Test-Time Training on Graphs with Large Language Models (LLMs)

Anonymous Authors

ABSTRACT

1 2

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Graph Neural Networks have demonstrated great success in various fields of multimedia. However, the distribution shift between the training and test data challenges the effectiveness of GNNs. To mitigate this challenge, Test-Time Training (TTT) has been proposed as a promising approach. Traditional TTT methods require a demanding unsupervised training strategy to capture the information from test to benefit the main task. Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators. In this paper, we design a novel Test-Time Training pipeline, LLMTTT, which conducts the test-time adaptation under the annotations by LLMs on a carefully-selected node set. Specifically, LLMTTT introduces a hybrid active node selection strategy that considers not only node diversity and representativeness, but also prediction signals from the pre-trained model. Given annotations from LLMs, a two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels. A theoretical analysis ensures the validity of our method and extensive experiments demonstrate that the proposed LLMTTT can achieve a significant performance improvement compared to existing Out-of-Distribution (OOD) generalization methods.

CCS CONCEPTS

• Computing methodologies \rightarrow Artificial intelligence; Machine learning.

KEYWORDS

Test Time Training, Large Language Models, Graph Neural Networks, OOD Generalization

1 INTRODUCTION

Graph is a kind of prevalent multi-modal data, consisting of modalities of both the topological structure and node features [30, 38]. Text-Attributed Graphs (TAGs) are graphs of which node attributes are described from the text modality, such as paper citation graphs containing paper descriptions and social network data including user descriptions. As a successful extension of Deep Neural Networks (DNNs) to graph data, Graph Neural Networks (GNNs) have demonstrated great power in graph representation learning, and have

for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or comblish to accele on service acts or distribute to bits permitted.

58

achieved revolutionary progress in various graph-related applications, such as social network analysis [16], recommendation [39, 64] and drug discovery [8, 15]. Despite remarkable achievements, GNNs have shown vulnerability in Out-Of-Distribution (OOD) generalization, as it is observed that GNNs can confront significant performance decline when there exists distribution shift between the training phase and the test phase [19, 33].

Increasing efforts [56, 58] have been made to address the Out-Of-Distribution (OOD) challenge on graphs. A majority of these methods aim at increasing the models' capability and robustness via data augmentation techniques designed based on heuristics and extensive empirical studies [28, 55, 61]. Meanwhile, some researchers have investigated to improve the model's generalization capability via adversarial training strategies [58] and the principle of invariance [56]. Nevertheless, these approaches [56, 58] require interventions during the training phase and can hardly make the continuous adaptability to the real-time data within the constraints of privacy, resources, and efficiency. This gap has prompted the development of Test-Time Training (TTT) [31, 44], which aims to dynamically adapt to continuously presented test data based on an unsupervised learning task during the test phase.

Test-Time Training (TTT) have demonstrated great potential in alleviating OOD generalization problem. Fully Test-Time Training (FTTT) [25, 49] is the extension of TTT. This kind of post-hoc method is more suitable for real-world applications due to its plugand-play simplicity, which does not interfere with the expensive training process required for pre-trained backbones. Traditional FTTT aims at adapting the pre-trained model to accommodate test data from different domains within an unsupervised setting. However, the design of the unsupervised training phase entails stringent criteria: it must ensure that the unsupervised task complements the main task without causing overfitting to the model and neglecting the main task. Additionally, unsupervised tasks must implicitly capture the distribution of the test data. Devising such an unsupervised training strategy poses a significant challenge. A natural solution is to utilize the same training strategy as the main task in the test phase, i.e., supervised learning. Meanwhile, a recent study [12] has shown that incorporating a limited number of labeled test instances can enhance the performance across test domains with a theoretical guarantee. This motivates us to introduce a small number of labels at test time to further advance the model performance on OOD graphs.

In the FTTT scenario, with continuous arrival of data during testing, human annotation cannot handle this situation flexibly and efficiently. Fortunately, Large Language Models (LLMs) have achieved impressive progresses in various applications [6, 14, 17]. including zero-shot proficiency in annotation on text-attributed graphs [7]. With the assistance of LLMs, only a few crucial nodes are chosen and assigned pseudo labels. Then, FTTT is executed using the same training approach as the main task. This method avoids

115

116

59

60

61 62 63

64

65

66

67

68

Unpublished working draft. Not for distribution.

and/or a fee Request nermissions from permissions@acm org

ACM MM, 2024, Melbourne, Australia

^{56 © 2024} Copyright held by the owner/author(s). Publication rights licensed to ACM

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

⁵⁷ https://doi.org/10.1145/nnnnnnnnnnn

117 the need for intricate unsupervised task designing. Therefore, in this work we propose a novel method to leverage the annotation 118 119 capability of LLMs to advance test-time training, so as to alleviate the OOD problem on graphs. However, to achieve this goal, we face 120 tremendous challenges: (1) How to select nodes for annotation with 121 LLMs given a limited budget? The studied problem in this paper is different from that in [7]. For node selection, in addition to the 123 importance of the characteristics of LLMs and the test data, the 124 125 predictions of the pre-trained model on test nodes can also provide 126 crucial signals. (2) How to effectively adapt the pre-trained model under the noisy and limited labels? The labels generated by LLMs 127 128 are noisy [7]. Therefore, it is essential to design a training strategy which is able to simultaneously utilize a small number of noisy 129 labeled nodes and the remaining unlabeled nodes during test time. 130

To tackle these challenges, we introduce a Fully Test-Time Train-131 132 ing with LLMs pipeline for node classification on graphs, LLMTTT. During the selection of node candidates, different from traditional 133 graph active node selection methods, LLMTTT introduces a hybrid 134 135 active node selection strategy, which considers node diversity, node representativeness, and the prediction capacity of the pre-trained 136 GNN simultaneously. Meanwhile, to leverage both the noisy labeled 137 138 nodes and unlabeled nodes, LLMTTT designs a two-stage test-time 139 training strategy. Our main contributions can be summarized as follows: 140

- We introduce a new pipeline, LLMTTT, from the graph OOD problem. In LLMTTT, we use LLMs as annotators to obtain pseudo labels. These labels are then used to fine-tune the pre-trained GNN model during test time.
 - We develop a hybrid active node selection which considers not only the node diversity and representativeness on graphs but also the prediction signals from the pre-trained model.
 - We design a two-stage training strategy for the test-time model adaptation under the noisy and limited labeled samples.
 - We have conducted extensive experiments and theoretical analysis to demonstrate the effectiveness of LLMTTT on various OOD graphs.

2 PRELIMINARY

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

This section provides definitions and explanations of key notations and concepts in this paper. First, primary notations and the pipeline of traditional fully test-time training are introduced. Next, we illustrate the proposed LLMTTT pipeline for a more comprehensive understanding of our framework.

In this study, we focus on the node classification task, where the goal is to predict the labels of nodes within a graph and we denote the loss function for this task as $L_m(\cdot)$. Given a training node set $D_s = (X_s, Y_s)$ and a test node set $U_{te} = (X_t)$, where X denotes the node samples and Y indicates the corresponding labels.

Traditional FTTT pipeline. Assuming that the model for the node classification task has *K* layers, which can be denoted as $\theta = {\theta_1, ..., \theta_K}$. Given the test data U_{te} , the parameters of the learned model will be partially (typically the first *k* layers of the model are fixed) updated by the SSL task during the fully testtime training phase. We can denote the updated part of model as 175

 $(\boldsymbol{\theta}'_{k+1},...,\boldsymbol{\theta}'_{K}).$ In the inference phase, the model $(\boldsymbol{\theta}_{1},...,\boldsymbol{\theta}_{k},...,\boldsymbol{\theta}'_{K})$ is used to make predictions for the test data.

The proposed LLMTTT pipeline. Traditional FTTT pipeline aims at adapting a pre-trained model for streaming test-time data under unsupervised settings. However, it is not trivial to design such an appropriate and effective unsupervised task, which is supposed to be positively-correlated to the main training task [44]. In order to solve this problem, we introduce a novel pipeline named LLMTTT , which substitutes a semi-supervised task with the assistance of LLMs, for the unsupervised task during the test-time training phase. The proposed pipeline can be formally defined as follows:

Given a model $f(x; \theta)$, initialized with parameters θ_s obtained by pre-training on train data. We select most valuable samples under a limited budget from test nodes by a carefully designed hybrid node selection method, denoted as $X_{tr} = ActAlg(X_t)$. Then the selected samples are given pseudo labels by LLMs, denoted as $D_{tr} = (X_{tr}, \hat{Y}_{tr})$ where $\hat{Y}_{tr} = LLM_{anno}(X_{tr})$. After obtaining the labeled test nodes, we employ a two-stage training strategy that incorporates both the labeled test nodes D_{tr} and unlabeled test nodes D_{tre} . The LLMTTT task aims to optimize the model as:

$$\boldsymbol{\theta}^* \coloneqq \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left(\mathbb{E}_{(x,\hat{y}) \in D_{tr}} \left[L_C(f(x;\boldsymbol{\theta}), \hat{y}) \right] + \mathbb{E}_{x \in D_{te}} \left[L_U(f(x;\boldsymbol{\theta})) \right] \right),$$
(1)

where
$$X_{tr} = \begin{cases} \emptyset, & \text{in FTTT} \\ ActAlg(X_t), & \text{in LLMTTT}, \end{cases}$$
 s.t. $|X_{tr}| \le B,$
(2)

 L_C is the cross entropy loss, L_U is an unsupervised learning loss, and *B* is the budget. D_{te} are the unlabeled nodes in the test data U_{te} that have not been labeled. \hat{y} is the pseudo labels given by LLMs.

3 METHOD

In this section, we will introduces the novel LLM-based fully testtime training framework (LLMTTT) for the graph OOD problem. We first delineate the overall framework and then detail the specific components of LLMTTT .

3.1 An Overview of LLMTTT

The LLMTTT pipeline proposed in this paper is illustrated in the Fig. 1 that consists of three parts: pre-training phase, fully test-time training phase, and inference phase as follows:

Pre-training phase. The objective of this phase is to acquire a pre-trained classification model with optimized parameters capable of accurately predicting labels for the train data D_s . It is worth noting that only the model parameters θ and the test data U_{te} are required for the subsequent test-time model adaptation. Therefore, LLMTTT is a model-agnostic framework.

Fully test-time training phase. The objective of our proposed approach is to utilize the annotation capabilities of LLMs to enhance test-time training to handle the OOD problem on graphs. We encounter several challenges in achieving this goal: (1) How to select the most valuable nodes for annotation using LLMs within a constrained budget? To address this issue, LLMTTT proposes a hybrid active node selection method incorporating both the knowledge from the pre-trained model and the node characteristics. Detailed illustration is provided in Section 3.2. (2) How to obtain high-quality pseudo labels based on LLMs? Given the candidate set of nodes, the

Figure 1: The overall framework of LLMTTT.

quality of pseudo labels is crucial. Thus, we enhance the annotation by carefully designing various prompts, as described in Section 3.3. Moreover, the confidence scores from LLMs' predictions are used for further node filtering. (3) How to effectively adapt the pre-trained model under the noisy and limited labels? It is challenging to design a strategy to jointly leverage noisy labels and test samples. To tackle this challenge we propose a two-stage training strategy including training with filtered nodes and self-training with unlabeled data. Additional information is available in Section 3.4. After a two-stage test-time training, the pre-trained model is updated specifically for the test set.

Inference phase. During the inference phase, the updated model is utilized to predict the labels for the test data, following the traditional model inference process.

3.2 Hybrid Active Node Selection

Node selection is crucial in the design of LLMTTT . To better prompt the model performance under a controllable budget, it is eager to select the most valuable nodes for the test-time training. To achieve this goal, we need to consider not only the characteristics of the test data, but the predictions of the pre-trained model on the test data. Thus, LLMTTT proposes a two-step hybrid active node selection method. It consists of uncertainty-based active learning to leverage the important signals from the pre-trained model, and distribution-based active learning that is able to exploit the data characteristics. The details of these two steps are illustrated in the following subsections.

3.2.1 *uncertainty-based active learning.* To fully exploit the potential of model improvement from the test-time model adaptation, LLMTTT targets at nodes that are most difficult for the pre-trained GNN model to predict. To achieve this, uncertainty-based active learning is designed, which makes use of the prediction uncertainty indicated by prediction entropy [43] to select potential annotation nodes. Unlike other metrics of uncertainty [37, 48], entropy takes into account all class probabilities for a given *x*. Specifically, for each node v_i , LLMTTT computes its prediction entropy $Q(v_i)$ based on the prediction results from the pretrained GNN model, and then the nodes with higher prediction entropy are more likely to be selected. The prediction entropy of node v_i , $Q(v_i)$ is calculated as follows:

$$Q(v_i) = -\sum_c p(y = c|x_i) \log p(y = c|x_i), \tag{3}$$

where c denotes the potential labels and y is the predicted label given by GNNs.

3.2.2 distribution-based active learning. The nodes selected through uncertainty sampling often exhibit high correlation within the same neighborhood. As a result, the distribution of the selected node set deviates from the original distribution, significantly compromising the diversity and representativeness of the node candidate set [47]. With this rationale, LLMTTT proposes to further refine node selection using distribution-based methods to emphasize the crucial data distribution characteristics. To be specific, a combiantion of PageRank [32] and FeatProp [57] is employed to capture the node distribution from both the structural and feature perspective.

3.2.3 The Selection Algorithm. The hybrid active node selection process is summarized in Algorithm 1. In order to select the most valuable *B* nodes, a scaling factor β is introduced to broaden the range of selection in the first step. Initially, LLMTTT filters out βB samples where $\beta > 1$, that exhibit the highest level of uncertainty. To consider both structural and feature attributes, we devise a composite active learning score $F(v_i)$ as the criterion for distribution

Algorithm 1 The Selection Algorithm 349 350 Input: X_t , GCN 351 Output: X_{tr} 352 1: $Y = GCN(X_t)$ 353 2: $Q_{\text{list}} = []$ 354 3: for v_i in X_t do 355 $Q(v_i) = -\sum_c p(y = c | x_i) \log p(y = c | x_i)$ 4: 356 Q_{list} .append($Q(v_i)$) 5: 357 6: end for 358 7: $S_{\beta B} = (X_t)$ for v_i in sorted(Q_{list} , reverse=True)[: βB] 359 8: $F_{list} = []$ 360 9: **for** v_i in $S_{\beta B}$ **do** 361 $F(v_i) = Score_{pagerank}(v_i) + \alpha \times Score_{featprop}(v_i)$ 10: 362 F_{list} .append $(\vec{F}(v_i))$ 11: 363 12: end for 364 13: $X_{tr} = (X_t)$ for v_i in sorted(F_{list} , reverse=True)[: B] 365 14: return X_{tr} 366

selection. Subsequently, *B* samples that exhibit both uncertainty and diversity are selected.

3.3 Confidence-aware High-quality Annotation

Given the set of selected nodes, the quality of their pseudo labels plays an important role in the performance after test-time training, based on the empirical study in Section 5.3.1. Therefore, it is imperative to make full use of LLMs and the pretrained GNN to obtain high-quality annotations after acquiring the candidate node set via the hybrid active learning. Inspired by existent exploration of LLMs on graphs [6, 7, 14], LLMTTT proposes to prompt based on the "few-shot" strategy, which is described in Appendix B. Specifically, information of some labelled nodes from the training set serves as a part of the prompt. Moreover, the prediction results from the pretrained GNNs are also included into the prompt. In addition, to evaluate the quality of LLM's annotations, we further request the prediction confidence for the pseudo labels from LLMs.

3.4 Two-Stage Training

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

406

After LLMs' annotation on the selected nodes, LLMTTT moves to the next phase, test-time training phase. The proposed LLMTTT creatively suggests utilizing pseudo labels for semi-supervised training during test time instead of an unsupervised training strategy. However, given the LLMs' annotation budget, the pseudo labels are too few to effectively adapt the model, which may even lead to a biased adaptation. To tackle this challenge, we propose to further design test-time training by integrating unsupervised learning with supervised learning to better leverage the information from all test nodes. In a nutshell, during test-time training phase, LLMTTT first trains the model with filtered nodes so as to reduce the impact from the noisy labels, and then leverages the self-training that can incorporate the information from the unlabeled data.

3.4.1 Stage 1: Training with filtered nodes. The pseudo labels generated by LLMs may be noisy and consequently affect the model.
The pseudo labels are not entirely accurate. Therefore, we obtain
the confidence of the LLMs' prediction through confidence-aware
high-quality annotation in Section 3.3. To mitigate the potential

impact from the noisy pseudo labels, LLMTTT propose to do a node filtering by excluding nodes based on confidence scores. However, it may cause label imbalance in the annotated node set. To avoid this issue, LLMTTT proposes to take the label diversity into

consideration during the node filtering process.

To quantify the change in diversity, we adopt the Change of Entropy (COE), inspired by [7]. It measures the shift in entropy of labels when a node is removed from the set. Specifically, assuming that the current set of selected nodes is denoted as V, COE can be defined as $COE(v_i) = H\left(\hat{y}_{V-\{v_i\}}\right) - H(\hat{y}_V)$ where $H(\cdot)$ is the Shannon entropy function [43], and \hat{y} denotes the annotations generated by LLMs. A larger COE value indicates that the removal of a node from the node set has a more pronounced impact on the diversity of the node set. To conclude, we integrate COE with the confidence score provided by LLMs to effectively balance both diversity and annotation quality. The final filtering score of each label can be expressed as $Score_{filter}(v_i) = Score_{conf}(v_i) - \gamma \times$ $COE(v_i)$. The annotated nodes with relatively-high filtering score are selected for the few-shot test-time learning. Then we Then the filtered nodes, along with their corresponding pseudo labels, are utilized as supervision for model adaption. In this case, the cross-entropy loss L_C is employed in stage 1.

3.4.2 Stage 2: self-training with unlabeled nodes. To alleviate the potential biased model adaptation from the limited noisy labeled annotated by LLMs, the proposed LLMTTT designs an additional self-training stage, which aims at leveraging the information from large amount of unlabeled test data.

Inspired by Softmatch [5], to fully leverage the unlabeled data information, we further perform self-training on the fine-tuned GNN model with the unlabelled test data. Specifically, an augmented view is generated via DropEdge. Next, a weighted cross-entropy loss are computed between the original view and augmented view. Intuitively, the more confident the prediction is, the more important role will this node make in the weighted cross-entropy loss. Formally, we denote the weighted cross-entropy loss L_u as follows:

$$L_{u} = \sum_{i=1}^{N} \lambda\left(p\left(y \mid x_{i}\right)\right) H\left(p\left(y \mid x_{i}^{a}\right), p\left(y \mid x_{i}\right)\right)$$
(4)

where p(y|x) denotes the model's prediction, x_i is an unlabelled test node in D_{te} , x_i^a represents the augmented view and x_i is the original data. y is the prediction given by updated model. $\lambda(p)$ is the sample weighting function where p is the abbreviation of p(y|x). N is the size for unlabeled data.

The uniform weighting function is vital to this process. An ideal $\lambda(p)$ should accurately represent the original distribution while maintaining both high quantity and quality. Despite its importance, $\lambda(p)$ is rarely explicitly or adequately defined in existing methods. Inherently different from previous methods, we assume that the weight function lambda follows a dynamically truncated Gaussian distribution followed by [5]. More detailed is provided in Appx. F.

4 THEORETICAL ANALYSIS

Compared to the traditional TTT pipeline, LLMTTT introduces supervision into the model adaptation process. This section theoretically demonstrates that incorporating labelled test samples 407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

provided by LMMs during the test-time training phase can significantly improve the overall performance across the test domain. This also provides a theoretical guarantee for the proposed LLMTTT.

To simplify the theoretical analysis, we consider the main task as a binary classification problem. Given a domain X with two probability distributions D_1 and D_2 , $h: X \to \{0, 1\}$ is a hypothesis serving as the prediction function from domain X to a binary label space. Let \mathcal{H} denote a hypothesis class with VC-dimension d. We employ the $\mathcal{H} \triangle \mathcal{H}$ -distance as detailed in [1], offering a fundamental metric to quantify the distribution shift between D_1 and D_2 over X. The discrepancy between h and the true labeling function g under distribution D is formally expressed as $e(h,g) = \mathbb{E}_{x \sim D}[|h(x) - g(x)|]$, commonly known as the domain error e(h).

Building upon two lemmas [12] provided in Appx. G, we establish theoretical bounds under the LLMTTT setting when minimizing the empirical weighted error using the hypothesis *h*. Thm. 1 characterizes the error bounds in the LLMTTT setting, which can be formally expressed to quantify the generalization error. Expanding on this, Thm. 2 establishes the upper bound of the error that can be effectively minimized by integrating a portion of the labeled test data compared with FTTT.

Theorem 1. Considering data domains X_s , X_t , let S_i represent unlabeled samples of size m_i sampled from each of the two domains respectively. The total number of samples in X_{train} is N, with a sample number ratio of $\lambda = (\lambda_0, \lambda_1)$ in each component. If $\hat{h} \in \mathcal{H}$ minimizes the empirical weighted error $\hat{e}_{\omega}(h)$ using the weight vector $\omega = (\omega_0, \omega_1)$ on X_{train} , and $h_j^* = \arg \min_{h \in \mathcal{H}} e_j(h)$ is the optimal hypothesis within the *j*-th domain, then for any $\delta \in (0, 1)$, with a probability exceeding $1 - \delta$, the following holds:

$$e_{j}(\hat{h}) - e_{j}\left(h_{j}^{*}\right) \leq \sum_{i=0, i\neq j}^{1} \omega_{i}(\hat{d}_{\mathcal{H}\Delta\mathcal{H}}\left(S_{i}, S_{j}\right) + 4\sqrt{\frac{2d\log(2m) + \log\frac{2}{\delta}}{m}} + \varepsilon_{ij}) + C. \quad (5)$$
where $C = 2\sqrt{\left(\sum_{i=0}^{1} \frac{\omega_{i}^{2}}{\lambda_{i}}\right) \left(\frac{d\log(2N) - \log(\delta)}{2N}\right)}$ and

 $\varepsilon_{ij} = \min_{h \in \mathcal{H}} \left\{ e_i(h) + e_j(h) \right\}$

Remark. The domain error is determined by three factor: the distribution of training data (*C*), estimated distribution shift $(\hat{d}_{H\Delta \mathcal{H}} (S_i, S_j))$ and the performance of the joint hypothesis (ε_{ij}). The ideal joint hypothesis error ε_{ij} assesses the intrinsic adaptability between domains. Additional theoretical analysis can be found in Appx. G.

Furthermore, Thm. 1 can be used to derive bounds for the test domain error e_T . When considering the optimal test hypothesis $h_T^* = \arg \min_{h \in \mathcal{H}} e_T(h)$, we obtain

$$\left| e_{T}(\hat{h}) - e_{T}(h_{T}^{*}) \right| \leq \omega_{0} \left(\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(S_{0}, S_{T}) + 4\sqrt{\frac{2d\log(2m) + \log\frac{2}{\delta}}{m}} + \varepsilon \right) + 2\sqrt{\frac{\omega_{0}^{2}}{\lambda_{0}} + \frac{(1-\omega_{0})^{2}}{1-\lambda_{0}}} \sqrt{\frac{d\log(2N) - \log(\delta)}{2N}}.$$
(6)

Thm. 1 formally defines the domain error $e_j(\hat{h})$, and furthermore, we can utilize the test domain error $e_T(\hat{h})$ to verify the significance of incorporating labeled data. The following theorem presents a direct theoretical guarantee that LLMTTT decreases the error bound on the test domain compared to traditional TTT in the absence of labeled test data.

Theorem 2. Let \mathcal{H} be a hypothesis class with a VC-dimension of d. Considering the LLMTTT data domains X_s and X_t , if $\hat{h} \in \mathcal{H}$ minimizes the empirical weighted error $\hat{e}_{\omega}(h)$ using the weight vector ω on training set X_{tr} , let the $\epsilon(\omega, \lambda, N)$ to denote the upper bound of $|e(\hat{h}) - e(h^*)|$. In the FTTT scenario, no samples from the test domain are selected for labeling (i.e., for weight and sample ratio vectors ω' and $\lambda', \omega'_0 = \lambda'_0 = 1$ and $\omega'_1 = \lambda'_1 = 0$). Then in LLMTTT, for any $\lambda \neq \lambda'$, there exist a weight vector ω shuch that:

$$\epsilon_T(\boldsymbol{\omega}, \boldsymbol{\lambda}, N) < \epsilon_T(\boldsymbol{\omega}', \boldsymbol{\lambda}', N).$$
 (7)

Remark. Thm. 2 suggests that even a small number of labeled examples during the testing phase can improve the overall model performance, thereby validating the effectiveness of the proposed LLMTTT in addressing distribution shifts. All proofs are provided in Appx. G.

EXPERIMENT

This section presents extensive experiments to evaluate the performance of the proposed LLMTTT . Firstly, we provide a detailed explanation of the experimental setup. Then, the investigation aims to answer the following research questions:

RQ1. How effective is LLMTTT on OOD generalization scenario? **RQ2**. How to design prompts to obtain high-quality pseudo labels? **RQ3**. How does the node set used for training affect LLMTTT performance?

RQ4. What are the contributions of the two-stage training strategy in LLMTTT framework?

5.1 Experimental Settings

5.1.1 Datasets. We adopt the following TAGs datasets for node classification: CORA [34], PUBMED [40], CITESEER [10], WIKICS [35] and OGBN-ARXIV [22]. Inspired by GOOD [13], we explicitly make distinctions between covariate and concept shifts and design data splits that accurately reflect different shifts. We used two domain selection strategies combined with covariate and concept, then obtain 4 different splits. For specific details regarding the OOD datasets, please refer to Appendix A. Subsequently, we present the results for concept_degree and covariate_word in Table 1. Additional experimental results can be found in Table 9 in Appendix E.

5.1.2 Evaluation and Implementation. We adopt the wide-used metric, i.e., accuracy (ACC) to evaluate the model performance. All experiments were conducted five times using different seeds and the mean performance is reported. GPT-3.5-turbo-0613 is adopted to generate annotations. Regarding the prompting strategy for generating annotations, the integration of cost and accuracy led to the adoption of the few-shot strategy. The budget for active selection was detailed in Table 4 in Appendix A. The pipeline can be applied to any GNN model, with the most popular GCN [27] being adopted in this experiment. The results of other GNN backbones (GAT and

Table 1: The comparison results between LLMTTT and representative baselines.

	concept_degree					covariate_word				
dataset	LLMTTT	EERM	Gtrans	Tent	HomoTTT	LLMTTT	EERM	Gtrans	Tent	HomoTTT
cora	88.53±0.01	88.44±0.98	85.75±0.02	87.21±0.00	87.04±0.00	92.25±0.02	92.14±0.40	90.04±0.11	90.41±0.00	90.51±0.00
pubmed	86.22±0.00	OOM	79.64±0.13	85.09 ± 0.00	85.09±0.00	86.97±0.01	OOM	79.44±0.11	86.56±0.00	86.49±0.00
citeseer	79.67±0.00	69.30±1.81	69.43±0.23	70.48 ± 0.00	70.48 ± 0.00	86.33±0.10	71.94±0.78	69.43±0.23	75.86±0.00	76.02±0.00
wikics	80.02±0.02	79.89±0.10	75.68±0.23	78.63±0.00	78.89±0.00	86.35±0.00	85.44±0.23	79.77±0.10	82.27±0.00	82.45±0.00
ogbn-arxiv	73.82±0.00	OOM	63.81±0.21	65.40 ± 0.00	66.74±0.00	75.06±0.00	OOM	69.98±0.12	70.16 ± 0.00	70.32±0.00

Graph SAGE) are detailed in Appendix E. Instead of undergoing complex parameter tuning, we fixed the learning rate used in prior studies for all datasets. The code and more implementation details are available in supplementary material.

5.1.3 Baselines. We compare LLMTTT with baseline approaches, including (1) EERM [56], a recent State-Of-The-Art (SOTA) method specifically designed for graph OOD issues. (2) Tent [49], a test-time training method in the field of image classification. (3) GTrans [25], a test-time graph transformation approach for node classification.
(4) HomoTTT [62], a fully test-time training method that utilizes Self-Supervised Learning (SSL) to fine-tune pretrained GNN model.

5.2 Performance on OOD Generalization (RQ1)

To answer RQ1, we conduct a comparative analysis with other four OOD generalization methods. The ACC results are reported in Table 1. From the comparison results, we make some findings. (1) The results in Table 1 display that the proposed LLMTTT performs exceptionally well in the node classification task on the OOD datasets, surpassing all baseline methods. (2) EERM exhibits good performance compared with Tent, but it is constrained by computing resources. This further suggests that post-hoc methods (i.e. FTTT) are better suited for real-world applications due to their plug-andplay simplicity, which does not interfere with the costly training process associated with pre-trained models. (3) GTrans and HomoTTT are both FTTT-based methods. The superior performance of LLMTTT over them illustrates that even a limited number of labeled test instances can significantly enhance test-time training performance.

More results under other split methods are presented in Table 9 in Appendix E. This further demonstrates the effectiveness of the proposed LLMTTT.

5.3 Performance on Different Prompts (RQ2)

It is intuitively believed that higher quality pseudo labels can more effectively assist in model fine-tuning during TTT. However, LLMs cannot always produce high-quality labels. Therefore, it is necessary to subsequently obtain better quality labels comparing the accuracy of labels generated by LLMs under different prompts. Before proceeding, we can evaluate this conjecture with a simple experiment.

5.3.1 The Importance of Pseudo Label Accuracy. At this part, the
 relationship between LLMTTT performance and LLM accuracy is
 explored. After securing a fixed node candidate set, the accuracy
 of the selected nodes is artificially controlled. The experimental

Figure 2: Investigation on how different LLM accuracy affect the performance of LLMTTT. "random" means the randombased selection. "pagerank" means the pagerank-based selection.

results in Fig. 2 confirm our conjecture, which states that pseudo label accuracy decide the celling of LLMTTT accuracy under a fixed node selection method

5.3.2 LLM and TTT Accuracy under Different Prompts. In this part, we test the accuracy of pseudo labels provided by LLM under different prompts on test samples. Specifically, we used the following prompts: (1) zero-shot; (2) few-shot; (3) few-shot with GNN; (4) few-shot with 2-hop summary. Briefly speaking, "zero-shot" denotes there is no ground-truth label information, while "few-shot" represents that there are some ground-truth labels from the training set. In addition, "few-shot with GNN" further incorporate the information from the pre-trained GNN model based on "few-shot". "few-shot with 2-hop summary" refers to a twice-request prompt strategy [6], which include both the target node information and the aggregation information from its neighboring nodes.

We conducted a comparative study to identify strategies that are effective in terms of both accuracy and cost-effectiveness. **Observation 1.** The benefits of neighborhood summary are not universal across all datasets. The results presented in Table 2 demonstrate that using a few-shot prompt to aggregate neighbor information can result in performance improvements. However, prompts

Table 2: Accuracy of pseudo labels annotated by LLMs under different prompts. (\cdot) indicates the cost, which is determined by comparing the token consumption to that of zero-shot prompts.

dataset	zero-shot	few-shot	few-shot with GNN	few-shot with 2- hop summary
cora	64.40 (1.0)	67.03 (2.2)	86.02 (2.4)	68.10 (3.1)
pubmed	87.84 (1.0)	91.23 (2.0)	75.50 (2.2)	81.35 (3.2)
citeseer	60.92 (1.0)	74.03 (2.1)	65.41 (2.3)	77.43 (3.3)
wikics	66.02 (1.0)	65.15 (2.6)	69.88 (2.7)	55.05 (3.2)

Table 3: The results of different active selection strategies.

	our component			AL methods			
	hybrid	pagerank	featprop	entropy	random	density	degree
cora	87.34	86.62	86.86	87.10	86.62	86.62	86.86
pubmed	82.52	81.22	81.32	83.32	85.94	83.56	81.27
citeseer	76.85	69.07	75.21	76.39	73.08	72.37	69.42
wikics	74.15	73.22	72.73	73.70	72.76	74.10	73.22

incorporating structural information may also be adversely affected by heterogeneous neighboring nodes, as evident by the significant degradation of LLM's performance on PUBMED and WIKICS after incorporating structural information.

The integrated prompt, which combines the predictive information from a pre-trained GNN model, does not consistently yield positive results across all datasets. Additionally, its performance in this scenario is intricately tied to the effectiveness of the pre-trained model.

Given the aforementioned information and the cost under different prompts shown in Table 2, we adopt the few-shot prompt approach with the aim of attaining a more generalized and superior performance. Meanwhile, the failure of "few-shot with 2-hop summary" also motivated us to design a prompt that can accurately represent the graph structure. Thus, LLMs can be more effectively employed to solve graph level tasks.

5.4 Impact of Candidate Node Set (RQ3)

The nodes utilized for model training undergo two selection processes. Initially, a hybrid active node selection strategy is employed, followed by a post-filtering strategy that leverages the prediction results obtained from LLMs.

5.4.1 Impact of Active Selection Strategies. Initially, we explore various components of hybrid active node selection, including Pagerank, FeatProp, and entropy. Secondly, we compared our hybrid node selection strategy with traditional active learning methods, such as density and degree, as well as random node selection methods.

From Table 3, we find that traditional active learning methods are not applicable and effective as expected in our scenarios. Based on the empirical results, the study makes the following observation: **Observation 2.** Some research [7] has demonstrated that nodes in proximity to cluster centers often demonstrate higher annotation

Figure 3: The results of different post-filtering strategies. "none" means graph active selection combined without postfiltering. "conf_only" means the graph active selection combined with confidence. "conf_COE" means the graph active selection combined with confidence and COE.

quality. Consequently, the node set selected by density-based active strategy will be assigned high-quality annotations. However, the density-based active selection strategy does not achieve the optimal performance. This gives us an intuition that improvement not only depends on LLM accuracy, but also the node selection. The Appendix C further substantiates our conjecture through the control of accuracy of labels annotated by LLMs.

5.4.2 Impact of Post-Filtering. In this part, we examine the effectiveness of the proposed post-filtering strategy. Given that the proposed post-filtering strategy incorporates confidence scores and takes into account the diversity of nodes (COE), we also perform ablation experiments in this section. The experimental results are presented in Figure 3.

Observation 3. The proposed post-filtering strategy demonstrates significant effectiveness. Furthermore, aligning with our previous observation, although the node selected by "conf_COE" does not possess the most accurate labels, they demonstrate the best model performance. This verification from another perspective suggests that model performance is not fully positively correlated with pseudo label accuracy.

5.5 Ablation of Two-stage Training (RQ4)

Our method considers a two-stage training strategy for model adaptation including training with filtered nodes and self-training with unlabeled nodes. To verify the effectiveness of each stage, we perform an ablation study to investigate whether incorporating training with filtered nodes or self-training strategy can lead to performance improvements. The results in Figure 4 indicate that both of the training strategy contribute to the model performance, with stage 1 making a greater contribution. This not only underscores the effectiveness of our proposed two-stage training strategy but also further highlights that the incorporating limited labeled test instances enhance model performance.

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

870

6 RELATED WORK

LLMTTT aims at solving the challenges of data distribution shift in GNNs via a novel test-time training method based on LLMs. To achieve this goal, a careful graph active learning strategy is also developed. The related work are discussed as follows:

6.1 Distribution shift in GNNs

Graph Neural Networks (GNNs) have demonstrated exceptional capabilities in graph representation learning [36, 59], achieved revolutionary progress in various graph-related tasks [51], such as social network analysis [24, 45], recommendation systems [9, 18, 53], and natural language processing [3, 23, 29]. However, a distribution shift has been observed in various graph-related applications [20, 21], where the graph distribution in the training set differs from that in the test set. Such discrepancy could substantially degrade the performance of both node level [56, 66] and graph level tasks [56, 66]. This distribution shift frequently occurs between the testing and training graphs [20, 21]. Therefore, enhancing the out-of-distribution (OOD) generalization capabilities of GNNs is crucial. Several solutions have been proposed to tackle this issue, such as EERM [56], which trains GNNs to be adaptable to multiple environments by introducing environmental variables, and GTrans [25], which enhances generalization ability by modifying the input feature matrix and adjacency matrix during test time.

6.2 Test-Time Training

Test-time training (TTT) is a technique recently proposed for par-856 857 tially adapting a model based on test samples, to account for dis-858 tribution shifts between the training and test sets. TTT was first 859 introduced by [44]. To address the unexpected adaptation failures 860 in TTT, TTT++[31] employs offline feature extraction and online 861 feature alignment to enable regularization adaptation without the need to revisit the training data. However, in some cases, the train-862 ing data may be unavailable during test time or the training process 863 may be computationally demanding, which can reduce the appli-864 cability of these methods. To overcome this limitation, Tent [49] 865 introduces a method for fully test-time training that relies solely on 866 test samples and a trained model. They propose an online setting 867 868 after the TTT task to achieve fully test-time training through the 869 minimization of the model's test entropy. While the aforementioned

Anonymous Authors

studies focus on test-time training within the image domain, the TTT framework has also been implemented in the realm of graphs, including GTrans [25], GT3 [52], GraphTTA [4], and TeSLA [46].

6.3 Graph Active Learning

Graph active learning aims to optimize test performance through the strategic selection of nodes within a constrained query budget, effectively addressing the challenges of data labeling. The most prevalent approach in active learning is uncertainty sampling [37, 43, 48, 54], wherein nodes that the current model has the least certainty about are selected during the training phase. Another significant strand within active learning approaches involves distributionbased selection strategies. These methods [2, 11, 41, 42, 65, 65] evaluate samples based on their positioning within the feature distribution of the data. Representativeness and diversity represent two commonly utilized selection criteria, both of which rely on the data distribution. Generally, active learning primarily focuses on selecting representative nodes; however, it faces additional challenges in real world scenarios. Furthermore, active learning needs to address two key issues: assigning pseudo-labels to the selected nodes and effectively utilizing a limited number of labels for training. In the proposed LLMTTT, these two problems are well solved.

6.4 LLMs for Graphs

Large language models (LLMs) with massive knowledge demonstrate impressive zero-shot and few-shot capabilities. Considerable research [14, 17] has begun to apply LLMs to graphs, enhancing performance on graph-related tasks. Utilizing LLMs as enhancers [14] presents a viable approach, leveraging their power to enhance the performance of smaller models more efficiently. Compared to shallow embeddings, LLMs offer a richer commonsense knowledge base that could potentially enhance the performance of downstream tasks. Relying solely on LLMs as predictors [6, 50, 60] represents another viable approach, with GPT4Graph [14] evaluating the potential of LLMs in performing knowledge graph (KG) inference and node classification tasks. NLGraph [50] introduced a comprehensive benchmark to assess graph structure reasoning capabilities. Distinct from these approaches, we employ LLMs as annotators as [7], combining the advantages of the two aforementioned methods to train an efficient model without relying on any true labels.

7 CONCLUSION

We introduce a novel TTT pipeline LLMTTT which introduces LLM as an annotator to provide a limited number of pseudo labels for fine-tuning the pre-trained model. To select a candidate set that is both representative and diverse, the proposed pipeline LLMTTT designs a hybrid active selection that also considers the pre-trained model signal. Following this, we generate high-quality labels with corresponding confidence scores with the help of LLMs. Finally, we present a two-stage training strategy that maximises the use of the test data. The strategy includes confidence-based post-filtering to mitigate the potential impact from the noisy labeled test data. Additionally, a weighting function is used to introduce a large amount of unlabeled test data into the training process. Comprehensive experiments and theoretical analysis demonstrate the effectiveness of LLMTTT .

Test-Time Training on Graphs with Large Language Models (LLMs)

REFERENCES

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

- Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. *Mach. Learn.* 79, 1–2 (may 2010), 151–175. https://doi.org/10.1007/s10994-009-5152-4
- [2] Zalán Bodó, Zsolt Minier, and L. Csató. 2011. Active Learning with Clustering. In Active Learning and Experimental Design @ AISTATS. https://api.semanticscholar. org/CorpusID:652410
- [3] Deng Cai and Wai Lam. 2020. Graph transformer for graph-to-sequence learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 7464–7471.
- [4] Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. 2022. GraphTTA: Test Time Adaptation on Graph Neural Networks. arXiv preprint arXiv:2208.09126 (2022).
- [5] Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, and Marios Savvides. 2023. SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised Learning. arXiv:2301.10921 [cs.LG]
- [6] Žhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. 2024. Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs. arXiv:2307.03393 [cs.LG]
- [7] Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang. 2023. Label-free Node Classification on Graphs with Large Language Models (LLMS). arXiv:2310.04668 [cs.LG]
- [8] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. 2015. Convolutional Networks on Graphs for Learning Molecular Fingerprints. arXiv:1509.09292 [cs.LG]
- [9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social recommendation. In *The world wide web* conference. 417–426.
- [10] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer: an automatic citation indexing system. In Proceedings of the Third ACM Conference on Digital Libraries (Pittsburgh, Pennsylvania, USA) (DL '98). Association for Computing Machinery, New York, NY, USA, 89–98. https://doi.org/10.1145/276675.276685
- [11] Daniel Gissin and Shai Shalev-Shwartz. 2019. Discriminative Active Learning. arXiv:1907.06347 [cs.LG]
- [12] Shurui Gui, Xiner Li, and Shuiwang Ji. 2024. Active Test-Time Adaptation: Theoretical Analyses and An Algorithm. In *The Twelfth International Conference* on Learning Representations. https://openreview.net/forum?id=YHUGlwTzFB
- [13] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. GOOD: A Graph Out-of-Distribution Benchmark. arXiv:2206.08452 [cs.LG]
- [14] Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. 2023. GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. arXiv:2305.15066 [cs.AI]
- [15] Zhichun Guo, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G. Iyer, Yihong Ma, Olaf Wiest, Xiangliang Zhang, Wei Wang, Chuxu Zhang, and Nitesh V. Chawla. 2023. Graph-based Molecular Representation Learning. arXiv:2207.04869 [qbio.QM]
- [16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation Learning on Large Graphs. arXiv:1706.02216 [cs.SI]
- [17] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. 2023. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. arXiv:2305.19523 [cs.LG]
- [18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgen: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 639–648.
- [19] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. arXiv:1903.12261 [cs.LG]
- [20] Michael J Horry, Subrata Chakraborty, Manoranjan Paul, Anwaar Ulhaq, Biswajeet Pradhan, Manas Saha, and Nagesh Shukla. 2020. COVID-19 detection through transfer learning using multimodal imaging data. *Ieee Access* 8 (2020), 149808– 149824.
- [21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33 (2020), 22118–22133.
- [22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG]
- [23] Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. 2019. Text level graph neural network for text classification. arXiv preprint arXiv:1910.02356 (2019).
- [24] Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. 2022. Going deeper into permutation-sensitive graph neural networks. In *International Conference on Machine Learning*. PMLR, 9377–9409.
- [25] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022. Empowering graph representation learning with test-time graph transformation.

arXiv preprint arXiv:2210.03561 (2022).

- [26] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. Detecting change in data streams. In Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30 (Toronto, Canada) (VLDB '04). VLDB Endowment, 180–191.
- [27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]
- [28] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and Tom Goldstein. 2022. Robust optimization as data augmentation for large-scale graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 60–69.
- [29] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. Adsgnn: Behavior-graph augmented relevance modeling in sponsored search. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 223–232.
- [30] Pengteng Li, Ying He, F. Richard Yu, Pinhao Song, Dongfu Yin, and Guang Zhou. 2023. IGG: Improved Graph Generation for Domain Adaptive Object Detection. In Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, Ottawa, ON, Canada, 29 October 2023. A November 2023, Abdulmotaleb El-Saddik, Tao Mei, Rita Cucchiara, Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey, and M. Shamim Hossain (Eds.). ACM, 1314–1324. https: //doi.org/10.1145/3581783.3613116
- [31] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. 2021. TTT++: When does self-supervised test-time training fail or thrive? Advances in Neural Information Processing Systems 34 (2021), 21808–21820.
- [32] Jiaqi Ma, Ziqiao Ma, Joyce Chai, and Qiaozhu Mei. 2023. Partition-Based Active Learning for Graph Neural Networks. arXiv:2201.09391 [cs.LG]
- [33] Massimiliano Mancini, Zeynep Akata, Elisa Ricci, and Barbara Caputo. 2020. Towards Recognizing Unseen Categories in Unseen Domains. arXiv:2007.12256 [cs.CV]
- [34] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. 2000. Automating the construction of internet portals with machine learning. *Information Retrieval* 3 (2000), 127–163.
- [35] Péter Mernyei and Cătălina Cangea. 2022. Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural Networks. arXiv:2007.02901 [cs.LG]
- [36] Yujie Mo, Yuhuan Chen, Yajie Lei, Liang Peng, Xiaoshuang Shi, Changan Yuan, and Xiaofeng Zhu. 2023. Multiplex Graph Representation Learning Via Dual Correlation Reduction. *IEEE Transactions on Knowledge and Data Engineering* (2023), 1–14. https://doi.org/10.1109/TKDE.2023.3268069
- [37] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. 2011. Reading Digits in Natural Images with Unsupervised Feature Learning. https: //api.semanticscholar.org/CorpusID:16852518
- [38] Jinhui Pang, Zixuan Wang, Jiliang Tang, Mingyan Xiao, and Nan Yin. 2023. SA-GDA: Spectral Augmentation for Graph Domain Adaptation. In Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, Ottawa, ON, Canada, 29 October 2023- 3 November 2023, Abdulmotaleb El-Saddik, Tao Mei, Rita Cucchiara, Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey, and M. Shamim Hossain (Eds.). ACM, 309–318. https://doi.org/10.1145/3581783. 3612264
- [39] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. ACM Transactions on Knowledge Discovery from Data 15, 2 (Jan. 2021), 1–49. https://doi.org/10.1145/3424672
- [40] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008. Collective classification in network data. *AI magazine* 29, 3 (2008), 93–93.
- [41] Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neural Networks: A Core-Set Approach. arXiv:1708.00489 [stat.ML]
- [42] Burr Settles. 2009. Active Learning Literature Survey. https://api.semanticscholar. org/CorpusID:324600
- [43] C. E. Shannon. 1948. A mathematical theory of communication. The Bell System Technical Journal 27, 3 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948. tb01338.x
- [44] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A Efros, and Moritz Hardt. 2019. Test-time training for out-of-distribution generalization. (2019).
- [45] Qiaoyu Tan, Ninghao Liu, and Xia Hu. 2019. Deep representation learning for social network analysis. Frontiers in big Data 2 (2019), 2.
- [46] Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran. 2023. TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20341–20350.
- [47] Tianjiao Wan, Kele Xu, Ting Yu, Xu Wang, Dawei Feng, Bo Ding, and Huaimin Wang. 2023. A Survey of Deep Active Learning for Foundation Models. *Intelligent Computing* 2 (2023), 0058. https://doi.org/10.34133/icomputing.0058 arXiv:https://spj.science.org/doi/pdf/10.34133/icomputing.0058

ACM MM, 2024, Melbourne, Australia

1042

1043

1044

987

988

989

990

991

992

993

994

- [48] Dan Wang and Yi Shang. 2014. A new active labeling method for deep learning. 2014 International Joint Conference on Neural Networks (IJCNN) (2014), 112–119. https://api.semanticscholar.org/CorpusID:16736675
- [49] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. 2020. Tent: Fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020).
- [50] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023. Can Language Models Solve Graph Problems in Natural Language? ArXiv abs/2305.10037 (2023). https://api.semanticscholar.org/CorpusID:
- [51] Xin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [51] Xin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [52] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [53] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [54] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [55] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [56] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [57] Xin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [58] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [59] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [50] Zun Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [51] Zin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [52] Zin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [53] Zin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [54] Zin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [55] Zin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu.
 [56] Zin Wang, Benyuan Meng, Alawa Zin Wang, Cheng Li Wang, Alawa Zin Wang, Cheng Li Wang, Alawa Zin Wang, Alawa Zin
 - [52] Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing Xie. 2022. Test-Time Training for Graph Neural Networks. arXiv preprint arXiv:2210.08813 (2022).
 - [53] Yiqi Wang, Chaozhuo Li, Mingzheng Li, Wei Jin, Yuming Liu, Hao Sun, Xing Xie, and Jiliang Tang. 2022. Localized graph collaborative filtering. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM). SIAM, 540–548.
- [54] Jiaxi Wu, Jiaxin Chen, and Di Huang. 2022. Entropy-based Active Learning for Object Detection with Progressive Diversity Constraint. arXiv:2204.07965 [cs.CV]
 [55] Lizong Wu, Haiten Lin, Yufei Huang, and Shan Z Li. 2022. Knowledge distillation
- [55] Lirong Wu, Haitao Lin, Yufei Huang, and Stan Z Li. 2022. Knowledge distillation improves graph structure augmentation for graph neural networks. Advances in Neural Information Processing Systems 35 (2022), 11815–11827.
 - [56] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. 2022. Handling distribution shifts on graphs: An invariance perspective. arXiv preprint arXiv:2202.02466 (2022).
 - [57] Yuexin Wu, Yichong Xu, Aarti Singh, Yiming Yang, and Artur Dubrawski. 2021. Active Learning for Graph Neural Networks via Node Feature Propagation. arXiv:1910.07567 [cs.LG]
 - [58] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. 2019. Topology attack and defense for graph neural networks: An optimization perspective. arXiv preprint arXiv:1906.04214 (2019).
 - [59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
 - [60] Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. 2023. Natural Language is All a Graph Needs. arXiv:2308.07134 [cs.CL]
 - [61] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in neural information processing systems 33 (2020), 5812–5823.
 - [62] Jiaxin Zhang, Yiqi Wang, Xihong Yang, and En Zhu. 2024. A Fully Test-Time Training Framework for Semi-Supervised Node Classification on Outof-Distribution Graphs. ACM Trans. Knowl. Discov. Data (feb 2024). https: //doi.org/10.1145/3649507 Just Accepted.
 - [63] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, and Bin Cui. 2021. RIM: Reliable Influence-based Active Learning on Graphs. arXiv:2110.14854 [cs.LG]
 - [64] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. 2022. Learning from Counterfactual Links for Link Prediction. arXiv:2106.02172 [cs.LG]
 - [65] Fedor Zhdanov. 2019. Diverse mini-batch Active Learning. arXiv:1901.05954 [cs.LG]
 - [66] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021. Shift-robust gnns: Overcoming the limitations of localized graph training data. Advances in Neural Information Processing Systems 34 (2021), 27965–27977.