15 29.13 -2.90 88.14 0.084
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(a) VeRA results: we preserve our EWC DC framework and replace LoRA (Hu et al., 2022) with Vector-based
Random Matrix Adapters (VeRA) (Kopiczko et al., 2024).

+
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(b) Multi-concept generation results: the upper row images are generated using the prompt “A photo of V 1

plushie tortoise. Posing in front of V 2 waterfall” while the lower row images are generated using the prompt
“A photo of V 1 plushie tortoise. Posing with V 2 sunglasses”.

Figure 16: Additional results showing the compatibility of our method for (a) multi-concept gen-
eration, and (b) VeRA (Kopiczko et al., 2024).

G.2 COMPATIBILITY WITH VERA

In the spirit of parameter-efficient continual personalization, we explore the effectiveness of our
method for Vector-based Random Matrix Adaptation (VeRA) (Kopiczko et al., 2024). VeRA freezes
the LoRA weight matrices A and B to share them across all network layers, and instead adapts
two scaling vectors Λb and Λd per layer. This helps VeRA retain the performance of LoRA-based
finetuning with a small fraction. For the U-Net, this amounts to a ≈ 1

100

th reduction in the number
of trainable parameters (Nparam Train) per task. We rely on the Diffusers library implementation of
VeRA and use the default rank setup of 256. Fig. 16a compares the results of sequential VeRA,
VeRA with EWC, and VeRA EWC with DC scores on our six task sequence of Custom Concept
(Kumari et al., 2023). Here, VeRA sequential suffers from a loss of plasticity, e.g., sunglasses with
three glasses, besides forgetting the precise details of previous tasks, e.g., distorted tortoise face/eyes
in task 3. VeRA EWC helps improve over this despite struggling to retain knowledge at times, e.g.,
task 1 panda legs with white strips. Plugging in DC scores shows a clear gain in terms of the
generative quality. The quantitative results are reported in App. table 7, and tell us a similar story.
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Table 7: Custom Concept results with VeRA (Kopiczko et al., 2024) after 6 tasks (avg. over 3 seeds).

Method Nparam
Train(↓)

Nparam
Store (↓)

KID (↓)
(x 105)

AMMD (↓)
(x 103) BwTMMD (↑) CLIP I2I (↑)

(x100) FMMD (↓)

VeRA sequential 0.0086 100.052 138 95.7 -95.71 74.41 0.006
VeRA EWC 0.0086 100.052 145.2 98.27 -98.73 73.37 0.0003
Ours: VeRA EWC DC 0.0086 100.052 140 94.7 -95.44 73.56 0.0001

G.3 SUPPORT FOR MULTI-CONCEPT GENERATION

We study the compatibility of our proposed method for generating multiple custom concepts in the
same picture. Figure 16b compares the multi-concept results of our method (LoRA EWC DSC DC)
with that of C-LoRA (Smith et al., 2024b) and CD (Kumari et al., 2023). Following C-LoRA, we
use the prompt style “a photo of V 1 [X]. Posing with V 2 [Y]”, where V 1 and V 2 are the learnable
custom tokens for the concept names X and Y, respectively. We find that for both the methods,
multi-concept generation remains highly sensitive to prompt engineering, and minor prompt changes
(replacing ’posing’ with ’together’) can lead to results where one of the concepts is overshadowed
by another. We also notice similar effects upon removing the concept names X and Y from the
prompt. On the other hand, using the concept names in the prompt can lead to interference from the
model’s pretrained knowledge, e.g., the waterfall in the background does not always resemble the
waterfall from the target images. While both the methods struggle to produce images that preserve
the exact style of the target images, we find that our method undergoes relatively lower interference
than C-LoRA, which for instance, produces images of the plushy tortoise and sunglasses that differ
significantly in color and appearance from the original target images.

Following our standard evaluation setup (Sec. 4), to quantify the performance for multi-concept
generation, we generate 400 images each for the prompts used in Fig. 16b: “A photo of V 1 plushie
tortoise. Posing in front of V 2 waterfall” and “A photo of V 1 plushie tortoise. Posing with V 2

sunglasses”. In the absence of ground-truth images that incorporate multiple concepts, we quantify
the scores by first relying on the ground truth images of the individual concepts in each of these
prompts and then averaging out the two scores. Table 8 reports the scores averaged over the two
multi-concept generation prompts. We note that these scores are in line with Fig. 16b where our
EWC DSC DC variant performs significantly better than C-LoRA on all three performance quantifi-
cation metrics.

Table 8: Results for multi-concept generation on Custom Concept setup

Method KID (↓)
(x 105)

AMMD(↓)
(x 103)

CLIP I2I (↑)
(x100)

CD 231.7 194.11 48.50
C-LoRA 193.61 130.80 52.45
Ours 163.85 113.42 64.53

H IMPLEMENTATION AND HYPERPARAMETERS

H.1 IMPLEMENTATION DETAILS

We use the Hugging Face Accelerate library (Gugger et al., 2022) for distributed training/inference
of our models. Our experiments are conducted using four RTX A6000 GPUs with 48 GB memory
each. For all the compared methods, we set the batch size to 1 during training and inference. To
allow for larger effective batch sizes during training, we set the gradient accumulation steps to 8.
For a fair comparison with CD, we perform regularization during training using an auxiliary dataset
of 200 images generated by the pretrained backbone using the prompt “a photo of a person” (Smith
et al., 2024b). We follow C-LoRA for preserving a number of hyperparameters setup. Namely, we
set the LoRA rank to 16, and the EWC loss coefficient to 1e6 for all our experiments. We use a
learning rate of 5e− 6 for all non-LoRA methods, and a learning rate of 5e− 4 for all LoRA-based
methods. We implemented C-LoRA from scratch and following the authors, used a coefficient of
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(a) Downsampling block layer.
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(b) Bottleneck (mid) block layer.
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(c) Upsampling block layer.

Figure 17: Sanity Check I for DC scores: Top-k eigenvalue comparison for FIM estimated with
and without DC scores using LoRA parameters for randomly chosen U-Net layers belonging to: (a)
downsampling block, (b) mid block, and (c) upsampling block.

1e8 for the self-regularization loss Lforget (see Eq. 2). Lastly, following the default setup of the
Diffusers library (von Platen et al., 2022), we set the classifier guidance scale to 7.5 to allow for a
higher adherence to the conditional signal.

H.2 IMPACT OF HYPERPARAMETERS

H.2.1 NUMBER OF CONSOLIDATION ITERATIONS

We tune the number of consolidation iterations for EWC phase using our EWC DC variant and
that for DSC phase using our EWC DSC DC variant. The number of consolidation iterations are
fractions of the total training iterations, i.e., 1000 on Custom Concept, and are chosen through a
sweep on the set: {0.1×, 0.2×, 0.3×, 0.5×, 1×}. As shown in Fig. 19 and 20, a value of 0.2× the
training iterations performs the best for both EWC DC and EWC DSC DC. While a larger number
of iterations can lead to degradation in the generative quality of both the variants, we note that DSC
remains more sensitive overall to the number of consolidation iterations.
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(a) 100 iterations
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(b) 200 iterations (standard setup)
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(c) 300 iterations
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(d) 400 iterations

Figure 18: Effect of varying consolidation iterations on FIM estimation: Top-5 Eigenvalue com-
parison for the FIM estimated with and without DC scores using the learned LoRA parameters for
a randomly chosen downsampling layer block of the U-Net. Upon increasing the number of con-
solidation iterations to 200, we observe larger magnitudes of Eigenvalues, thus indicating that the
learned parameters become more certain about the directions of high loss changes from data, i.e.,
reduced uncertainty in the FIM estimation. However, increasing the number of consolidation itera-
tions beyond 200 leads to a saturation in the data-informed uncertainty estimation for the FIM.

25



Published as a conference paper at ICLR 2025

0.1 0.2 0.3 0.5 1

103.0

103.5

104.0

A_mmd ( )

0.1 0.2 0.3 0.5 1

156

158
KID ( )

Iterations

A_mmd KIDFigure 19: Effect of number of EWC iterations for EWC DC

0.1 0.2 0.3 0.5 1
94

96

98

A_mmd ( )

0.1 0.2 0.3 0.5 1140

142

144

KID ( )

Iterations

A_mmd KIDFigure 20: Effect of number of DSC iterations for EWC DSC DC

0 200 400 600 800 1000
Value

0

20

40

60

80

Co
un

t

Mean: 493.11
Std Dev: 292.61

Distribution of 2000 Random Samples between 0 and 1000

(a) 2000 iterations
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(b) 1000 iterations
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(c) 400 iterations
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Figure 21: Distribution of uniformly sampled timesteps over a varying total number of training
iterations: (a) 2000 finetuning iterations as used by Smith et al. (2024b) for Celeb-A faces, (b) 1000
finetuning iterations as used by Custom Diffusion Kumari et al. (2023) that we adopt for all but
the Celeb-A setup, (c) 400 consolidation iterations that we adopt for the Celeb-A setup, (d) 200
consolidation iterations that we adopt for all but the Celeb-A setup. Note that the values for (c) and
(d) are chosen per the hyperparameter tuning we perform in App. H.2.1.

H.2.2 HYPERPARAMETER FOR EWC LOSS

Fig. 22 shows the impact of varying the hyperparameter δ controlling the contribution of the cross-
entropy term for EWC DC (Eq. 5). We find the range [0.5, 1.0] to be suitable for the loss weightage,
and use δ = 0.5 through our experiments.
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H.2.3 HYPERPARAMETERS FOR DSC LOSS

Effect of varying γ: For DSC, γ depicts the strength with which the student model θs follows the
DC scores distribution of the nth task teacher θn and the previous task teacher θj . As shown in Fig.
23, the range [0.01, 0.1] remains suitable for γ. Accordingly, we set γ to 0.1.
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Effect of varying λ: λ in DSC guides the strength with which the student θs matches the noise
estimations of the nth task teacher θn and the previous task teacher θj . Setting λ = 0 leaves the
student consolidation to be guided solely by the discriminative DC scores, a setting that we find to
be detrimental for the purpose of generation (see Fig. 10). In Fig. 24, we delve further into the
impact of varying λ on the performance of DSC EWC DC, and find the range [0.5, 1.0] to work
well. Note that a high λ can lead the student to overfitting the noise estimations for the previous task
teacher, for which the current task inputs remain out-of-domain. This, in turn, harms the generative
quality of the student.
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Effect of varying the teacher’s softmax temperature τ : Knowledge distillation frameworks typi-
cally rely on sharp target distributions that intuitively mimic the outputs of a confident teacher model
(Caron et al., 2021). For our DSC framework, the teachers can be made to produce sharper targets by
using a low value for the temperature τ in the softmax normalization operation of their DC scores.
We show the impact of varying the teacher softmax temperature in Fig. 25. Namely, a temperature
beyond 0.1 leads to softer targets from both the teachers, which can be harder to mimic for the stu-
dent. On the contrary, τ = 0 mimics extreme sharpening and produces one-hot hard distributions.
We find a temperature of 0.05 to perform the best overall.
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Figure 26: Effect of δ and γ on performance of DSC EWC DC

H.2.4 HYPERPARAMETER FOR EWC+DSC LOSS INTERACTIONS

I TRAINING TIME COMPLEXITY DERIVATION AND ANALYSES

We use the soft-O notation Õ (Van Rooij et al., 2019) to describe the time complexity while safely
ignoring the logarithmic factors. Formally, for some constant k, Õ(f(n)) = O

(
f(n) ∗ logk(n)

)
provides the upper bound for f , like the standard big-O notation O but hides the factors involving
powers of logarithms, i.e., Õ(n) could represent O(n log n),O(n log log n),O(n log2 n), etc.

As also stated in the main paper, we consider a continual personalization setup with N number of
tasks such that each task comprises on new concept to acquire. For the ease of computation, we
assume that each task has a fixed number of training images, |D|. Note that for our CL setup, we use
the same number of training epochs for each task. This lets us ignore the factor of training epochs in
deriving the training time complexity. Lastly, since both C-LoRA (Smith et al., 2024b) and our setup
train a single LoRA and a modifier token per task, their complexity of a forward pass remains the
same, and can be safely ignored. Put together, we can state time complexity as a function that grows
linearly with more training samples |D|. We list the training time complexities of the compared
methods in Table 9 and detail on their derivation below:

Table 9: Training time complexity analyses with soft-O notation Õ.

Method Cost Õ(·)
C-LoRA N · |D|

Ours: EWC DC |D|
Ours: EWC DSC DC |D|

1. C-LoRA (Smith et al., 2024b) performs self-regularization using the weights of all previ-
ous task LoRA (see Eq. 2). Therefore, in addition to the training sample size, the time
complexity of C-LoRA is dependent on the number of tasks N , i.e., Õ(N |D|).

2. For parameter-space consolidation, we rely on online EWC (Schwarz et al., 2018) which
maintains a single set of FIM weights that are updated continuously using a running average
over tasks. This ensures that our EWC-based framework does not store separate importance
weights for each task, and hence, the time complexity scales linearly in the factor of sample
size, Õ(|D|). Next, for DC scores computation, we assume a fixed number of conditional
forward passes that is proportional to the size of the relevant concept set ck (see Sec. 3.1).
Irrespective of the number of tasks, ck always stores m + 2 number of concepts, where
m is chosen through grid search and is typically a low number for avoiding confusion
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from other uninformative classes. Hence, DC scores computation for EWC scales linearly
with the number of training samples Õ(|D|). Put together, the time complexity for our
parameter-space consolidation framework is: Õ(|D|) + Õ(|D|) = Õ(|D|).

3. For function-space consolidation, we rely on a double-distillation framework, which uses
two teacher and one student LoRA per consolidation iteration, irrespective of the number
of seen tasks. Subsequently, the training time complexity of function-space consolidation
remains Õ(|D|). For computing DC scores, we always rely on three conditional forward
passes through each of the teachers and the student. As described in Sec. 3.2, these forward
passes correspond to the readily available common prior concept c0, and the concepts cn
and cj<n corresponding to the current task n and the previous task j < n teacher LoRA.
Hence, the time complexity of DC scores computation is also Õ(|D|). Overall, the time
complexity for our function-space consolidation framework remains: Õ(|D|) + Õ(|D|) =
Õ(|D|).

Runtime per training iteration. While our method scales better than C-LoRA (Smith et al.,
2024b) with the number of tasks (see Table 9), we are nevertheless bounded by the several con-
ditional forward passes needed (depending on the value of k) to derive DC scores for each training
minibatch. Despite our proposed considerations for efficient computation of DC scores during con-
solidation (see Sec. 3.1), the computational overhead for deriving these remains dominant specifi-
cally for CL setups with fewer number of tasks. For example, using an RTX A6000, each consolida-
tion iteration for EWC requires ≈ 5.3s, that for DSC requires ≈ 5.7s, and that for C-LoRA requires
≈ 0.8s during finetuning on the task 6 of our Custom Concept setup. As shown in Table 10, scaling
to the 50 tasks setup, this time gap bridges as the runtime per training iteration of C-LoRA grows
to ≈ 3.8s while that of our methods stay roughly the same (≈ 5.5s for EWC, and ≈ 5.72s for DSC
for k = 5). It is worth noting that on the 50th training task, for lower values of k, the runtime per
training iteration for our methods remain comparable (for k = 3) or significantly lower (for k = 2)
than that of C-LoRA. Therefore, we expect that more clever ways to derive the DC scores during
training can effectively reduce the runtime of our methods.

Table 10: Comparison of training time per iteration (wall clock time in seconds) with varying k

Method k = 2 k = 3 k = 5

On 6th task

C-LoRA 0.8
Ours: EWC DC 1.27 3.4 5.3
Ours: DSC DC 1.65 3.61 5.7

On 50th task

C-LoRA 3.8
Ours: EWC DC 1.36 3.57 5.5
Ours: DSC DC 1.8 3.66 5.72
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Figure 27: Failure cases showing the visual artefacts of our best performing variant EWC DSC DC
on our three different dataset setups.

Despite our method retaining significantly better task-specific generation granularity compared to
the state-of-the-art, it produces noticeable visual artefacts sometimes. Fig. 27 shows few such
dataset-specific artefacts for EWC DSC DC, which is our overall best performing variant leveraging
DC scores with EWC and DSC. Notably, for Custom Concept, the model at times generates figures
that have out-of-proportion shapes including an absence of the plushie panda’s body (left), an un-
naturally big head for the plushie tortoise (middle), and a poorly outlined frame for the wearable
sunglasses (right). For the waterfall landmarks setup, we notice multiple incomplete rainbows (left),
a transparent yet poorly formed bridge over the river (middle), and a mulberry colored waterfall fore-
ground (right). Similarly, on the textual inversion setup, the generated clock image has incorrectly
printed numers (left, with 11 replacing 1 and 3 being confused with 9), the teapot with incorrectly
assigned spout/handles (middle), and the elephant’s body with holes that have unnaturally filled
background.
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