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Abstract

We consider the following variant of contextual linear bandits motivated by routing1

applications in navigational engines and recommendation systems. We wish to2

learn a hidden d-dimensional value w∗. Every round, we are presented with a3

subset Xt ⊆ Rd of possible actions. If we choose (i.e. recommend to the user)4

action xt, we obtain utility 〈xt, w∗〉 but only learn the identity of the best action5

arg maxx∈Xt〈x,w∗〉.6

We design algorithms for this problem which achieve regret O(d log T ) and7

exp(O(d log d)). To accomplish this, we design novel cutting-plane algorithms8

with low “regret” – the total distance between the true point w∗ and the hyperplanes9

the separation oracle returns.10

We also consider the variant where we are allowed to provide a list of several11

recommendations. In this variant, we give an algorithm with O(d2 log d) regret12

and list size poly(d). Finally, we construct nearly tight algorithms for a weaker13

variant of this problem where the learner only learns the identity of an action that14

is better than the recommendation. Our results rely on new algorithmic techniques15

in convex geometry (including a variant of Steiner’s formula for the centroid of a16

convex set) which may be of independent interest.17

1 Introduction18

Consider the following problem faced by a geographical query service (e.g. Google Maps). When19

a user searches for a path between two endpoints, the service must return one route out of a set of20

possible routes. Each route has a multidimensional set of features associated with it, such as (i)21

travel time, (ii) amount of traffic, (iii) how many turns it has, (iv) total distance, etc. The service22

must recommend one route to the user, but doesn’t a priori know how the user values these features23

relative to one another. However, when the service recommends a route, the service can observe some24

feedback from the user: whether or not the user followed the recommended route (and if not, which25

route the user ended up taking). How can the service use this feedback to learn the user’s preferences26

over time?27

Similar problems are faced by recommendation systems in general, where every round a user arrives28

accompanied by some contextual information (e.g. their current search query, recent activity, etc.),29

the system makes a recommendation to the user, and the system can observe the eventual action (e.g.30

the purchase of a specific item) by the user. These problems can be viewed as specific cases of a31

variant of linear contextual bandits that we term contextual recommendation.32

In contextual recommendation, there is a hidden vector w∗ ∈ Rd (e.g. representing the values of the33

user for different features) that is unknown to the learner. Every round t (for T rounds), the learner is34

presented with an adversarially chosen (and potentially very large) set of possible actions Xt. Each35
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element xt of Xt is also an element of Rd (visible to the learner); playing action xt results in the36

learner receiving a reward of 〈xt, w∗〉. The learner wishes to incur low regret compared to the best37

possible strategy in hindsight – i.e. the learner wishes to minimize38

Reg =

T∑
t=1

(〈x∗t , w∗〉 − 〈xt, w∗〉) , (1)

where x∗t = arg maxx∈Xt〈x,w∗〉 is the best possible action at time t. In our geographical query39

example, this regret corresponds to the difference between the utility of a user that always blindly40

follows our recommendation and the utility of a user that always chooses the optimal route.41

Thus far this agrees with the usual set-up for contextual linear bandits (see e.g. [8]). Where contextual42

recommendation differs from this is in the feedback available to the learner: whereas classically43

in contextual linear bandits the learner learns (a possibly noisy version of) the reward they receive44

each round, in contextual recommendation the learner instead learns the identity of the best arm x∗t .45

This altered feedback makes it difficult to apply existing algorithms for linear contextual bandits. In46

particular, algorithms like LINUCB and LIN-Rel [2, 8] all require estimates of 〈xt, w∗〉 in order to47

learn w∗ over time, and our feedback prevents us from obtaining any such absolute estimates.48

In this paper we design low-regret algorithms for this problem. We present two algorithms for this49

problem: one with regret O(d log T ) and one with regret exp(O(d log d)) (Theorems 5 and 6). Note50

that both regret guarantees are independent of the number of offered actions |Xt| (the latter even being51

independent of the time horizon T ). Moreover both of these algorithms are efficiently implementable52

given an efficient procedure for optimizing a linear function over the sets Xt. This condition holds53

e.g. in the example of recommending shortest paths that we discussed earlier.54

In addition to this, we consider two natural extensions of contextual recommendation where the55

learner is allowed to recommend a bounded subset of actions instead of just a single action (as is often56

the case in practice). In the first variant, which we call list contextual recommendation, each round57

the learner recommends a set of at most L (for some fixed L) actions to the learner. The learner still58

observes the user’s best action each round, but the loss of the learner is now the difference between59

the utility of the best action for the user and the best action offered by the learner (capturing the60

difference in utility between a user playing an optimal action and a user that always chooses the best61

action the learner offers).62

In list contextual recommendation, the learner has the power to cover multiple different user prefer-63

ences simultaneously (e.g. presenting the user with the best route for various different measures). We64

show how to use this power to construct an algorithm for the learner which offers poly(d) actions65

each round and obtain a total regret of O(poly(d)).66

In the second variant, we relax an assumption of both previous models: that the user will always67

choose their best possible action (and hence that we will observe their best possible action). To relax68

this assumption, we also consider the following weaker version of contextual recommendation we69

call local contextual recommendation.70

In this problem, the learner again recommends a set of at most L actions to the learner (for some71

L > 1)1. The user then chooses an action which is at least as good as the best action in our list, and72

we observe this action. In other words, we assume the learner at least looks at all the options we offer,73

so if they choose an external option, it must be better than any offered option (but not necessarily the74

global optimum). Our regret in this case is the difference between the total utility of a learner that75

always follows the best recommendation in our list and the total utility of a learner that always plays76

their optimal action2.77

Let A = maxt |Xt| be a bound on the total number of actions offered in any round, and let γ =78

A/(L − 1). Via a simple reduction to contextual recommendation, we construct algorithms for79

1Unlike in the previous two variants, it is important in local contextual recommendation that L > 1; if L = 1
then the user can simply report the action the learner recommended and the learner receives no meaningful
feedback.

2In fact, our algorithms all work for a slightly stronger notion of regret, where the benchmark is the utility of
a learner that always follows the first (i.e. a specifically chosen) recommendation on our list. With this notion of
regret, contextual recommendation reduces to local contextual recommendation with L = max |Xt|.
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local contextual recommendation with regret O(γd log T ) and γ exp(O(d log d)). We further show80

that the first bound is “nearly tight” (up to poly(d) factors) in some regimes; in particular, we81

demonstrate an instance where L = 2 and K = 2Ω(d) where any algorithm must incur regret at least82

min(2Ω(d),Ω(T )) (Theorem 10).83

1.1 Low-regret cutting plane methods and contextual search84

To design these low-regret algorithms, we reduce the problem of contextual recommendation to a85

geometric online learning problem (potentially of independent interest). We present two different86

(but equivalent) viewpoints on this problem: one motivated by designing separation-oracle-based87

algorithms for convex optimization, and the other by contextual search.88

1.1.1 Separation oracles and cutting-plane methods89

Separation oracle methods (or “cutting-plane methods”) are an incredibly well-studied class of90

algorithms for linear and convex optimization. For our purposes, it will be convenient to describe91

cutting-plane methods as follows.92

Let B = {w ∈ Rd | ‖w‖ ≤ 1} be the unit ball in Rd. We are searching for a hidden point w∗ ∈ B.93

Every round we can choose a point pt ∈ B and submit this point to a separation oracle. The94

separation oracle then returns a half-space separating pt from w∗; in particular, the oracle returns a95

direction vt such that 〈w∗, vt〉 ≥ 〈pt, vt〉.96

Traditionally, cutting-plane algorithms have been developed to minimize the number of calls to the97

separation oracle until the oracle returns a hyperplane that passes within some distance δ of w∗. For98

example, the ellipsoid method (which always queries the center of the currently-maintained ellipse)99

has the guarantee that it makes at most O(d2 log 1/δ) oracle queries before finding such a hyperplane.100

In our setting, instead of trying to minimize the number of separation oracle queries before finding101

a “close” hyperplane, we would like to minimize the total (over all T rounds) distance between the102

returned hyperplanes and the hidden point w∗. That is, we would like to minimize the expression103

Reg′ =

T∑
t=1

(〈w∗, vt〉 − 〈pt, vt〉) . (2)

Due to the similarity between (2) and (1), we call this quantity the regret of a cutting-plane algorithm.104

We show that, given any low-regret cutting-plane algorithm, there exists a low-regret algorithm for105

contextual recommendation.106

Theorem 1 (Restatement of Theorem 4). Given a low-regret cutting-plane algorithm A with regret107

ρ, we can construct an O(ρ)-regret algorithm for contextual recommendation.108

This poses a natural question: what regret bounds are possible for cutting-plane methods? One109

might expect guarantees on existing cutting-plane algorithms to transfer over to regret bounds, but110

interestingly, this does not appear to be the case. In particular, most existing cutting-plane methods111

and analysis suffers from the following drawback: even if the method is likely to find a hyperplane112

within distance δ relatively quickly, there is no guarantee that subsequent calls to the oracle will113

return low-regret hyperplanes.114

In this paper, we will show how to design low-regret cutting-plane methods. Although our final115

algorithms will bear some resemblance to existing cutting-plane algorithms (e.g. some involve cutting116

through the center-of-gravity of some convex set), our analysis will instead build off more recent117

work on the problem of contextual search.118

1.1.2 Contextual search119

Contextual search is an online learning problem initially motivated by applications in pricing [16].120

The basic form of contextual search can be described as follows. As with the previously mentioned121

problems, there is a hidden vector w∗ ∈ [0, 1]d that we wish to learn over time. Every round the122

adversary provides the learner with a vector vt (the “context”). In response, the learner must guess123

the value of 〈vt, w∗〉, submitting a guess yt. The learner then incurs a loss of |〈vt, w∗〉 − yt| (the124
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distance between their guess and the true value of the inner product), but only learns whether 〈vt, w∗〉125

is larger or smaller than their guess.126

The problem of designing low-regret cutting plane methods can be interpreted as a “context-free”127

variant of contextual search. In this variant, the learner is no longer provided the context vt at the128

beginning of each round, and instead of guessing the value of 〈vt, w∗〉, they are told to directly129

submit a guess pt for the point w∗. The context vt is then revealed to them after they submit their130

guess, where they are then told whether 〈pt, w∗〉 is larger or smaller than 〈vt, w∗〉 and incur loss131

|〈vt, w∗〉−〈pt, w∗〉|. Note that this directly corresponds to querying a separation oracle with the point132

pt, and the separation oracle returning either the halfspace vt (in the case that 〈w∗, vt〉 ≥ 〈w∗, pt〉) or133

the halfspace −vt (in the case that 〈w∗, vt〉 ≤ 〈w∗, pt〉).134

One advantage of this formulation is that (unlike in standard analyses of cutting-plane methods) the135

total loss in contextual search directly matches the expression in (2) for the regret of a cutting-plane136

method. In fact, were there to already exist an algorithm for contextual search which operated in the137

above manner – guessing 〈vt, w∗〉 by first approximating w∗ and then computing the inner product138

– we could just apply this algorithm verbatim and get a cutting-plane method with the same regret139

bound. Unfortunately, both the algorithms of [19] and [16] explicitly require knowledge of the140

direction vt.141

This formulation also raises an interesting subtlety in the power of the separation oracle: specifically,142

whether the direction vt is fixed (up to sign) ahead of time or is allowed to depend on the point143

p. Specifically, we consider two different classes of separation oracles. For (strong) separation144

oracles, the direction vt is allowed to freely depend on the point pt (as long as it is indeed true that145

〈w∗, vt〉 ≥ 〈pt, vt〉). For weak separation oracles, the adversary fixes a direction ut at the beginning146

of the round, and then returns either vt = ut or vt = −ut (depending on the sign of 〈w∗ − pt, ut〉).147

The strong variant is most natural when comparing to standard separation oracle guarantees (and is148

necessary for the reduction in Theorem 1), but for many standalone applications (especially those149

motivated by contextual search) the weak variant suffices. In addition, the same techniques we150

use to construct a cutting-plane algorithm for weak separation oracles will let us design low-regret151

algorithms for list contextual recommendation.152

1.2 Our results and techniques153

We design the following low-regret cutting-plane algorithms:154

1. An exp(O(d log d))-regret cutting-plane algorithm for strong separation oracles.155

2. An O(d log T )-regret cutting-plane algorithm for strong separation oracles.156

3. An O(poly(d))-regret cutting-plane algorithm for weak separation oracles.157

All three algorithms are efficiently implementable (in poly(d, T ) time). Through Theorem 1, points158

(1) and (2) immediately imply the algorithms with regret exp(O(d)) and O(d log T ) for contextual159

recommendation. Although we do not have a blackbox reduction from weak separation oracles to160

algorithms for list contextual recommendation, we show how to apply the same ideas in the algorithm161

in point (3) to construct an O(d2 log d)-regret algorithm for list contextual recommendation with162

L = poly(d).163

To understand how these algorithms work, it is useful to have a high-level understanding of the164

algorithm of [19] for contextual search. That algorithm relies on a multiscale potential function165

the authors call the Steiner potential. The Steiner potential at scale r is given by the expression166

Vol(Kt + rB), where Kt (the “knowledge set”) is the current set of possibilities for the hidden point167

w∗, B is the unit ball, and addition denotes Minkowsi sum; in other words, this is the volume of the168

set of points within distance r of Kt. The authors show that by choosing their guess yt carefully, they169

can decrease the r-scale Steiner potential (for some r roughly proportional to the width of Kt in the170

current direction vt) by a constant factor. In particular, they show that this is achieved by choosing yt171

so to divide the expanded set Kt + rB exactly in half by volume. Since the Steiner potential at scale172

r is bounded below by Vol(rB), this allows the authors to bound the total number of mistakes at this173

scale. (A more detailed description of this algorithm is provided in Section 2.2).174

In the separation oracle setting, we do not know vt ahead of time, and thus cannot implement this175

algorithm as written. For example, we cannot guarantee our hyperplane splits Kt + rB exactly in176

half. We partially work around this by using (approximate variants of) Grunbaum’s theorem, which177
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guarantees that any hyperplane through the center-of-gravity of a convex set splits that convex set178

into two pieces of roughly comparable volume. In other words, everywhere where the contextual179

search algorithm divides the volume of Kt + rB in half, Grunbaum’s theorem implies we obtain180

comparable results by choosing any hyperplane passing through the center-of-gravity of Kt + rB.181

Unfortunately, we still cannot quite implement this in the separation oracle setting, since the choice182

of r in the contextual search algorithm depends on the input vector vt. Nonetheless, by modifying183

the analysis of contextual search we can still get some guarantees via simple methods of this form. In184

particular we show that always querying the center-of-gravity of Kt (alternatively, the center of the185

John ellipsoid of Kt) results in an exp(O(d log d))-regret cutting-plane algorithm, and that always186

querying the center of gravity of Kt + 1
T B results in an O(d log T )-regret cutting-plane algorithm.187

Our cutting-plane algorithm for weak separation oracles requires a more nuanced understanding of188

the family of sets of the form Kt + rB. This family of sets has a number of surprising algebraic189

properties. One such property (famous in convex geometry and used extensively in earlier algorithms190

for contextual search) is Steiner’s formula, which states that for any convex K, Vol(K + rB) is191

actually a polynomial in r with nonnegative coefficients. These coefficients are called intrinsic192

volumes and capture various geometric measures of the set K (including the volume and surface area193

of K).194

There exists a lesser-known analogue of Steiner’s formula for the center-of-gravity of K + rB,195

which states that each coordinate of cg(K + rB) is a rational function of degree at most d; in other196

words, the curve cg(K + rB) for r ∈ [0,∞) is a rational curve. Moreover, this variant of Steiner’s197

formula states that each point cg(K + rB) can be written as a convex combination of d+ 1 points198

contained within K known as the curvature centroids of K. Motivated by this, we call the curve199

ρK(r) = cg(K + rB) the curvature path of K.200

Since the curvature path ρK is both bounded in algebraic degree and bounded in space (having to lie201

within the convex hull of the curvature centers), we can bound the total length of the curvature path202

ρK by a polynomial in d (since it is bounded in degree, each component function of ρK can switch203

from increasing to decreasing a bounded number of times). This means that we can discretize the204

curvature path to within precision ε while only using poly(d)/ε points on the path.205

Our algorithms against weak separation oracles and for list contextual recommendation both make206

extensive use of such a discretization. For example, we show that in order to construct a low-regret207

algorithm against a weak separation oracle, it suffices to discretize ρKt into O(d4) points and then208

query a random point; with probability at least O(d−4), we will closely enough approximate the point209

ρ(r) = cg(K + rB) that our above analogue of contextual search would have queried. We show this210

results in poly(d) total regret3. A similar strategy works for list contextual recommendation: there211

we discretize the curvature path for the knowledge set Kt into poly(d) candidate values for w∗, and212

then submit as our set of actions the best response for each of these candidates.213

1.3 Related work214

There is a very large body of work on recommender systems which employs a wide range of different215

techniques – for an overview, see the survey by Bobadilla et al. [5]. Our formulation in this paper is216

closest to treatments of recommender systems which formulate the problem as an online learning217

problem and attack it with tools such as contextual bandits or reinforcement learning. Some examples218

of such approaches can be seen in [17, 18, 23, 25, 26]. Similarly, there is a wide variety of work on219

online shortest path routing [3, 11, 12, 15, 24, 28] which also applies tools from online learning. One220

major difference between these works and the setting we study in our paper is that these settings221

often rely on some quantitative feedback regarding the quality of item recommended. In contrast,222

our paper only relies on qualitative feedback of the form “action x is the best action this round” or223

“action x is is at least as good as any action recommended”.224

One setting in the bandits literature that also possesses qualitative feedback is the setting of Duelling225

Bandits [27]. In this model, the learner can submit a pair of actions and the feedback is a noisy bit226

signalling which action is better. However, their notion of regret (essentially, the probability the best227

arm would be preferred over the arms chosen by the learner) significantly differs from the notion of228

3The reason this type of algorithm does not work against strong separation oracles is that each point in this
discretization could return a different direction vt, in turn corresponding to a different value of r
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regret we measure in our setting (the loss to the user by following our recommendations instead of229

choosing the optimal actions).230

Cutting-plane methods have a long and storied history in convex optimization. The very first efficient231

algorithms for linear programming (based on the ellipsoid method [10, 14]). Since then, there has232

been much progress in designing more efficient cutting-plane methods (e.g. [6]), but the focus remains233

on the number of calls to the separating oracle or the total running time of the algorithm. We are not234

aware of any work which studies cutting-plane methods under the notion of regret that we introduce235

in Section 1.1.236

Contextual search was first introduced in the form described in Section 2.2 in [16], where the authors237

gave the first time-horizon-independent regret bound of O(poly(d)) for this problem (earlier work238

by [20] and [9] indirectly implied bounds of O(poly(d) log T ) for this problem). This was later239

improved by [19] to a near-optimal O(d log d) regret bound. The algorithms of both [16, 19] rely240

on techniques from integral geometry, and specifically on understanding the intrinsic volumes and241

Steiner polynomial of the set of possible values for w∗. Some related geometric techniques have been242

used in recent work on the convex body chasing problem[1, 7, 22]. To our knowledge, our paper is243

the first paper to employ the fact that the curvature path cg(K + rB) is a bounded rational curve (and244

thus can be efficiently discretized) in the development of algorithms.245

2 Model and preliminaries246

We begin by briefly reviewing the problems of contextual recommendation and designing low-regret247

cutting plane algorithms. In all of the below problems, B = {w ∈ Rd | ‖w‖2 ≤ 1} is the ball of248

radius 1 (and generally, all vectors we consider will be bounded to lie in this ball).249

Contextual recommendation. In contextual recommendation there is a hidden point w∗ ∈ B.250

Each round t (for T rounds) we are given a set of possible actions Xt ⊆ B. If we choose251

action xt ∈ Xt we obtain reward 〈xt, w∗〉 (but do not learn this value). Our feedback is252

x∗t = arg maxx∈Xt〈x,w∗〉, the identity of the best action4. Our goal is to minimize the total253

expected regret E[Reg] = E
[∑T

t=1〈x∗t − xt, w∗〉
]
. Note that since the feedback is deterministic,254

this expectation is only over the randomness of the learner’s algorithm.255

It will be useful to establish some additional notation for discussing algorithms for contextual
recommendation. We define the knowledge set Kt to be the set of possible values for w∗ given the
knowledge we have obtained by round t. Note that the knowledge set Kt is always convex, since
the feedback we receive each round (that 〈x∗, w∗〉 ≥ 〈x,w∗〉 for all x ∈ Xt) can be written as an
intersection of several halfspaces (and the initial knowledge set K1 = B is convex). In fact, we can
say more. Given a w ∈ Kt, let

BRt(w) = arg max
x∈Xt

〈x,w〉

be the set of optimal actions in Xt if the hidden point was w. We can then partition Kt into several
convex subregions based on the value of BRt(w); specifically, let

Rt(x) = {w ∈ Kt|x ∈ BRt(w)}

be the region of Kt where x is the optimal action to play in response. Then:256

1. Each Rt(x) is a convex subset of Kt.257

2. The regions Rt(x) have disjoint interiors and partition Kt.258

3. Kt+1 will equal the region Rt(x
∗) (where x∗ ∈ BRt(w

∗) is the optimal action returned as259

feedback).260

We also consider two other variants of contextual recommendation in this paper (list contextual261

recommendation and local contextual recommendation). We will formally define them as they arise262

(in Sections 5 and 6 respectively).263

4If this argmax is multi-valued, the adversary may arbitrarily return any element of this argmax.
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Designing low-regret cutting-plane algorithms. In a low-regret cutting-plane algorithm, we264

again have a hidden point w∗ ∈ B. Each round t (for T rounds) we can query a separation oracle265

with a point pt in B. The separation oracle then provides us with an adversarially chosen direction vt266

(with ‖vt‖ = 1) that satisfies 〈w∗, vt〉 ≥ 〈pt, vt〉. The regret in round t is equal to 〈w∗ − pt, vt〉, and267

our goal is to minimize the total expected regret E[Reg] = E
[∑T

t=1〈w∗ − pt, vt〉
]
. Again, since the268

feedback is deterministic, the expectation is only over the randomness of the learner’s algorithm.269

As with contextual recommendation, it will be useful to consider the knowledge set Kt, consisting of270

possibilities for w∗ which are still feasible by the beginning of round t. Again as with contextual271

recommendation, Kt is always convex; here we intersect Kt with the halfspace provided by the272

separation oracle every round (i.e. Kt+1 = Kt ∩ {〈w − pt, vt〉 ≥ 0}).273

Unless otherwise specified, the separation oracle can arbitrarily choose vt as a function of the query274

point pt. For obtaining low-regret algorithms for list contextual recommendation, it will be useful275

to consider a variant of this problem where the separation oracle must commit to vt (up to sign) at276

the beginning of round t. Specifically, at the beginning of round t (before observing the query point277

pt), the oracle fixes a direction ut. Then, on query pt, the separation oracle returns the direction278

vt = ut if 〈w − pt, ut〉 ≥ 0, and the direction vt = −ut otherwise. We call such a separation oracle279

a weak separation oracle; an algorithm that only works against such separation oracles is a low-regret280

cutting-plane algorithm for weak separation oracles. Note that this distinction only matters when the281

learner is using a randomized algorithm; if the learner is deterministic, the adversary can predict all282

the directions vt in advance.283

2.1 Convex geometry preliminaries and notation284

We will denote by Convd the collection of all convex bodies in Rd. Given a convex body K ∈ Convd,285

we will use Vol(K) =
∫
K

1dx to denote its volume (the standard Lebesgue measure). Given two286

sets K and L in Rd, their Minkowski sum is given by K + L = {x + y;x ∈ K, y ∈ L}. Let Bd287

denote the unit ball in Rd, let Sd−1 = {x ∈ Rd; ‖x‖2 = 1} denote the unit sphere in Rd and let288

κd = Vol(Bd) be the volume of the i-th dimensional unit ball. When clear from context, we will289

omit the superscripts on Bd and Sd−1.290

We will write cg(K) = (
∫
K
xdx)/(

∫
K

1dx) to denote the center of gravity (alternatively, centroid)
of K. Given a direction u ∈ Sd−1 and convex set K ∈ Convd we define the width of K in the
direction u as:

width(K;u) = max
x∈K
〈u, x〉 −min

x∈K
〈u, x〉

Approximate Grunbaum and John’s Theorem Finally, we state two fundamental theorems in291

convex geometry. Grunbaum’s Theorem bounds the volume of the convex set in each side of a292

hyperplane passing through the centroid. For our purposes it will be also important to bound a cut293

that passes near, but not exactly at the centroid. The bound given in the following paragraph comes294

from a direct combination of Lemma B.4 and Lemma B.5 in Bubeck et al. [7].295

We will use the notation Hu(p) = {x | 〈x, u〉 = 〈p, u〉} to denote the halfspace passing through p296

with normal vector u. Similarly, we let H+
u (p) = {x | 〈x, u〉 ≥ 〈p, u〉}.297

Theorem 2 (Approximate Grunbaum [4, 7]). Let K ∈ Convd, c = cg(K) and u ∈ Sd−1. Then298

consider the semi-space H+ = {x ∈ Rd; 〈u, x− c〉 ≥ t} for some t ∈ R+. Then:299

Vol(K ∩H+)

Vol(K)
≥ 1

e
− 2t(d+ 1)

width(K;u)

John’s theorem shows that for any convex set K ∈ Convd, we can find an ellipsoid E contained in K300

such that K is contained in (some translate of) a dilation of E by a factor of d.301

Theorem 3 (John’s Theorem). Given K ∈ Convd, there is a point q ∈ K and an invertible linear
transformation A : Rd → Rd such that

q + B ⊆ A(K) ⊆ q + dB.

We call the ellipsoid E = A−1(q + B) in Theorem 3 the John ellipsoid of K.302
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2.2 Contextual search303

In this section, we briefly sketch the algorithm and analysis of [19] for the standard contextual search304

problem. We will never use this algorithm directly, but many pieces of the analysis will prove useful305

in our constructions of low-regret cutting-plane algorithms.306

Recall that in contextual search, each round the learner is given a direction vt. The learner is trying to307

learn the location of a hidden point w∗, and at time t has narrowed down the possibilities of w∗ to a308

knowledge set Kt. The algorithm of [19] runs the following steps:309

1. Compute the width w = width(Kt; vt) of Kt in the direction vt. Let r = 2dlg(w/10d)e310

(rounding w/10d to a nearby power of two).311

2. Consider the set K̃ = Kt + rB. Choose yt so that the hyperplane H = {w | 〈vt, w〉 = yt}312

divides the set K̃ into two pieces of equal volume.313

We can understand this algorithm as follows. Classic cutting-plane methods try to decrease Vol(Kt)314

by a constant factor every round (arguing that this decrease can only happen so often before one of315

our hyperplanes passes within some small distance to our feasible region). The above algorithm can316

be thought of as a multi-scale variant of this approach: they show that if we incur loss w ≈ dr in a317

round (since loss in a round is at most the width), the potential function Vol(Kt + rB) must decrease318

by a constant factor. Since Vol(Kt + rB) ≥ Vol(rB) = rdκd, we can incur a loss of this size at most319

O(d log(2/r)) times. Summing over all possible discretized values of r (i.e. powers of 2 less than 1),320

we arrive at an O(d log d) regret bound.321

There is one important subtlety in the above argument: if we let H+ = {w | 〈vt, w〉 ≥ yt} be the322

halfspace defined by H , the two sets (Kt ∩ H+) + rB and (Kt + rB) ∩ H+ are not equal. The323

volume of the first set represents the new value of our potential (i.e. Vol(Kt+1 + rB)), but it is the324

second set that has volume equal to half our current potential (i.e. 1
2Vol(Kt + rB)).325

Luckily, our choice of r allows us to relate these two quantities in a way so that our original326

argument works. Let H divide K into K+ and K−. Note that Vol(K+ + rB) + Vol(K− + rB) =327

Vol(K + rB) + Vol((K ∩H) + rB) (in particular, K + rB and (K ∩H) + rB are the union and328

intersection respectively of K+ + rB and K− + rB). Since Vol(K+ + rB) = Vol(K− + rB),329

to bound Vol(K+ + rB)/Vol(K + rB) it suffices to bound Vol((K ∩H) + rB). We do so in the330

following lemma (which will also prove useful to us in later analysis).331

Lemma 1. Given K ∈ Convd and u ∈ Sd−1, let H be a hyperplane of the form {w | 〈w, u〉 = b}
(for some b ∈ R). Then:

Vol((K ∩H) + rB) ≤
(

2rd

width(K;u)

)
· Vol(K + rB)

Proof. Let V = Vold−1((K + rB) ∩H) be the volume of the (d − 1)-dimensional cross-section332

of K + rB carved out by H . Note first that we can write any point in (K ∩H) + rB in the form333

w + λu, where w ∈ (K + rB) ∩H and λ ∈ [−r, r]. It follows that334

Vol((K ∩H) + rB) ≤ 2rV . (3)

We will now bound V . Let K = (K + rB) ∩H . Let p+ be the point in K + rB maximizing 〈u, p〉,335

and let p− be the point in K + rB minimizing 〈u, p〉 (so p− and p+ certify the width). Consider the336

cones C− and C+ formed by taking the convex hull Conv(p−,K) and Conv(p+,K) respectively.337

C− and C+ are disjoint and contained within K + rB, so338

Vol(C−) + Vol(C+) ≤ Vol(K + rB).

But now note that by the formula for the volume of a cone,339

Vol(C−) + Vol(C+) =
1

d
· width(K + rB;u) · Vold−1(K) ≥ width(K;u)

d
· V .

It follows that340
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V ≤ d

width(K;u)
Vol(K + rB). (4)

Substituting this into (3), we arrive at the theorem statement.341

This lemma allows us to conclude our analysis of the contextual search algorithm. In particular,342

since we have chosen r ≈ width(K, vt)/10d, by applying this lemma we can see that in our343

analysis of contextual search, Vol((K ∩H) + rB) ≤ 0.2Vol(K + rB), from which it follows that344

Vol(K+ + rB)/Vol(K + rB) ≤ 0.6.345

3 From Cutting-Plane Algorithms to Contextual Recommendation346

We begin by proving a reduction from designing low-regret cutting plane algorithms to contextual347

recommendation. Specifically, we will show that given a regret ρ cutting-plane algorithm, we can use348

it to construct an O(ρ)-regret algorithm for contextual recommendation.349

Note that while these two problems are similar in many ways (e.g. they both involve searching for an350

unknown point w∗), they are not completely identical. Among other things, the formulation of regret351

although similar is qualitatively different between the two problems (i.e. between expressions (1) and352

(2)). In particular, in contextual recommendation, the regret each round is 〈x∗t − xt, w∗〉, whereas for353

cutting-plane algorithms, the regret is given by 〈w∗ − pt, vt〉. Nonetheless, we will be able to relate354

these two notions of regret by considering a separation oracle that always returns a halfspace in the355

direction of x∗t − xt. We present this reduction below.356

Theorem 4. Given a low-regret cutting-plane algorithm A with regret ρ, we can construct an357

O(ρ)-regret algorithm for contextual recommendation.358

Proof. We will simultaneously run an instance of A with the same hidden vector w∗. Each round we359

will ask A for its query pt to the separation oracle. We will then compute a xt ∈ BRt(pt) (recall that360

BRt(w) is the optimal action to play if w is the true hidden vector) and submit xt as our action for361

this round of contextual recommendation. We then receive feedback x∗t ∈ BRt(w
∗). Consider the362

following two cases:363

Case 1: If x∗t = xt, then our contextual recommendation algorithm incurs zero regret since we364

successfully chose the optimal point. In this case we ignore this round for A (i.e. we reset its state to365

its state at the beginning of round t).366

Case 2: If x∗t 6= xt, let vt = (x∗t −xt)/‖x∗t −xt‖. We will return vt toA as the separation oracle’s367

answer to query pt. Note that this is a valid answer, since368

〈w∗ − pt, vt〉 =
1

‖x∗t − xt‖
(〈w∗, x∗t − xt〉+ 〈pt, xt − x∗t 〉) ≥

1

‖x∗t − xt‖
〈w∗, x∗t − xt〉. (5)

Here the final inequality holds since (by the definition of BRt(pt)) 〈pt, xt〉 ≥ 〈pt, x〉 for any x ∈ Xt.369

The RHS of (5) is in turn larger than zero, since 〈w∗, x∗t 〉 ≥ 〈w∗, x〉 for any x ∈ Xt (and thus this is370

a valid answer to the separation oracle). Moreover, note that the regret we incur under contextual371

recommendation is exactly 〈w∗, x∗t − xt〉, so by rearranging equation (5), we have that:372

〈w∗, x∗t − xt〉 ≤ ‖x∗t − xt‖〈w∗ − pt, vt〉 ≤ 2〈w∗ − pt, vt〉.

It follows that the total regret of our algorithm for contextual recommendation is at most twice that of373

A. Our regret is thus bounded above by 2ρ, as desired.374

375

Note that the reduction in Theorem 4 is efficient as long as we have an efficient method for optimizing376

a linear function over Xt (i.e. for computing BRt(w)). In particular, this means that this reduction377
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can be practical even in settings where Xt may be combinatorially large (e.g. the set of s-t paths in378

some graph).379

Note also that this reduction does not work if A is only low-regret against weak separation oracles.380

This is since the direction vt we choose does depend non-trivially on the point pt (in particular, we381

choose xt ∈ BRt(pt)). Later in Section 5.3, we will see how to use ideas from designing cutting-382

plane methods for weak separation oracles to construct low-regret algorithms for list contextual383

recommendation – however we do not have a black-box reduction in that case, and our construction384

will be more involved.385

4 Designing Low-Regret Cutting-Plane Algorithms386

In this section we will describe how to construct low-regret cutting-plane algorithms for strong387

separation oracles.388

4.1 An exp(O(d log d))-regret cutting-plane algorithm389

We begin with a quick proof that always querying the center of the John ellipsoid of Kt leads to390

a exp(O(d log d))-regret cutting-plane algorithm. Interestingly, although this corresponds to the391

classical ellipsoid algorithm, our analysis will instead proceed along the lines of the analysis of the392

contextual search algorithm summarized in Section 2.2.393

We will need the following lemma.394

Lemma 2. Let K ∈ Convd be an arbitrary convex set and let r ≥ 0. Let E be the John ellipsoid of395

K, and let H be a hyperplane that passes through the center of E, dividing K into two regions K+396

and K−. Then397

Vol(K+ + rB) ≤
(

1− 1

10dd

)(
Vol(K+ + rB) + Vol(K− + rB)

)
Proof. Let H divide E into the two regions E+ and E− analogously to how it divides K into K+398

and K−. Note that since E ⊆ K ⊆ dE (translating K so that E is centered at the origin), we can399

write:400

Vol(K− + rB)

Vol(K + rB)
≥ Vol(E− + rB)

Vol(dE + rB)
≥ 0.5 · Vol(E + rB)

Vol(dE + rB)
≥ 1

2dd
Vol(E + rB)

Vol(E + (r/d)B)
≥ 1

2dd
. (6)

On the other hand, by monotonicity we also have that401

Vol(K+ + rB)

Vol(K + rB)
≤ 1.

It follows that402

Vol(K+ + rB)/Vol(K− + rB) ≤ 2dd.

The conclusion then follows since403

2dd ≤
(

1− 1

10dd

)
(2dd + 1).

404

We can now modify the analysis of contextual search to make use of Lemma 2. In particular, we405

will show that for each round t, there’s some r (roughly proportional to the current width) where406

Vol(Kt + rB) decreases by a multiplicative factor of (1− d−O(d)).407
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Theorem 5. The cutting-plane algorithm which always queries the center of the John ellipsoid of408

Kt incurs exp(O(d log d)) regret.409

Proof. Fix a round t, and let K = Kt be the knowledge set at time t. Let E be the John ellipsoid of410

K and let pt be the center of E. When we query the separation oracle with pt, we get a hyperplane411

H (defined by vt) that passes through pt and divides K into K+ = Kt+1 and K− = K \Kt+1.412

By Lemma 2, for any r ≥ 0, we have that413

Vol(K+ + rB) ≤
(

1− 1

10dd

)(
Vol(K+ + rB) + Vol(K− + rB)

)
Note that (as in Section 2.2), Vol(K+ +rB)+Vol(K−+rB) = Vol(K+rB)+Vol((K∩H)+rB).414

By Lemma 1, we have that415

Vol((K ∩H) + rB) ≤ 2rd

width(K; vt)
· Vol(K + rB),

and thus that416

Vol(K+ + rB) ≤
(

1− 1

10dd

)(
1 +

2dr

width(K; vt)

)
Vol(K + rB)

In particular, if we choose r ≤ width(K; vt)/(100dd+1), then417

Vol(K+ + rB) ≤
(

1− 1

20dd

)
Vol(K + rB).

The analysis now proceeds as follows. In each round, let r = 2blg(width(K;vt)/100dd+1)c be the largest418

power of 2 smaller than w/(100dd+1). Any specific r can occur in at most419

log(Vol(K0 + rB)/Vol(KT + rB))

log
(
1− 1

20dd

)
rounds. This in turn is at most420

log(Vol(2B)/Vol(rB))

1/(20dd)
≤ 20dd+1 log(2/r)

rounds, and in each such round the regret that round is at most width(K; vt) ≤ 200dd+1r. The total421

regret from such rounds is therefore at most422

20dd+1 log(2/r) · 200dd+1r = O(d2(d+1)r log(2/r)).

Now, by our discretization, r is a power of two less than 1. Note that
∑∞

i=0 2−i log(2/2−i) =423

O
(∑∞

i=0 2−ii
)

= O(1). It follows that the total regret over all rounds is at most O(d2(d+1)) =424

exp(O(d log d)), as desired.425

The remaining algorithms we study will generally query the center-of-gravity of some convex set, as426

opposed to the center of the John ellipsoid. This leads to the following natural question: what is the427

regret of the cutting-plane algorithm which always queries the center-of-gravity of Kt?428

Kannan, Lovasz, and Simonovits (Theorem 4.1 of [13]) show that it is possible to choose an ellipsoid429

E satisfying E ⊆ K ⊆ dE such that E is centered at cg(K), so our proof of Theorem 5 shows430

that this algorithm is also an exp(O(d log d)) algorithm. However, for both this algorithm and the431

ellipsoid algorithm of Theorem 5, we have no non-trivial lower bound on the regret. It is an interesting432

open question to understand what regret these algorithms actually obtain (for example, do either of433

these algorithms achieve poly(d) regret?).434
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4.2 An O(d log T )-regret cutting-plane algorithm435

We will now show how to obtain an O(d log T )-regret cutting plane algorithm. Our algorithm will436

simply query the center-of-gravity of Kt + 1
T B each round. The advantage of doing this is that437

we will only need to examine one scale of the contextual search potential (namely the value of438

Vol(Kt + 1
T B)). The following geometric lemma shows that, as long as the width of the Kt is long439

enough, this potential decreases by a constant fraction each step.440

Lemma 3. Given K ∈ Convd, u ∈ Sd−1 and b, r ∈ R (with r ≥ 0), let:441

• c = cg(K + rB) be the center-of-gravity of K + rB,442

• H+(b) = {〈u, x − c〉 ≥ −b} be a half-space induced by a hyperplane in the direction u443

passing within distance b of the point c, and444

• K+ = K ∩H+(b) be the intersection of K with this half-space.445

If r, |b| ≤ width(K,u)/(16ed) then

Vol(K+ + rB) ≤ 0.9 · Vol(K + rB).

Proof. Observe that K+ + rB ⊆ (K + rB) ∩ H+(b + r). If we define H−(b + r) = {x ∈
Rd; 〈u, x− c〉 ≤ −(b+ r)} then:

Vol(K+ + rB) ≥ Vol(K + rB)− Vol((K + rB) ∩H−(b+ r)).

By Theorem 2 (Approximate Grunbaum) we have:

Vol((K + rB) ∩H−(b+ r))

Vol(K + rB)
≥ 1

e
− 2(d+ 1)

width(K;u)
· 2width(K,u)

16ed
≥ 1

2e
≥ 0.1

446

We can now prove that the above algorithm achieves O(d log T ) regret.447

Theorem 6. The cutting-plane algorithm which queries the point pt = cg
(
Kt + 1

T B
)

incurs448

O(d log T ) regret.449

Proof. We will begin by showing that if we incur more than 50d/T regret in a given round, we450

reduce the value of Vol(Kt + 1
T B) by a constant factor. Since Vol(Kt + 1

T B) is bounded below by451

Vol( 1
T B), this will allow us to bound the number of times we incur a large amount of regret.452

Consider a fixed round t of this algorithm. Let Kt be the knowledge set at time t. When we query the453

separation-oracle point pt = cg(K+ 1
T B), we obtain a half-space H+ = {w ∈ Rd; 〈w−p, vt〉 ≥ 0}454

passing through pt which contains w∗. We update Kt+1 = Kt ∩H+455

The regret in round t is bounded by width(Kt, vt). If the width is at least 50d/T we can then apply456

Lemma 3 with b = 0 and r = 1/T to conclude that:457

Vol

(
Kt+1 +

1

T
B

)
≤ 0.9 · Vol

(
Kt +

1

T
B

)
. (7)

Now, in each round where width(Kt, vt) < 50d/T , we incur at most 50d/T regret, so in total we458

incur at most T · (50d/T ) = 50d regret from such rounds. On the other hand, in other rounds we may459

incur up to ‖w∗ − pt‖ ≤ 2 regret per round. However, note that Vol(K1 + 1
T B) = Vol((1 + 1

T )B) ≤460

2dVol(B), whereas for any t, Vol(Kt + 1
T B) ≥ Vol( 1

T B) = T−dκd. Since in each such round we461

shrink this quantity by at least a factor of 0.9, it follows that the total number of such rounds is at most462

O(log(2T d)) = O(d log T ). It follows that the total regret from such rounds is at most O(d log T ),463

and thus the overall regret of this algorithm is at most O(d log T ).464

5 List contextual recommendation, weak separation oracles, and the465

curvature path466

In this section, we present two algorithms: 1. a poly(d) expected regret cutting-plane algorithm for467

weak separation oracles, and 2. an O(d2 log d) regret algorithm for list contextual recommendation468

with list size L = poly(d).469
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The unifying feature of both algorithms is that they both involve analyzing a geometric object we call470

the curvature path of a convex body. The curvature path of K is a bounded-degree rational curve471

contained withinK that connects the center-of-gravity cg(K) with the Steiner point (limr→∞ cg(K+472

rB)) of K.473

In Section 5.1 we formally define the curvature path and demonstrate how to bound its length. In474

Section 5.2, we show that randomly querying a point on a discretization of the curvature path leads475

to a poly(d) regret cutting-plane algorithm for weak separation oracles. Finally, in Section 5.1, we476

show how to transform a discretization of the curvature path of the knowledge set into a list of actions477

for list contextual recommendation, obtaining a low regret algorithm.478

5.1 The curvature path479

An important fact (driving some of the recent results in contextual search, e.g. [16]) is the fact that the480

volume Vol(K + rB) is a d-dimensional polynomial in r. This fact is known as the Steiner formula:481

Vol(K + rB) =

d∑
i=0

Vd−i(K)κir
i (8)

After normalization by the volume of the unit ball, the coefficients of this polynomial correspond to482

the intrinsic volumes of K. The intrinsic volumes are a family of d+ 1 functionals Vi : Convd → R+483

for i = 0, 1, . . . , d that associate for each convex K ∈ Convd a non-negative value. Some of these484

functionals have natural interpretations: Vd(K) is the standard volume Vol(K), Vd−1(K) is the485

surface area, V1(K) is the average width and V0(K) is 1 whenever K is non-empty and 0 otherwise.486

There is an analogue of the Steiner formula for the centroid of K + rB, showing that it admits487

a description as a vector-valued rational function. More precisely, there exist d + 1 functions488

ci : Convd → Rd for 0 ≤ i ≤ d such that:489

cg(K + rB) =

∑d
i=0 Vd−i(K)κir

i · ci(K)∑d
i=0 Vd−i(K)κiri

(9)

The point c0(K) ∈ K corresponds to the usual centroid cg(K) and cd(K) corresponds to the Steiner490

point. The functionals ci are called curvature centroids since they can be computing by integrating a491

certain curvature measures associated with a convex body (a la Gauss-Bonnet). We refer to Section492

5.4 in Schneider [21] for a more thorough discussion discussion. For our purposes, however, the493

only important fact will be that each curvature centroid ci(K) is guaranteed to lie within K (note494

that this is not at all obvious from their definition).495

Motivated by this, given a convex body K ⊆ Rd we define its curvature path to be the following
curve in Rd:

ρK : [0,∞]→ K ρK(r) = cg(K + rB)

The path connects the centroid ρK(0) = cg(K) to the Steiner point ρK(∞). Our main result will496

exploit the fact that the coordinates of the curvature path are rational functions of bounded degree to497

produce a discretization. We start by bounding the length of the path. For reasons that will become498

clear, it will be more convenient to bound its length when transformed by the linear map in John’s499

Theorem.500

Lemma 4. Let K ∈ Convd \ {∅}, and let A be a linear transformation as in (John’s) Theorem 3.501

Then the length of the path {AρK(r); r ∈ [0,∞]} is at most 4d3.502

Proof. The length of a path is the integral of the `2-norm of its derivative. We will bound the `2 norm503

by the `1 norm and then analyze each of its components.504

length(AρK) =

∫ ∞
0

‖Aρ′K(r)‖2dr ≤
∫ ∞

0

‖Aρ′K(r)‖1dr =

d∑
i=1

∫ ∞
0

|(Aρ′K(r))i|dr (10)

where (Aρ′K(r))i is the i-th component of the vector Aρ′K(r). By equation (9), we know that there505

are degree-d polynomials p(r) and q(r) such that (Aρ′K(r))i = p(r)/q(r) where q(r) > 0 for all506
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r ≥ 0. Hence we can write its derivative as: (Aρ′K(r))i = (p′(r)q(r)− p(r)q′(r))/(q(r)2) which507

can be re-written as h(r)/q(r)2 for a polynomial h(r) of degree at most 2d− 1. Now a polynomial508

of degree at most k can change signs at most k times. So we can partition [0,∞] into at most 2d509

intervals I1, . . . , I2d (some possibly empty) such that the sign of (Aρ′K(r))i is the same within each510

region (treating zeros arbitrarily). If Ij = [aj , bj ], we can then write:511 ∫ ∞
0

|(Aρ′K(r))i|dr =

2d∑
j=1

∫ bj

aj

|(Aρ′K(r))i| =
2d∑
i=1

|(AρK(bj))i − (AρK(aj))i| ≤ 4d2 (11)

where the last step follows from John’s theorem. Since A(ρK) is in A(K) which is contained in a512

ball of radius d, the distance between the i-coordinate of two points is at most 2d. Equations (10) and513

(11) together imply the statement of the lemma.514

Lemma 5. Given K ∈ Convd and a discretization parameter k, there exists a set D =
{p0, p1, . . . , pk} ⊂ K such that for every r there is a point pi ∈ D such that:

|〈ρK(r)− pi, u〉| ≤
4d3

k
· width(K,u), ∀u ∈ Sd−1.

Proof. Discretize the path Aρk into k pieces of equal length and let Ap0, Ap1, . . . , Apk correspond515

to the endpoints. Let D = {p0, p1, . . . , pk}. We know by Lemma 4 that for any p = ρK(r), there516

exists a pi ∈ D such that: ‖Api −Ap‖2 ≤ 4d3/k.517

Now, for each unit vector u ∈ Sd−1, we have:518

|〈u, pi − p〉| ≤ 〈A−Tu,A(pi − p)〉 ≤ ‖A−Tu‖ · ‖A(pi − p)‖ ≤ ‖A−Tu‖ · 4d3/k

Finally, we argue that ‖A−Tu‖ ≤ width(K;u). Let v = (A−Tu)/‖A−Tu‖ and take x, y ∈ K that
certify the width of K in direction u:

width(K,u) = 〈u, x− y〉 = 〈A−Tu,Ax−Ay〉 = ‖A−Tu‖ · 〈v,Ax−Ay〉

Finally note that Ax and Ay are respectively the maximizer and minimizer of 〈v, z〉 for z ∈ A(K)519

since: maxz∈A(K)〈v, z〉 = maxx∈K〈v,Ax〉 = maxx∈K〈AT v, x〉 = maxx∈K〈u, x〉/‖A−Tu‖.520

This implies that 〈v,Ax − Ay〉 = width(A(K), v) ≥ 1 by John’s Theorem since q + B ⊆ A(K).521

This completes the proof.522

5.2 Low-regret cutting-plane algorithms for weak separation oracles523

In this section we show how to use the discretization of the curvature path in Lemma 5 to construct a524

poly(d)-regret cutting-plane algorithm that works against a weak separation oracle.525

Recall that a weak separation oracle is a separation oracle that fixes the direction of the output526

hyperplane in advance (up to sign). That is, at the beginning of round t the oracle fixes some direction527

vt ∈ Sd−1 and returns either vt or −vt to the learner depending on the learner’s choice of query point528

qt.529

One advantage of working with a weak separation oracle is that the width width(Kt; vt) of the530

knowledge set in the direction vt is fixed and independent of the query point pt of the learner. This531

means that if we can guess the width, we can run essentially the standard contextual search algorithm532

(of Section 2.2) by querying any point pt that lies on the hyperplane which decreases the potential533

corresponding to this width by a constant factor. One good way to guess the width turns out to choose534

a random point belonging to a suitably fine discretization of the curvature path.535

Theorem 7. The cutting-plane algorithm which chooses a random point from the discretization of536

the curvature path of Kt into d4 pieces achieves a total regret of O(d5 log2 d) against any weak537

separation oracle.538

Proof. Consider a fixed round t. Let vt be the direction fixed by the weak separation-oracle and let539

ω = width(Kt; vt). Let r = 2dlg(ω/16ed)e (rounding ω/16ed to the nearest power of two).540

If we could choose the point pt = ρKt
(r) = cg(Kt + rB), then by Lemma 3, any separating541

hyperplane through pt would decrease this potential by a constant factor. However, we do not know542
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r. Instead, we will choose a random point from the discretization D of the curvature path of Kt into543

O(d4) pieces, and argue that by Lemma 5 one of these points will be close enough to ρKt(r) to make544

the argument go through.545

Formally, let D be the discretization of ρKt
into 64ed4 pieces as per Lemma 5. By Lemma 5, there546

then exists a point pi ∈ D that satisfies547

|〈ρK(r)− pi, vt〉| ≤
1

16ed
· width(Kt; vt). (12)

Let H be a hyperplane through pi in the direction vt (i.e. H = {〈w− pi, vt〉 = 0}), and let H divide548

Kt into the two regions K+ and K−. By Lemma 3 (with b = 〈ρK(r) − pi, vt〉), since (12) holds,549

we have that550

Vol(K+ + rB) ≤ 0.9 · Vol(K + rB). (13)

Now, consider the algorithm which queries a random point in D. With probability 1/|D| = Ω(d−4),551

equation (13) holds. Otherwise, it is still true that Vol(K+ + rB) ≤ ·Vol(K + rB). Therefore in552

expectation,553

E[Vol(Kt+1 + rB)] ≤
(
1− Ω(d−4)

)
E[Vol(Kt + rB)].

In particular, the total expected number of rounds we can have where r = 2−i is at most554

di/ log(1/(1 − Ω(d−4))) = O(id5). In such a round, our maximum possible loss is at most555

width(Kt; vt) ≤ min(20dr, 2). Summing over all i from 0 to∞, we arrive at a total regret bound of556

∞∑
i=0

O(id5 min(d2−i, 1)) =

log d∑
i=0

O(id5) + d6
∞∑

i=log d

O(i2−i) = O(d5 log2 d).

557

5.3 List contextual recommendation558

In this section, we consider the problem of list contextual recommendation. In this variant of559

contextual recommendation, we are allowed to offer a list of possible actions Lt ⊆ Xt and we560

measure regret against the best action in the list:561

losst = 〈w∗, x∗t 〉 −max
x∈Lt

〈w∗, x〉.

Our main result is that if the list is allowed to be of size O(d4) then it is possible to achieve total562

regret O(d2 log d).563

The recommended list of actions will be computed as follows: given the knowledge set Kt, let D be564

the discretization of the curvature path with parameter k = 200d4 obtained in Lemma 5. Then for565

each pi ∈ D find an arbitrary xi ∈ BR(pi) := arg maxx∈Xt
〈pi, x〉 and let Lt = {x1, x2, . . . , xk}.566

Theorem 8. There exists an algorithm which plays the list Lt defined above and incurs a total regret567

of at most O(d2 log d).568

Proof. The overall structure of the proof will be as follows: we will show that for each integer j ≥ 0,569

the algorithm can incur loss between 100d · 2−j and 200d · 2−j at most O(jd) times. Hence the total570

loss of the algorithm can be bounded by
∑∞

j=1O(jd) · 2−jd ≤ O(d2 log d).571

572

Potential function: This will be done via a potential function argument. As usual, we will keep
track of knowledge Kt which corresponds to all possible values of w that are consistent with the
observations seen so far. K1 = B and:

Kt+1 = Kt ∩
[
∩i∈Lt

{w ∈ Rd; 〈x∗ − x,w〉 ≥ 0}
]
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Associated with Kt we will keep track of a family of potential functions:

Φj
t = Vol(Kt + 2−jB)

Since K1 ⊇ K2 ⊇ K3 ⊇ ... the potentials will be non-increasing: Φj
1 ≥ Φj

2 ≥ Φj
3 ≥ .... One other573

important property is that the potential functions are lower bounded:574

Φt
j ≥ Vol(2−jB) = 2−jdVol(B) (14)

We will argue that if we can bound the loss at any given step t by 200 · 2−jd, then Φj
t+1 ≤ 0.9 · Φj

t .
Because of the lower bound in equation 14, this can happen at most

O

(
log

(
Φ1

j

2−jdVol(B)

))
= O

(
log

(
(1 + 2−j)dVol(B)

2−jdVol(B)

))
≤ O(jd)

Bounding the loss: We start by bounding the loss and depending on the loss we will show a constant
decrease in a corresponding potential function. Let

x∗ ∈ arg max
x∈Xt

〈w∗, x〉

If x∗ is in the convex hull of Lt then there must some of the points in xi ∈ Lt that is also optimal,575

in which case the algorithm incurs zero loss in this round and we can ignore it. Otherwise, we can576

assume that x∗ is not in the convex hull of Lt.577

In that case, define for each xi ∈ Lt the vector:

vi =
x∗ − xi
‖x∗ − xi‖2

Consider the index i that minimizes width(K; vi) and use this point to bound the loss:
losst = min

x∈Lt

〈w∗, x∗ − x〉 ≤ 〈w∗, x∗ − xi〉 ≤ 〈w∗ − pi, x∗ − xi〉

= 〈w∗ − pi, vi〉 · ‖x∗ − xi‖ ≤ 2〈w∗ − pi, vi〉 ≤ 2width(K, vi)

The second inequality above follows from the definition of xi since xi ∈ arg maxx∈Xt
〈pi, x〉 it578

follows that 〈pi, xi − x∗〉 ≥ 0.579

580

Charging the loss to the potential We will now charge this loss to the potential. For that we first
define an index j such that:

j = −
⌈
width(K, vi)

100d

⌉
With this definition we have:

losst ≤ 2width(K, vi) ≤ 200d2−j

Our final step is to show that the potential Φj
t decreases by a constant factor. For that we will use a581

combination of the discretization in Theorem 5 and the volume reduction guarantee in Lemma 3.582

First consider the point:
gi = cg(K + 2−jB)

Since it is on the curvature path, there is a discretized point p` ∈ D such that:
|〈v`, gi − p`〉| ≤ width(K, v`)/(50d)

Together with the facts that 〈w∗, v`〉 ≥ 0 and 〈p`, v`〉 ≤ 0 we obtain that:
〈w∗ − gi, v`〉 = 〈w∗ − p`, v`〉+ 〈p` − gi, v`〉 ≥ −width(K, v`)/(50d)

This in particular implies that:

Kt+1 ⊆ K̃t+1 := Kt ∩ {w ∈ Rd; 〈w − gi, v`〉 ≥ −width(K, v`)/(50d)}
We are now in the position of applying Lemma 3 with r = 2−j . Note that

r = 2−j ≤ width(K, vi)

50d
≤ width(K, v`)

50d
where the last inequality follows from the choice of the index i as the one minimizing width(K, vi).
Applying the Theorem, we obtain that:

Vol(Kt+1 + 2−jB) ≤ Vol(K̃t+1 + 2−jB) ≤ 0.9 · Vol(Kt + 2−jB)

which is the desired decrease in the Φj
t potential. This concludes the proof.583
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6 Local Contextual Recommendation584

In this section, we consider the local contextual recommendation problem, in which we may choose585

a list of actions Lt ⊆ Xt and our feedback is some xloc
t such that

〈
xloc
t , w∗

〉
≥ maxx∈Lt 〈x,w∗〉.586

In other words, the feedback may not be the optimal action but it must at least be as good as587

the local optimum in Lt. The goal is the same as before: minimize the total expected regret588

E[Reg] = E
[∑T

t=1〈x∗t − xt, w∗〉
]

where x∗t ∈ arg maxx∈Xt
〈x,w∗〉.589

It should be noted that, in this model, it is impossible to achieve non-trivial regret if the list size590

|Lt| is only one, since the feedback will always be the unique element, providing no information591

at all. Below we show that it is possible to achieve bounded regret algorithm even when |Lt| = 2,592

although the regret does depend on the total number of possible actions each round, i.e. maxt |Xt|.593

Furthermore, we show that, even when |Lt| is allowed to be as large as 2Ω(d), the expected regret of594

any algorithm remains at least 2Ω(d).595

6.1 Low-regret algorithms596

We use [a]+ as a shorthand for max{a, 0}.597

Our algorithm employs a reduction similar to that of Theorem 4. Specifically, we prove the following:598

Theorem 9. Suppose that |Xt| ≤ A for all t ∈ N, and let H be any positive integer such that599

2 ≤ H ≤ A. Then, given a low-regret cutting-plane algorithm A with regret ρ, we can construct an600

O(ρ ·A/(H − 1))-regret algorithm for local contextual recommendation where the list size |Lt| in601

each step is at most H .602

Before we prove Theorem 9, notice that it can be combined with Theorem 5 and Theorem 6603

respectively to yield the following algorithms for local contextual recommendation.604

Corollary 1. Suppose that |Xt| ≤ A for all t ∈ N, and let H be any positive integer such that605

2 ≤ H ≤ A. Then, there is an O (A/(H − 1) · exp(d log d))-regret algorithm for local contextual606

recommendation where the list size |Lt| in each step is at most H .607

Corollary 2. Suppose that |Xt| ≤ A for all t ∈ N, and let H be any positive integer such that608

2 ≤ H ≤ A. Then, there is an O(A/(H − 1) · d log T )-regret algorithm for local contextual609

recommendation where the list size |Lt| in each step is at most H .610

Note that these algorithms work for list sizes as small as H = 2 but may also give a better regret611

bound if we allow larger lists.612

We will now prove Theorem 9.613

Proof of Theorem 9. Our algorithm is similar to that of Theorem 4, except that we also play H − 1614

random actions from Xt in addition to the action determined by the answer of A. More formally,615

each round t of our algorithm works as follows:616

• Ask A for its query pt to the separation oracle.617

• Let xt = BRt(pt), and let L′t ⊆ Xt be a random subset of Xt of size min{H − 1, |Xt|}.618

• Output the list Lt = {xt} ∪ L′t.619

• Let xloc
t be the feedback.620

• If xloc
t 6= xt, do the following:621

– Return vt = (xloc
t − xt)/‖xloc

t − xt‖ to A.622

– Update the knowledge set Kt+1 = {w ∈ Kt |
〈
xloc
t − xt, w

〉
≥ 0}.623

We will now show that the expected regret of the algorithm is at most ρ ·A/(H − 1). From the regret624

bound of A, the following holds regardless of the randomness of our algorithm:625

ρ ≥
∑

t:xloc
t 6=xt

〈
xloc
t − xt

‖xloc
t − xt‖

, w∗ − pt
〉
≥

∑
t:xloc

t 6=xt

0.5
〈
xloc
t − xt, w∗ − pt

〉
= 0.5

(∑
t

〈
xloc
t − xt, w∗ − pt

〉)
.
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From the requirement of xloc
t , we may further bound

〈
xloc
t − xt, w∗ − pt

〉
by626 〈

xloc
t − xt, w∗ − pt

〉
≥ max

x∈Lt

〈x− xt, w∗ − pt〉 = max
x′∈L′

t

[〈x′ − xt, w∗ − pt〉]+.

Hence, from the above two inequalities, we arrive at627

2ρ ≥
∑
t

max
x′∈L′

t

[〈x′ − xt, w∗ − pt〉]+.

Next, observe that628

E
[

max
x′∈L′

t

[〈x′ − xt, w∗ − pt〉]+
]
≥ Pr[x∗t ∈ L′t] · 〈x∗ − xt, w∗ − pt〉

=
|L′t|
|Xt|
· 〈x∗ − xt, w∗ − pt〉

≥ H − 1

A
· 〈x∗ − xt, w∗ − pt〉 .

Combining the above two inequalities, we get629

2ρ ≥ H − 1

A
· E

[∑
t

〈x∗t − xt, w∗〉

]
.

From this, we can conclude that the expected regret, which is equal to E [
∑

t 〈x∗t − xt, w∗〉], is at630

most O (ρ ·A/(H − 1)) as desired.631

6.2 Lower Bound632

We will now prove our lower bound. The overall idea of the construction is simple: we provide an633

action set that contains a “reasonably good” (publicly known) action so that, unless the optimum is634

selected in the list, the adversary can return this reasonably good action, resulting in the algorithm635

not learning any new information at all.636

Theorem 10. Any algorithm for the local contextual recommendation problem that can output a list637

of size up to 2Ω(d) in each step incurs expected regret of at least 2Ω(d).638

Proof. Let S be any maximal set of vectors in Bd such that the first coordinate is zero and the inner639

product between any pair of them is at most 0.1. By standard volume argument, we have |S| ≥ 2Ω(d).640

Furthermore, let e1 be the first vector in the standard basis. Consider the adversary that picks u ∈ S641

uniformly at random and let w∗ = 0.2e1 + 0.8u and let Xt = S ∪ {e1} for all t ∈ N. The adversary642

feedback is as follows: if u /∈ Lt, return e1; otherwise, return u.643

We will now argue that any algorithm occurs expected regret at least 2Ω(d), even when allows to644

output a list Lt of size as large as b
√
|S|c = 2Ω(d) in each step. From Yao’s minimax principle, it645

suffices to consider only any deterministic algorithm A. Let L0
t denote the list output by A at step t646

if it had received feedback e1 in all previous steps.647

Observe also that in each step for which u /∈ Lt, the loss of A is at least 0.6. Furthermore, in648

the first m = b0.1
√
|S|c rounds, the probability that the algorithm selects u in any list is at most649

m
√
|S|
|S| ≤ 0.1. Hence we can bound the the expected total regret of A as:650

E[0.6 · |{t | u /∈ Lt}|] ≥ 0.6mPr[u /∈ ∪mt=1Lt] = 0.6mPr[u /∈ ∪mt=1L
0
t ] ≥ 0.6m · 0.9 ≥ 2Ω(d)

which concludes our proof.651
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