
Appendix552

A Experimental setting553

Data Descriptions for Different Stages of HTP. (1) For the single-protein sequence level, we em-554

ploy the state-of-the-art ESM-2 [25], which outperforms all tested single-sequence protein language555

models across a wide range of structure prediction tasks and enables atomic resolution structure556

prediction. It is trained on 86 billion amino acids across 250 million protein sequences spanning557

evolutionary diversity. Specifically, ESM uses UniRef50, September 2021 version. The training558

dataset was partitioned by randomly selecting 0.5% (≈ 250,000) sequences to form the validation559

set. The training set has sequences removed via the procedure described in Hie et al. [48]. ESM-2560

runs MMseqs search to obtain the query and target databases. All train sequences which match a561

validation sequence with 50% sequence identity under this search are removed from the train set. The562

details of the ESM series can be found in https://github.com/facebookresearch/esm.563

(2) For the antibody sequence level, we use the Observed Antibody Space database (OAS) [32] and its564

succeeding update [33] as the pretraining data. It currently contains over one billion sequences, from565

over 80 different studies that cover diverse immune states, organisms, and individuals, which can566

be downloaded from its official website at https://opig.stats.ox.ac.uk/webapps/oas/. We567

upload the processed paired data in https://pan.baidu.com/s/18lB8gl9Maf0nnNPIw83ZzA?568

pwd=1212 (password: 1212) as well as the unpaired data in https://pan.baidu.com/s/569

161gU8fso6rz6-QGfNoCoHQ?pwd=96uF (password: 96uf).570

(3) For the protein-protein complex structure level, we leverage the Database of Interacting Protein571

Structures (DIPS) [35]. It is a large protein complex structure dataset than existing antibody-antigen572

complex structure datasets and is mined from the Protein Data Bank [36]. We attain the database573

from Atom3d in Zendo https://zenodo.org/record/4911102, which is a collection of both574

novel and existing benchmark datasets spanning several key classes of biomolecules. Referring to575

Atom3d, we split protein complexes by sequence identity at 30%, resulting in train/validation/test576

sets with 87,303/31,050/15,268 instances.577

(4) For the antibody-antigen complex structure level, we select all available antibody-antigen pro-578

tein complexes from SAbDab [17] at https://opig.stats.ox.ac.uk/webapps/newsabdab/579

sabdab/, leading to a dataset containing 9,823 structures. CDRs are identified using the antibody580

numbering program AbRSA [49]. Following the setting in [13], the chosen data points are divided581

into training and test data based on their release date and CDR sequence identity. To be explicit, the582

test split contains protein structures released after December 24, 2021, as well as structures with any583

CDR similar to those released after this date with sequence identity higher than 50%. Antibodies in584

the test set are further clustered with 50% CDR sequence identity to remove duplicates, finally lead-585

ing to 21 antibody-antigen structures. The training and validation splits just include complexes not586

involved during the curation of the test split. After that, we randomly split the remaining complexes587

with a ratio of 90% and 10% into the training and validation sets.588

Implementation Details. HPT is implemented in PyTorch and PyTorch Geometric packages. For589

all four training stages, we leverage an Adam optimizer [50] with a weight decay of 1e-15. All590

experiments are run on multiple A100 GPUs, each with a memory storage of 80G.591

(1) For ESM-2 in the single-protein sequence level training, we adopt a middle-size version, which592

has a parameter number of 150M, 30 layers, and a hidden dimension of 640. Besides, we append the593

ESM-2 with a three-layer perceptron to forecast the residue type for MLM.594

(2) For the antibody sequence level training, we use a batch size of 2 to avoid the out-of-memory595

error and 4 workers to load the data. The number of epochs is 100 and starting learning rate is 1e-5.596

Apart from that, we utilize a ReduceLROnPlateau scheduler with a factor of 0.6, patience of 5 epochs,597

and a minimum learning rate of 1e-7.598

(3) For the protein-protein complex structure level training, we use a batch size of 32, 1000 epochs,599

and 4 works to speed up data loading. The starting learning rate is 1e-4, and a ReduceLROnPlateau600

scheduler is utilized to adjust the learning rate automatically with a factor of 0.6 and patience of 3601

epochs. We adopt a distance threshold of 8.0Åto determine the connection between different graph602

nodes (i.e., the alpha carbon of each residue). As for the loss weight balance, we set λ = 1.603
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(4) For the antibody-antigen complex structure level training, we also adopt the distance threshold of604

8.0Åto build the graph connection. For random initialization of CDR coordinates, we use a noise of605

ϵ = 0.1. As for the other important hyperparameters, we use a grid search mechanism to find the606

optimal combination. Notably, the geometric neural networks used in the third and fourth levels are607

matched to each other. If we alter the setting of GGNNs in the antibody-antigen complex structure608

level training, we need to retrain it in the protein-protein complex structure level first. The entire609

hyperparameter search space is depicted in Table 4.

Table 4: Hyperparameters setup for HTP.

Hyperparameters Search Space Symbol Value

Training Setup
Epochs – [100, 500, 1000]
Batch size – [32, 64, 128]
Learning rate – [1e-4, 5e-5, 1e-6, 1e-7]
Warmup – [Yes, No]
Warmup epochs – [10, 20]
Loss Balance weight for Coordinates and Residue Types λ [0.1, 0.3, 0.5, 0.7]
GNN Architecture
Dropout rate – [0.1, 0.2]
Number of GNN layers L [2, 4, 6]
Tanh activation function – [Yes, No]
Coordinate Normalization – [Yes, No]
The hidden dimension of node representations – [320, 640]
The hidden dimension of edge representations – [16, 32, 64]

610

Reproduction of Baselines. Concerning the implementation of several baseline methods, we611

use the official repositories for conditional RefineGNN ( https://github.com/wengong-jin/612

RefineGNN/), HERN ( https://github.com/wengong-jin/abdockgen), DiffAb ( https:613

//github.com/luost26/diffab). To reproduce the performance of existing antibody-specific614

pretrained PLMs, we download the code from https://github.com/alchemab/antiberta for615

AntiBERTa and https://github.com/oxpig/AbLang for AbLang. In our comparison, we directly616

use their pretrained residue features as the input for GGNNs without any fine-tuning.617

Code Availability. All relevant Python code to reproduce the results in our paper is stored in618

GitHub repository at https://github.com/smiles724/HTP.619

B Additional Results620

B.1 Ablation Study621

We investigate the effectiveness and necessity of each component of our HTP. As shown in Table 5,622

the removal of protein-protein complex structure level induces performance detriment, where RMSD623

increases from 2.06 to 2.49. Moreover, we implement a variant of HTP by replacing features obtained624

by pretrained PLMs with learnable embedding features, whose performance is worse than HTP. To625

be concise, AAR declines from 40.98 to 25.31, and RMSD rises from 2.06 to 2.65. In summary, our626

HTP brings significant relative improvements of 78.56% in AAR, 41.97% in RMSD, and 2.94% in627

TM-Score. This phenomenon strongly supports the superiority of our approach over existing naive628

co-design algorithms that are trained only on antibody-specific structure data.629

C Related Work630

Antibody Design. The majority of old-school computational approaches for antibody design631

are based on sampling algorithms over hand-crafted and statistical energy functions to iteratively632

modify protein sequences and structures [7, 9, 10, 51, 52]. These physics-based algorithms are633

computationally expensive and prone to be stuck in local energy minimum, which triggers the634

16

https://github.com/wengong-jin/RefineGNN/
https://github.com/wengong-jin/RefineGNN/
https://github.com/wengong-jin/RefineGNN/
https://github.com/wengong-jin/abdockgen
https://github.com/luost26/diffab
https://github.com/luost26/diffab
https://github.com/luost26/diffab
https://github.com/alchemab/antiberta
https://github.com/oxpig/AbLang
https://github.com/smiles724/HTP


Table 5: Effects of each module, where SPS stands for the single-protein sequence level, PPCS
denotes the protein-protein complex structure level, and AS represents the antibody sequence level.
The last row computes the relative improvements of HTP over the primitive baseline without any
protein data augmentation.

SPS AS PPCS SAbDab (CDR-H3)
AAR (%) ↑ RMSD ↓ TM-Score

1 ✗ ✗ ✗ 22.95± 0.5 3.55± 0.01 0.9146± 0.003
2 ✓ ✗ ✗ 33.87± 0.8 2.77± 0.04 0.9450± 0.006
3 ✓ ✓ ✗ 38.42± 1.6 2.49± 0.03 0.9538± 0.004
4 ✗ ✗ ✓ 25.31± 0.7 2.95± 0.02 0.9391± 0.005
5 ✓ ✓ ✓ 40.98± 1.5 2.06± 0.03 0.9621± 0.005

Imp. – – – 78.56% 41.97% 2.94%

adaptation of deep learning in this sub-field. The initial researchers [4, 5, 53, 54] use pure PLMs to635

generate protein sequences but disregard the available antigen structures.636

To circumvent this, Jin et al. [11] introduce RefineGNN, the first co-design architecture that aims637

to neutralize SARS-CoV-2. Later, HERN [12] is proposed as a more general version for paratope638

docking and design, which opens the door to produce antibodies given arbitrary antigen structures.639

Subsequent efforts are spent in either modifying the generative style or utilizing more advanced640

deep learning architectures such as diffusion denoise probabilistic models (DDPMs). For example,641

DiffAb [13] achieves atomic-resolution antibody design with SO(3)-equivariance, while MEAN [15]642

corrects the autoregressive manner with a full-shot one to prevent low efficiency and accumulated643

errors during inference.644

Protein Sequence Modeling. Sequence-based protein representation learning is mainly inspired645

by the field of natural language processing. A large body of early works concentrates on modeling646

individual protein families [55], solving problems like functional nanobody design [5]. Its success,647

then, motivates the prospective trend to model large-scale databases of protein sequences by means648

of unsupervised learning. This line of study targets capturing the biochemical and co-evolutionary649

knowledge that underlies a large-scale protein sequence corpus by self-supervised pertaining. Thanks650

to them, a number of pertaining objects have been explored such as the next amino acid predic-651

tion [4, 26], masked language modeling (MLM) [55, 23], pairwise MLM [56], contrastive predictive652

coding [57], conditional generation [58], and position-specific scoring matrix prediction [59]. In653

addition, another line [60, 61] is based on multiple sequence alignment (MSA), leveraging sequences654

within a protein family to seize the conserved and variable regions of homologous sequences. Notably,655

some schemes for protein sequence modeling also seek to incorporate structural information in either656

the pretraining stage [62, 63] or the finetuning stage [64].657

The improvements in model scale and architecture are also crucial to the recent achievement of658

PLMs. Explicitly, Rao et al. [55] evaluate various PLMs in a panel of benchmarks and discover that659

multi-head attention outpaces the Potts model in contact prediction, even if using a single sequence660

for inference. Concurrently, Vig et al. [65] observe that specific attention heads of pretrained661

Transformers have straight correlations with protein contact. Others [26] investigate a variety of662

Transformer variants [66] and demonstrate that large Transformers can procure state-of-the-art663

features across diverse tasks. Apart from that, the latest ESM-2 [25] trains the largest PLM with 15B664

parameters and shows that as models are scaled, they learn information enabling the protein structure665

prediction at the resolution of individual atoms.666

Protein Structure Learning. With the rapid advance of geometric deep learning, it has been667

increasingly attractive and challenging to represent and reason about structures of macromolecules668

in the 3D space. For the sake of encoding spatial information in protein structures including bond669

lengths and dihedral angles, numerous 3D geometric neural networks such as 3DCNN [67–70] or670

GNNs [45, 46, 71, 72] have been invented. They excel at capturing complex interactions between671

sets of amino acids [73] and attain pivotal Euclidean geometry, e.g., E(3) or SE(3)-equivariance and672

symmetry.673
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However, compared to protein sequences in databases like UniProt [74] or Pfam [75], the known674

structures in the PDB are scarce and hard to obtain. Therefore, it becomes an urgent need to develop675

structure-based mechanisms to efficiently learn protein representations with much less pretraining676

data. For instance, Hermosilla and Ropinski [18] use contrastive learning in terms of molecular677

substructures to help models understand protein structure similarity and functionality. Moreover, Chen678

et al. [76] propose a self-supervised framework that predicts angles and inter-residue distances.679

Additionally, Guo et al. [77] present a coordinate denoising score matching method. Wu et al. [19] put680

forward a novel prompt-based denoising conformation generative pretraining method based on the681

trajectories of molecular dynamics simulations. A recent attempt [34] makes a combination of both682

contrastive learning and self-prediction with more intriguing augmentation functions. Despite this683

progress, all of them are dealing with single-protein structures. No preceding studies have considered684

structure-based pretraining in the circumstance of multiple proteins. That is, how to pretrain on685

protein-protein complex, or more specifically, the antibody-antigen complex, remains unexplored.686

D Limitations and Future Work687

In spite of the promising progress of our HTP, there is still some space left for future explorations. First,688

more abundant databases can be exploited in our framework. For instance, AntiBodies Chemically689

Defined (ABCD) [78] is a large-sized antibody sequence database that can be used to enhance the690

capacity of protein language models at the second level. We do not use it in our work because our691

request for this database has not been approved by the authors so far. Secondly, we fix the language692

models during the last two levels of training (i.e., levels that need complex structure prediction) for693

simplicity and use them as the node feature initializer. It might be beneficial if both PLM and the694

geometric encoder are tuned.695
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