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A Proof of Theorem 1

Theorem 1. The approximation ratios provided by the EI and EI-PUC policies are unbounded. That
is, for any ρ > 0 and each policy π ∈ {EI,EI-PUC}, there exists a Bayesian optimization problem
instance (a prior probability distribution over objective and cost functions, a budget, and a set of
initial observations D0) where

V ∗(D0) > ρV π(D0).

Proof. We prove the result in two parts, first focusing on EI-PUC, and then on EI.

Part 1: EI-PUC. To show the result for EI-PUC, we construct a problem instance with a discrete
finite domain and no observation noise. Let ε and δ be two strictly positive real numbers and let
K = d(1 + δ)/εe. Suppose the domain is X = {0, 1, . . . ,K + 1} and that the overall budget of
the problem is 1 + δ. The prior on f(x) is independent across x ∈ X, all points have zero mean
under the prior, and the costs c(x) are all known. We assume that the point x = 0 has already been
measured and has value f(0) = 0. The next K points are “low-variance, low-cost” and the final point
is “high-variance, high-cost.”

• For low-variance, low-cost points, x ∈ {1, . . . ,K}, f(x) is normally distributed with mean
0 and variance ε2 and c(x) = ε. Thus, EI(x)/c(x) for these arms is E[(f(x) − 0)+]/ε =
E[εZ+]/ε = E[Z+], where Z is a standard normal random variable.

• For the high-variance, high-cost point, x = K+ 1, f(x) is normally distributed with mean 0
and variance 1, and c(x) = 1 + δ. Thus, EI(x)/c(x) for these arms is E[(f(x)− 0)+]/(1 +
δ) = E[Z+]/(1 + δ).

One feasible policy for the problem is to “measure the high-variance point once.” Under this policy,
the budget is exhausted after the first measurement and the overall value is E[Z+].

Let us consider the EI-PUC policy. By the calculation above, on the first evaluation, it measures a
low-variance arm. Then, after that, the remaining budget is strictly less than 1 + δ and it can only
measure low-variance, low-cost points. It measures N = b(1 + δ)/εc such points in total (since there
is no observation noise, EI of a measured point is zero and a new point is measured each time). We
show, in a calculation below, that the value of this policy goes to 0 as ε→ 0 while we hold δ fixed.
That is, we show that

lim
ε→0

V EI-PUC(D0) = 0. (1)
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There are no policies other than the two just described, so the “measure the high-variance point once”
policy becomes optimal for all ε sufficiently close to 0. Thus, limε→0 V

∗(D0) = E[Z+] > 0. Thus,
given any finite strictly positive ρ, there is a ε small enough whose corresponding problem instance
satisfies

V ∗(D0) > ρV EI-PUC(D0).

To complete the proof for EI-PUC, we now show (1). Under the EI-PUC policy, the values {yn}Nn=1
from the sequence of measured points (after the initial point x = 0) are independent and identically
distributed normal random variables, with mean 0 and variance ε2. The expected value under this
policy is then E[M ], where M = max {0, y1, . . . , yN}.
Let t be an arbitrary positive real number. Using Jensen’s inequality, we obtain

exp
(
E[tM ]

)
≤ E

[
exp(tM)

]
= E

[
max {1, exp(ty1), . . . , exp(tyN )}

]
≤ E

[
1 +

N∑
n=1

exp(tyn)

]
= 1 +N exp(t2ε2/2)

≤ (N + 1) exp(t2ε2/2),

where we note in the last step that exp(t2ε2/2) ≥ 1.

Thus, E[M ] ≤ ln(N + 1)/t+ (tε2)/2, and taking t =
√

2 ln(N + 1)/ε we obtain

E[M ] ≤ ε
√

2 ln(N + 1) ≤ ε

√
2 ln

(
1 + δ + ε

ε

)
.

Using L’Hôpital’s rule, we see that the right hand side of the above inequality converges to 0 as ε→ 0
and, therefore, so does E[M ].

Part 2: EI. We now show the result for EI. We consider almost the same setup as in the example
above, with the only difference being that the low-cost points now have variance (1− ε)2.

This time EI(x) = (1− ε)E[Z+] for the low-cost points and EI(x) = E[Z+] for the high-cost point.
Hence, the EI policy evaluates the high-cost point and exhausts the budget after that single evaluation,
thus implying that V EI(D0) = E[Z+].

Now consider the policy that measures low-cost points only. The expected value under this policy
is E[M ], where where M = max {0, y1, . . . , yN}, and y1, . . . , yN are independent identically
distributed normal random variables with mean 0 and variance (1− ε)2.

We have

E[M ] ≥ E
[

max
n=1,...,N

yn

]
≥ (1− ε)

√
a lnN ≥ (1− ε)

√
a ln

(
1 + δ

ε
− 1

)
,

where a = (π ln 2)−1 and the second inequality follows by Theorem 1 in Kamath (2015). The
expression on the right-hand side of the above inequality goes to∞ as ε→ 0. Since V ∗(D0) ≥ E[M ],
it follows that, for any ρ > 0, there exists ε small enough whose corresponding problem instance
satisfies

V ∗(D0) > ρV EI(D0),

which completes the proof.

B Proof of Proposition 1

Proposition 1. Suppose that f and ln c follow independent Gaussian process prior distributions and
that D is an arbitrary set of observations. Define µfD(x) = E[f(x) | D], µln c

D (x) = E[ln c(x) | D],
σfD(x) = Var[f(x) | D]1/2, and σln c

D (x) = Var[ln c(x) | D]1/2. Then,

Q1(x | D) =

{
EIf (x | D) Φ

(
ln((B−s(D))−µln c

D (x)

σln c
D (x)

)
, if s(D) < B,

0, otherwise,
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where

EIf (x | D) = ∆(x)Φ

(
∆D(x)

σfD(x)

)
+ σf (x)ϕ

(
∆D(x)

σfD(x)

)
is the classical expected improvement computed with respect to f ; ϕ and Φ are the standard normal
pdf and cdf, respectively; and ∆D(x) = µf (x)− u(S).

Proof. Recall that
Q1(x | D) = E

[
(f(x)− u(D))+ 1{s(D)+c(x)≤B}

]
.

But, since f and ln c are assumed to be independent,

Q1(x | D) = E
[
(f(x)− u(D))+

]
E
[
1{s(D)+c(x)≤B}

]
= EIf (x | D)P (s(D) + c(x) ≤ B) .

Now note that, if s(D) ≥ B, then P (s(D) + c(x) ≤ B) = 0. If, on the other hand, s(D) < B, then

P (s(D) + c(x) ≤ B) = P (ln c(x) ≤ ln (B − s(D)))

= Φ

(
ln ((B − s(D))− µln c

D (x)

σln c
D (x)

)
,

which concludes the proof.

C Closed-Form Expressions of EI-PUC and EI-PUC-CC

Recall that the EI-PUC and EI-PUC-CC acquisition functions are defined by

EI-PUC(x | D) = ED
[
{f(x)− f∗n}+

c(x)

]
,

and

EI-PUC-CC(x | D) = ED
[
{f(x)− f∗n}+

c(x)ν

]
,

respectively, where ν is the ratio between the remaining budget and the initial budget.

Here we show that, under the same conditions of Proposition 1, EI-PUC and EI-PUC-CC have
closed form expressions. This is summarized in Proposition 2 below. Note that this result gives the
closed-form expression of EI-PUC as a special case by taking ν = 1.
Proposition 2. Let ν be an arbitrary positive real number and suppose that the conditions in
Proposition 1 are satisfied. Then,

ED
[
{f(x)− f∗n}+

c(x)ν

]
= EIf (x | D) exp(−νµln c

D (x) + ν2σln c
D (x)2/2),

Proof. Since f and ln c are assumed to be independent,

ED
[
{f(x)− f∗n}+

c(x)ν

]
= ED

[
{f(x)− f∗n}+

]
ED [1/c(x)ν ]

= EIf (x | D)ED [exp(−ν ln c(x))] .

The well-known formula for the moment generating function of normal random variable gives

ED
[
exp(−ν ln c(x))

]
= exp

(
−νµln c

D (x) + ν2σln c
D (x)2/2

)
,

which completes the proof.

D Synthetic Test Problems Details

Below we provide additional details on the synthetic test problems used in the numerical experiments.
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Dropwave:

• f(x) =
(

1 + 12
√
x21 + x22

)
/
(
0.5(x21 + x22) + 2

)
.

• X = [−5.12, 5.12]2.
• α ∈ [0.75, 1.5], β ∈ [2π/5.12, 6π/5.12], γ ∈ [0, 2π].

Alpine1:

• f(x) =
∑d
i=1 |xi sin(xi) + 0.1xi|.

• X = [−10, 10]d.
• α ∈ [0.75, 1.5], β ∈ [2π, 6π], γ ∈ [0, 2π].
• In our experiment, we set d = 3.

Ackley:

• f(x) = 20 exp

(
− 1

5

√
1
d

∑D
i=1 x

2
i

)
+ exp

(
1
D

∑D
i=1 cos(2πxi)

)
− 20− exp(1).

• X = [−1, 1]d.
• α ∈ [0.75, 1.5], β ∈ [2π, 6π], γ ∈ [0, 2π].
• In our experiment, we set d = 3.

Shekel5:

• f(x) =
∑5
j=1

(∑4
i=1 (xi − Cij)2 + bj

)−1
, where b = (1, 2, 2, 4, 4)/10, and

C =

4 1 8 6 3
4 1 8 6 7
4 1 8 6 3
4 1 8 6 7

 .

• X = [0, 10]4.
• α ∈ [0.75, 1.5],β ∈ [2π/4, 3π/4], γ ∈ [0, 2π].

E AutoML Surrogate Models

The LDA and CNN problems use surrogate models to emulate the computationally expensive process
of training the corresponding ML model. The objective and cost surrogate models for CNN are
obtained directly from the HPOLib library, and were originally constructed by fitting independent
random forest regression models to the objective and cost evaluations over a uniform grid of points.
These evaluations are obtained by training a 3-layer convolutional neural network on the CIFAR-10
dataset. For the LDA problem, we fit independent GPs to the objective and log-cost evaluations over
a uniform grid of size 288, and then use the resulting posterior means as the surrogate models. These
surrogate models can be found at https://github.com/RaulAstudillo06/BudgetedBO.

F Acquisition Function Optimization

All acquisition functions are optimized as follows. First, we evaluate the acquisition value at 200d
points over X, and 10d of these points are selected using the initialization heuristic described in
Appendix F.1 of Balandat et al. (2020). Then, we run L-BFGS-B (Byrd et al., 1995) starting from each
point. The point with highest acquisition value of the 10d points resulting after running L-BFGS-B is
then chosen as the next point to evaluate.

For the variants of B-MS-EI, the 200d initial points are chosen using the warm-start initialization
strategy described in Appendix D of Jiang et al. (2020). This strategy uses the solution found when
optimizing B-MS-EI during the previous iteration and identifies the branch originating at the root of
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Table 1: Average per-acquisition runtimes (in seconds) of the algorithms in each problem.

EI EI-PUC EI-PUC-CC 2-B-MS-EIp 2-B-MS-EI 4-B-MS-EIp 4-B-MS-EI

Dropwave 4.1 5.5 6.2 24.1 26.7 42.6 87.2
Alpine1 7.2 9.9 10.8 36.44 44.1 106.1 236.7
Ackley 6.4 7.3 5.7 16.6 26.0 95.8 103.5
Shekel5 4.5 5.5 5.6 18.3 12.8 105.8 165.5
LDA 5.4 5.9 5.5 20.7 29.6 141.9 202.1
CNN 11.7 26.9 19.3 79.3 95.0 286.1 443.2
Robot 5.9 4.0 4.7 32.2 34.3 108.2 193.7
Boston 1.8 1.6 1.5 15.7 19.7 65.1 90.5

10 20 30 40
budget

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

lo
g 1

0(
re

gr
et

)

dropwave

EI
EI-PUC
EI-PUC-CC
2-B-MS-EIp
2-B-MS-EI
4-B-MS-EIp
4-B-MS-EI

20 40 60
budget

1.5

1.0

0.5

0.0

lo
g 1

0(
re

gr
et

)
alpine1

20 40 60
cumulative cost

2.0

1.5

1.0

0.5

lo
g 1

0(
re

gr
et

)

ackley

20 40 60 80
cumulative cost

0.2

0.0

0.2

0.4

0.6

0.8

lo
g 1

0(
re

gr
et

)

shekel5

20 40 60 80
budget

0.5

0.6

0.7

0.8

0.9

lo
g 1

0(
re

gr
et

)

lda

2 4 6 8 10
cumulative cost

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

lo
g 1

0(
re

gr
et

)

cnn

5 10 15 20
budget

1.43

1.42

1.41

1.40

1.39

1.38

1.37

lo
g 1

0(
re

gr
et

)
rfboston

50 100 150 200
budget

1.4

1.2

1.0

0.8

0.6

0.4

lo
g 1

0(
re

gr
et

)

robotpush3d

Figure 1: Log-regret of our non-myopic budget-aware BO methods compared with baseline acquisi-
tion functions on a range of problems.

the tree whose fantasy sample is closest to the value actually observed when evaluating the suggested
candidate on the true function. For the other acquisition functions, the 200d initial points are chosen
using a Sobol sampling design.

G Additional Plots, Initial Design, Hyperparameter Estimation, Runtimes,
and Licenses

In each experiment, an initial stage of evaluations is performed using 2(d+1) points chosen according
to a quasi-random Sobol sampling design over X. Experiments are replicated either 100 (Ackley
and Robot Pushing) or 200 (all other test problems) independent trials and we report the average
performance and 95% confidence intervals. For all algorithms, the objective function and the log-cost
are modeled using independent GPs with constant mean and Matérn 5/2 covariance function. The
length scales of these GP models are estimated via maximum a posteriori (MAP) estimation with
Gamma priors.

The average runtimes of the algorithms in each problem are summarized in Table 1. Figure 1 plots a
95% confidence interval on mean log-regret versus the budget. In contrast with the plots in the main
paper, these plots also include the results for the 2-step variants of our algorithm. Figure 2 below
shows the additional evaluations performed by EI-PUC and B-MS-EI within budget in the problem
discussed in Figure 2 of the main paper.

The BoTorch package is publicly available under the MIT License. The datasets obtained from the
HPOLib and HPOLib 1.5 libraries are publicly available under the GNU General Public License. The
source code of the robot pushing problem is publicly available under the MIT License.
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Figure 2: Additional plots showing the evaluations performed within budget by EI-PUC and B-MS-EI.
Subsequent evaluations are not plotted because the budget is exhausted after their completion and thus
are not taken into account to report performance (i.e., the cost of the next point suggested exceeds the
remaining budget). Note that EI-PUC performs two additional evaluations within budget, whereas
B-MS-EI performs only one additional evaluation. B-MS-EI achieves a better final performance
within budget than the one achieved by EI-PUC.
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H Budgets Analysis

To understand the effect of the budget on the performance of B-MS-EI, we evaluate its performance
in three of our test problems (Dropwave, LDA, and Robot Pushing) using half of the original budget.
We also report the performance of EI-PUC-CC, which is the only other benchmark method that is
budget-aware. For comparison, we also include the performance of both algorithms under the original
budget. The results of this experiment are shown in Figure 3. Remarkably, B-MS-EI seems to benefit
from knowing the budget constraint in advance. This does not seem to be the case for EI-PUC-CC,
however.
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Figure 3: Performance of B-MS-EI (B-MS-EIp for Dropwave and Robot Pushing) and EI-PUC-CC
in three of our test problems under two different budgets. In contrast with EI-PUC-CC, B-MS-EI
seems to benefit from knowing the budget constraint in advance.
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