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APPENDIX

A MORE DISCUSSIONS

A.1 CLASS LABELS

Our method uses class labels, but it does not introduce any extra data collection cost compared to
one-for-one AD models. Because our method only explicitly uses class labels, while they implicitly
use class labels. The existing AD datasets are collected for one-for-one anomaly detection (i.e., we
need to train a model for each class). Thus, the existing AD datasets need to be separated according
to classes, with each class as a subdataset. Therefore, one-for-one AD methods also need class labels,
as they require normal samples from the same class to train. If the classes are not separated (in
other words, without class labels), these one-for-one AD methods cannot be used either. Our method
actually has the same supervision as these methods. The difference is that we explicitly use the
class labels but they don’t explicitly use the class labels. So, our method still follows the same data
organization format as the one-for-one AD models, we don’t introduce any extra data collection cost.
But the advantage of our unified AD method is that we can train one model for all classes, greatly
reducing the resource costs of training and deploying. Moreover, our method only uses class labels
and does not require pixel-level annotations. For real-world industrial applications, this doesn’t incur
extra data collection costs, as we usually consciously collect data according to different classes. So,
class labels are bonuses for us.

We summarize the training samples and the supervision information required by our method and
other methods as follows:

Table 4: Training samples and supervision information summarization.

PaDiM | MKD | DRAEM | PMAD | UniAD | OmniAL | FastFlow | CFLOW | HGAD (Ours)
N N N+P N N N+P N N N
C C C C w/o C w/o C C C C

where N means only using normal samples during training, P means also using pseudo (or synthetic)
anomalies during training, C means requiring class labels and w/o C means not using class labels.

Our method can be easily extended to completely unsupervised, as industrial images often have
significant differences between different classes. For instance, after extracting global features, we can
use a simple unsupervised clustering algorithm to divide each image into a specific class. Or we can
only require few-shot samples for each class as a reference, and then compute the feature distances
between each input sample to these reference samples. In this way, we can also conveniently divide
each sample into the most relevant class.

A.2 MORE DISCUSSIONS WITH UNIAD

Here, we provide more discussions between our HGAD and UniAD (You et al., 2022)) to further
clarify that we does not simply replace the reconstruction model of UniAD with normalizing flows
and accordingly introduce the “homogeneous mapping” issue.

Our method and UniAD (You et al.,2022) both aim to tackle the multi-class AD task, but we adopt a
different research line from UniAD. Unlike UniAD, our method doesn’t face the ”identical shortcut”
issue, as it doesn’t have the abnormal information leakage risk in principle (see the second paragraph
in sec. [T). However, the NF-based models have their own problems when used for multi-class
anomaly detection. We first empirically observe a significant performance degradation when directly
using the previous NF-based AD methods for multi-class anomaly detection (see Fig. 2fa) and Tab. [I)).
The “homogeneous mapping” issue is a possible explanation we provide for this phenomenon, rather
than casually introduced. Moreover, as analyzed in sec. [3.2] we provide a reasonable explanation
from the perspective of the formula in normalizing flow. Finally, the key designs proposed in our
method are completely different from those in UniAD. Based on these designs, we can achieve much
better unified AD performance than UniAD on all four real-world AD datasets. Therefore, compared
to UniAD, our method should be reasonably seen as an effective exploration for multi-class anomaly
detection in the direction of normalizing flow based anomaly detection.
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Table 5: Complexity comparison between our HGAD and other baseline methods.

|| PADiIM MKD DRAEM | PMAD UniAD | FastFlow CFLOW HGAD (Ours)

FLOPs 149G 241G 198.7G 52G 9.7G 36.2G 30.7G 32.8G

Learnable Parameters / 249M  97.4M 163.4M  9.4M 69.8M 24.7TM 30.8M

Inference Speed 12.8fps  23fps 22fps 10.8fps  291ps 42.7fps 24.6fps 24.3fps
Training Epochs / 50 700 300 1000 400 200 100

A.3 THE WAY TO GUARANTEE ANOMALIES OUT-OF-DISTRIBUTION.

Here, we further explain how to guarantee that anomalies are out-of-distribution. In our method,
increasing inter-class distances is to ensure that the latent space has sufficient capacity to accommo-
date the features of multiple classes. In addition, we also model the intra-class Gaussian mixture
distribution for each class to ensure that the normal distribution of each class still remains compact.
Therefore, even if anomalies fall into the inter-class Gaussian mixture distribution, they are usually in
the low-density regions among the inter-class class centers. So, we can still ensure that anomalies
are out-of-distribution through intra-class Gaussian mixture distributions. As described in Anomaly
Scoring section (sec. [3.4), we can guarantee that anomalies are recognized as out-of-distribution by
combining intra-class log-likelihood and inter-class entropy to measure anomalies. Because only if
the anomaly is out-of-distribution, the anomaly score based on the association of log-likelihood and
entropy will be high, and the detection metrics can be better. The visualization results (decision-level
results based on log-likelihood) in Fig. 2] and 5] also intuitively show that our method has fewer
normal-abnormal overlaps and the normal boundary is more compact.

A.4 LIMITATIONS

In this paper, we propose a novel HGAD to accomplish the multi-class anomaly detection task. Even
if our method manifests good unified AD performance, there are still some limitations of our work.
Here, we discuss two main limitations as follows:

One limitation is that our method mainly targets NF-based AD methods to improve their unified
AD abilities. To this end, our method cannot be directly utilized to the other types of anomaly
detection methods, such as reconstruction-based, OCC-based, embedding-based, and distillation-
based approaches (see Related Work, Sec. [2). However, we believe that the other types of anomaly
detection methods can also be improved into unified AD methods, but we need to find and solve the
corresponding issues in the improvement processes, such as the “identical shortcut” issue (You et al.|
2022) in reconstruction-based AD methods. How to upgrade the other types of anomaly detection
methods to unified AD methods and how to find a general approach for unified anomaly detection
modeling will be the future works.

In this work, our method is mainly aimed at solving multi-class anomaly detection, it doesn’t have the
ability to directly generalize to unseen classes. Because, in our method, the new class features usually
do not match the learned known multi-class feature distribution, which can lead to normal samples
being misrecognized as anomalies. Generalization to unseen classes can be defined as cross-class
anomaly detection (Yao et al.|[2023b)), where the model is trained with normal instances from multiple
known classes with the objective to detect anomalies from unseen classes. In the practical industrial
scenarios, models with cross-class anomaly detection capabilities are very valuable and necessary,
because new products will continuously appear and it’s cost-ineffective and inconvenient to retrain
models for new products. We think our method should achieve better performance on unseen classes
than previous NF-based methods due to the ability to learn more complex multi-class distribution,
but it’s far from solving the cross-class problem. How to design a general approach for cross-class
anomaly detection modeling will be the future works.

A.5 MODEL COMPLEXITY

With the image size fixed as 256 x 256, we compare the FLOPs and learnable parameters with all
competitors. In Tab. 5] we can conclude that the advantage of HGAD does not come from a larger
model capacity. Compared to UniAD, our method requires fewer epochs (100 vs. 1000) and has a
shorter training time.
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A.6 REAL-WORLD APPLICATIONS

In industrial inspection scenarios, the class actually means a type of product on the production line.
Multi-class anomaly detection can be applied to train one model to detect defects in all products,
without the need to train one model for each type of product. This can greatly reduce the resource costs
of training and deploying. In video surveillance scenarios, we can use one model to simultaneously
detect anomalies in multiple camera scenes.

B SocIlAL IMPACTS AND ETHICS

As a unified model for multi-class anomaly detection, the proposed method does not suffer from
particular ethical concerns or negative social impacts. All datasets used are public. All qualitative
visualizations are based on industrial product images, which doesn’t infringe personal privacy.

C IMPLEMENTATION DETAILS

Optimization Strategy. In the initial a few epochs, we only optimize with £, and £,,; to form
distinguishable inter-class main class centers. And then we simultaneously optimize the intra-class
delta vectors and the main class centers with the overall loss £ in Eq. [IT] In this way, we can better
decouple the inter-class and intra-class learning processes. This strategy can make the intra-class
learning become much easier, as optimizing after forming distinguishable inter-class main centers
will not have the problem that many centers initially overlap with each other.

Model Architecture. The normalizing flow model in our method is mainly based on Real-NVP
(Dinh et al.| 2017) architecture, but the convolutional subnetwork in Real-NVP is replaced with a
two-layer MLP network. As in Real-NVP, the normalizing flow in our model is composed of the
so-called coupling layers. All coupling layers have the same architecture, and each coupling layer is
designed to tractably achieve the forward or reverse affine coupling transformation (Dinh et al., [ 2017)
(see Eq. ). Then each coupling layer is followed by a random and fixed soft permutation of channels
Ardizzone et al.|(2019) and a fixed scaling by a constant, similar to ActNorm layers introduced by
(Kingma & Dhariwal 2019). For the coupling coefficients (i.e., exp(s(z1)) and ¢(z1) in Eq. ), each
subnetwork predicts multiplicative and additive components simultaneously, as done by (Dinh et al.,
2017). Furthermore, we adopt the soft clamping of multiplication coefficients used by (Dinh et al.,
2017). The layer numbers of the normalizing flow models are all 12. We add positional embeddings to
each coupling layer, which are concatenated with the first half of the input features (i.e., 21 in Eq. ).
Then, the concatenated embeddings are sent into the subnetwork for predicting couping coefficients.
The dimension of all positional embeddings is set to 256. The implementation of the normalizing
flows in our model is based on the FrEIA library https://github.com/VLLHD/FrEIA,

D DATASETS

MVTecAD. The MVTecAD (Bergmann et al.,[2019) dataset is widely used as a standard benchmark
for evaluating unsupervised image anomaly detection methods. This dataset contains 5354 high-
resolution images (3629 images for training and 1725 images for testing) of 15 different product
categories. 5 classes consist of textures and the other 10 classes contain objects. A total of 73 different
defect types are presented and almost 1900 defective regions are manually annotated in this dataset.

BTAD. The BeanTech Anomaly Detection dataset (Mishra et al., 2021)) is an another popular
benchmark, which contains 2830 real-world images of 3 industrial products. Product 1, 2, and 3 of
this dataset contain 400, 1000, and 399 training images respectively.

MVTecAD-3D. The MVTecAD-3D (Bergmann et al., |2021) dataset is recently proposed for 3D
anomaly detection, which contains 4147 high-resolution 3D point cloud scans paired with 2D RGB
images from 10 real-world categories. In this dataset, most anomalies can also be detected only
through RGB images. Since we focus on image anomaly detection, we only use RGB images of the
MVTecAD-3D dataset. We refer to this subset as MVTec3D-RGB.

VisA. The Visual Anomaly dataset (zou et al.,[2022) is a recently proposed larger anomaly detection
dataset compared to MVTecAD (Bergmann et al.,[2019). This dataset contains 10821 images with
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9621 normal and 1200 anomalous samples. In addition to images that only contain single instance,
the VisA dataset also have images that contain multiple instances. Moreover, some product categories
of the VisA dataset, such as Cashew, Chewing gum, Fryum and Pipe fryum, have objects that are
roughly aligned. These characteristics make the VisA dataset more challenging than the MVTecAD
dataset, whose images only have single instance and are better aligned.

E DETAILED L0OSS FUNCTION DERIVATION

In this section, we provide the detailed derivation of the loss functions proposed in the main text,
including L, (Eq. [6), Lyi (Eq. [8), and L;,, (Eq. [10).

Derivation of £,. We use a Gaussian mixture model with class-dependent means i, and unit
covariance [ as the inter-class Gaussian mixture prior, which is defined as follows:

p2(2) =3 PN (D) (12)
Below, we use ¢, as a shorthand of logp(y). Then, we can calculate the log-likelihood as follows:
logpz(2) =log[ Y p(y)N (2 i1y, 1)]

= 1og[Zyp(y)(27r)‘%e—%<Z—#y)T<z—uy>]

—glog(%r) + log( Zy e e

d _lz—nyll3 ey
—§log(2ﬂ') + log(zy e 7 T

lz—nyll3
)

d — 2
= —§log(27r) + logsumexp ( — % + cy> (13)
y

Then, we bring the logp(z) into Eq. [I|to obtain the log-likelihood logpy () as:

(_ oo (@) — pyll3

5 + cy> + log|det.J| (14)

d
logpg(z) = — §log(27r) + logsumexp
Yy

Further, the maximum likelihood loss in Eq. [2|can be written as:
Ly = Epr(X)[*Inge (:C)]

_ lea(x) — pyl3

d
5 + cy) — log|detJ| + 2log(27r)} (15)

=Epnp(x) { - logsuymexp <

The loss function L is actually defined as the above maximum likelihood loss £,,, with inter-class
Gaussian mixture prior.
Extending L, for Learning Intra-Class Mixed Class Centers. When we extend the Gaussian

prior p(Z|y) = N (py, I) to mixture Gaussian prior p(Z|y) = Zfil pi(y)N (¢, T), where M is the
number of intra-class latent centers, the likelihood of latent feature z can be calculated as follows:

M
pz(z) =3 pw) (X, N (D) (16)
Then, following the derivation in Eq. [I3] we have:
_ —Mz—pfll3 , 4, d
logpz(2) = log( Zyp(y) sunzexp [ 5 +cl - 210g(27r)D (17)

where ¢! is the shorthand of logp;(y). The £, for learning intra-class mixed class centers can be
defined as:

— x) — 1?3 d
Ly =Egopx) [ — log( Zyp(y) sun;exp [M +c! — §log(27r)D — log|det ]|
(18)
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However as the initial latent features Z usually have large distances with the intra-class centers
{u?}M |, this will cause the value after sumexp operation close to 0. After calculating the logarithm
function, it’s easy to cause the loss to be numerically ill-defined (NaN). Besides, we find that directly
employing Eq. [I§]for learning intra-class mixed class centers will lead to much worse results, as we
need to simultaneously optimize all intra-class centers of all classes to fit the inter-class Gaussian
mixture prior. To this end, we propose to decouple the inter-class Gaussian mixture prior fitting and
the intra-class latent centers learning. The loss function of learning intra-class mixed class centers is
defined in Eq.

Derivation of £,,,;. We first derive the general format of the mutual information loss in Eq. [7] as
follows:

Lo =—1(Y,2) = —H(Y) + H(Y|Z) = —H(Y) - H(Z) + H(Y, Z)
= —H(Y) = Eqnp| —108( 3. p)p(00(@)ly))

T E oo [ o8 (p)p(00 (@) 1)
_ o p(y)p(@e(x)|y)
B HW’“%”W“YPgZ O <m{

R LT

\_//\

19)

Then, by replacing p(pg(x)|y) with N (g (z); py, I) in the mutual information loss, we can derive
the following practical loss format for the second part of Eq. [T9] We also use ¢, as a shorthand of

logp(y).

p()p(po(x)ly) ]
(

—Ez.9)~ 1
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e
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By replacing Eq. 20 back to the Eq. [I9 we can obtain the following practical loss format of the
mutual information loss.

x) — o ||3
Loi = —Eypv)[~10gp(%)] — E(zy)mp(x,v) [10gS°ftmaX ( - M * Cy)]

Y

) — fy||2
= —Eywpv)[—cy) = E@y)~p(x,v) [bgsoitmax < - M n Cy)}

— 112
—E(z,y)~p(x,7) [logsogtmax ( — M + cy/) - cy} 21

Intra-Class Mixed Class Centers Learning Loss. The loss function for learning the intra-class
class centers is actually the same as the £, in Eq. @ But we note that we need to replace the class
centers with the intra-class centers: p! = { pd +Ap?}M |, and the sum operation is performed on all
intra-class centers 4! within the corresponding class y. Another difference is that we need to detach
the main center 1Y from the gradient graph and only optimize the delta vectors. The loss function can
be written as:

<_ |lpo(x) — (SG[uf] + Au})|13
2

Lin = Ez y)~p(x,v) {—logsumexp +cf) —10g|detJ] (22)

i
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Finally, we note that the use of logsumexp and logsoftmax pytorch operations above is quite
important. As the initial ||¢g(z) — 1, |3/2 distance values are usually large, if we explicitly perform
the exp and then log operations, the values will become too large and the loss will be numerically
ill-defined (NaN).

F AN INFORMATION-THEORETIC VIEW

Information theory (Shannonl [1948)) is an important theoretical foundation for explaining deep
learning methods. The well-known Information Bottleneck principle (Tishby et al., [ 1999; Tishby &
Zaslavsky, [2015} |Alemi et al, 2017} [Saxe et al.||2018]) is also rooted from the information theory,
which provides an explanation for representation learning as the trade-off between information
compression and informativeness retention. Below, we denote the input variable as X, the latent
variable as Z, and the class variable as Y. Formally, in this theory, supervised deep learning attempts
to minimize the mutual information (X, Z) between the input X and the latent variable Z while
maximizing the mutual information I(Z,Y") between Z and the class Y

minI(X,Z) — al(Z,Y) (23)
where the hyperparameter o > 0 controls the trade-off between compression (i.e., redundant informa-
tion) and retention (i.e., classification accuracy).

In this section, we will show that our method can be explained by the Information Bottleneck principle
with the learning objective minl (X, Zg) —al(Z,Y), where Zg = pg(X +&) and p(€) = N (0, 021)
is Gaussian with mean zero and covariance o°I. First, we derive I(X, Z¢) as follows:
I(X, Zg) = 1(Ze, X) = H(Ze) — H(Ze|X)
= Eup(x),enp(e) [1ogp(00 (x + €))] + Erp(x),cnp(e) logp(po (z + €)[z)]  (24)

=A =B

To approximate the second item (B), we can replace the condition x with g (x), because g is
bijective and both conditions convey the same information (Ardizzone et al., 2020).

B = Epp(x),e~p(e) 10gp(po(z + €)[7)] = Epnp(x),enp(e)[logp(pa (@ + €)|po ()] (25)

We can linearize g (x + €) by its first order Taylor expansion: g (z + €) = @g(z) + Je + O(€?),
where the matrix J = /() is the Jacobian matrix of the bijective transformation (z = ¢y ()
and z = ¢ ' (2)). Then, we have:

B = Eprp(x),emp(e) l0gp(00(2) + Je + O(€*) | po ()]
= Eoop(x).cnp(e) 1080(00 () + T @o(2))] + Eenp(e)[O(?)]
= Epop(x),enp(e) 108D (00 (2) + Jel0p())] + O(0?) (26)
where the E_,,(£)[O(e?)] is actually the covariance of p(£) = N(0, ¢*I), thus can be replaced with

O(0?). Since p(€) is Gaussian with mean zero and covariance o1, the conditional distribution is
Gaussian with mean ¢y () and covariance 02JJT. Then, we have:

B = Epp(x).emp(&) 108N (0o (z) + J&; 0 (2), 0% JIT)] + O(0?)
= Eqp(x).cmp(e)[l08((2m) "% - (|02107) 7% - 73577 ¢)] + O(0?)

= Evrp) [ 310810277 )] ~ S108(2m) — 5 5 Eevye) [T + O(0?)

= EmNp(X)[—%log(UJTD] — dlog(o) — glog(%r) - #0(02) +0(c?%)

d 1
= E,p(x)[—log|det.J|] — dlog(c) — §log(27r) - @0(02) + O(c?) 27

18



Under review as a conference paper at ICLR 2024

For the first item (A), we can use the derivation in Eq. [T3]

A= Epr(X),eNP(S) [—logp(gpg (.%‘ + 6))]

d oz +€) — pyll3
= Epnp(x),enp(e) [glog(%) - logsu;fneXP ( _ leaf 2) ullz + cy)]

olx +€) — 2
:]EM(XWP(&[7logsuymexp (7 ll0a( 2) Iyl |2

d
+ cy)] + Slog(2m)  (28)
Finally, we put the above derivations together and drop the constant items and the items that vanish
with rate O(0?) as ¢ — 0. The I(X, Z¢) becomes:

sz +€) — pyll3
2

I(X, Z¢) = Epop(x),emp(€) [ — logsumexp ( + cy) - log|detJ|] (29)
y

We can find that the (X, Z¢) has the same formula as the loss £, except the constant item %log(27),
and I(Z,Y) = I(Y, Z) = —L; (see Eq.[19). Thus, the learning objective minI (X, Zg)—al(Z,Y)
in Information Bottleneck principle can be converted to L, 4+ oL, which is the first half part of the
training loss in Eq. [TT]

From the Information Bottleneck principle perspective, we can explain our method: it attempts to
minimize the mutual information I(X, Z¢) between X and Zg, forcing the model to ignore the
irrelevant aspects of X + £ which do not contribute to fit the latent distribution and only increase
the potential for overfitting. Therefore, the £, loss function actually endows the normalizing flow
model with the compression ability for establishing correct invertible mappings between input X
and the latent Gaussian mixture prior Z, which is effective to prevent the model from learning the
“homogeneous mapping”. Simultaneously, it encourages to maximize the mutual information I(Y, Z)
between Y and Z, forcing the model to map different class features to their corresponding class
centers which can contribute to class discriminative ability.

G ADDITIONAL RESULTS

Quantitative Results Under the Single-Class Setting. In Tab. [6] we report the detailed results of
anomaly detection and localization on MVTecAD (Bergmann et al.| 2019) under the single-class
setting. We can find that all baselines achieve excellent results under the single-class setting, but their
performances drop dramatically under the unified case (see Tab. [T|in the main text). For instance, the
strong baseline, DRAEM, suffers from a drop of 9.9% and 10.1%. The performance of the previous
SOTA NF-based AD method, FastFlow, drops by 7.6% and 2.5%. This demonstrates that the unified
anomaly detection is quite more challenging than the conventional single-class anomaly detection
task, and current SOTA AD methods cannot be directly applied to the multi-class AD task well. Thus,
how to improve the unified AD ability for AD methods should be further studied. On the other hand,
compared with reconstruction-based AD methods (e.g, DRAEM (Zavrtanik et al.,|2021)), NF-based
AD methods have less performance degradation when directly applied to the unified case, indicating
that NF-based approaches may be a more suitable way for the multi-class AD modeling than the
reconstruction-based approaches.

Log-likelihood Histograms. In Fig. [5] we show log-likelihoods generated by the single-class NF-
based AD method and our method. All categories are from the MVTecAD dataset. The visualization
results can empirically verify our speculation that the single-class NF-based AD methods may fall
into the “homogeneous mapping” issue, where the normal and abnormal log-likelihoods are highly
overlapped.

Qualitative Results. We present in Fig. [6|additional anomaly localization results of categories with
different anomalies in the MVTecAD dataset. It can be found that our approach can generate much
better anomaly score maps that the single-class NF-based baseline CFLOW (Gudovskiy et al.| [2022)
even for different categories from the MVTecAD dataset.
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Table 6: Anomaly detection and localization results on MVTecAD. All methods are evaluated
under the single-class setting. - /- means the image-level and pixel-level AUROCs.

Categor Baseline Methods Unified Methods NF Based Methods
8OY || PaDiM  MKD  DRAEM | PMAD  UniAD | FastFlow CFLOW
Carpet 99.8/99.0 79.3/95.6 97.0/95.5 | 99.7/98.8 99.9/98.0 | 100/99.4  100/99.3
Grid 96.7/97.1 78.0/91.8 99.9/99.7 | 97.7/96.3 98.5/94.6 | 99.7/98.3 97.6/99.0
Leather 100/99.0  95.1/98.1 100/98.6 | 100/99.2  100/98.3 | 100/99.5 97.7/99.7
Tile 98.1/94.1 91.6/82.8 99.6/99.2 | 100/94.4 99.0/91.8 | 100/96.3  98.7/98.0
Wood 99.2/94.1 94.3/84.8 99.1/96.4 | 98.0/93.3 97.9/93.4 | 100/97.0 99.6/96.7
Bottle 99.9/98.2 99.4/96.3 99.2/99.1 | 100/98.4 100/98.1 | 100/97.7  100/99.0
Cable 92.7/96.7 89.2/82.4 91.8/94.7 | 98.0/97.5 97.6/96.8 | 100/98.4  100/97.6
Capsule 91.3/98.6 80.5/95.9 98.5/94.3 | 89.8/98.6 85.3/97.9 | 100/99.1 99.3/99.0
Hazelnut 92.0/98.1 98.4/94.6 100/99.7 | 100/98.8 99.9/98.8 | 100/99.1 96.8/98.9
Metal nut 98.7/97.3 73.6/86.4 98.7/99.5 | 99.2/97.5 99.0/95.7 | 100/98.5 91.9/98.6
Pill 93.3/95.7 82.7/89.6 98.9/97.6 | 94.3/95.5 88.3/95.1 | 99.4/99.2  99.9/99.0
Screw 85.8/98.4 83.3/96.0 93.9/97.6 | 73.9/91.4 91.9/97.4 | 97.8/99.4 99.7/98.9
Toothbrush || 96.1/98.8 92.2/96.1 100/98.1 | 91.4/98.2 95.0/97.8 | 94.4/98.9 95.2/99.0
Transistor || 97.4/97.6 85.6/76.5 93.1/90.9 | 99.8/97.8 100/98.7 | 99.8/97.3 99.1/98.0
Zipper 90.3/98.4 93.2/93.9 100/98.8 | 99.5/96.7 96.7/96.0 | 99.5/98.7 98.5/99.1
Mean H 95.5/97.4 87.8/90.7 98.0/97.3 \ 96.1/96.8  96.6/96.6 \ 99.4/98.5 98.3/98.6
1
r , hlm . L
Bottle ) Cable o Capsule
b e er e : : -
Carpet o Grid - Hazelnut
‘ Leather i ‘ Metal_nut ‘ Pill
» i
Screw ) Tile Toothbrush

Transistor Wood Zipper

Figure 5: Log-likelihood histograms on MVTecAD. All categories are from the MVTecAD dataset.
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CFLOW Ours GT CFLOW Ours

Figure 6: Qualitative results on MVTecAD. More visualization of anomaly localization maps
generated by our method on industrial inspection data. All examples are from the MVTecAD dataset.
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