
A Proofs

In this section, we prove the theorems presented in the paper through a series of lemmas. The proofs
here are an adaptation of proofs of similar results for zero-sum concurrent games with a single
discount factor [34].

A.1 Definitions

We first introduce some notation and definitions. Recall that we defined S1 = {(s, σ) | σ /∈ Fσ},
S2 = {(s, σ) | σ ∈ Fσ} and S̄ = S1 ∪ S2. V = {V : S1 → R} denotes the set of value functions
over S1 and V̄ = {V : S̄ → R} denotes the set of value functions over S̄. We use ∥·∥ to denote the
ℓ∞-norm. For any V ∈ V , (s, σ) ∈ S2 and any σ′ ∈ Σ, define

JV Kσ′(s, σ) =
∑
s′∈S

Tσ(s
′ | s)V (s′, σ′).

Note that for any (s, σ) ∈ S2, we have JV K(s, σ) = minσ′∈Σ JV Kσ′(s, σ). Similarly, for any V ∈ V ,
(s, σ) ∈ S1 and a ∈ A, let us define

Fa(V )(s, σ) = R̄((s, σ), a) + γ ·
∑
s′∈S

P (s′ | s, a)JV K(s′, σ)

with F(V )(s, σ) = maxa∈A Fa(V )(s, σ). Given any policy π1 : S̄ → A1 for agent 1 in G, we
define the resulting MDP G(π1) = (S̄, A2, Pπ1 , Rπ1 , γ) with states S̄ and actions A2 = Σ as
follows. The transition probability function is given by

Pπ1((s
′, σ′) | (s, σ), a2) =

{
P̄ ((s′, σ′) | (s, σ), π1(s, σ), a2) if (s, σ) ∈ S1∑
s′′∈S Tσ(s

′′ | s)P̄ ((s′, σ′) | (s′′, a2), π1(s′′, a2), a2) if (s, σ) ∈ S2

and the reward function is given by

Rπ1
((s, σ), a2) =

{
−R̄((s, σ), π1(s, σ)) if (s, σ) ∈ S1

−
∑
s′∈S Tσ(s

′ | s)R̄((s′, a2), π1(s′, a2)) if (s, σ) ∈ S2.

Intuitively, the MDP G(π1) merges every step of G in which a change of subtask occurs with the
subsequent step in the environment, while using π1 to choose actions for agent 1. For any s̄ ∈ S̄, let
DG(π1)
s̄ (π2) denote the distribution over infinite trajectories generated by π2 starting at s̄ in G(π1).

Then we define the value function for the MDP G(π1) using

V π2

G(π1)
(s̄) = E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1
(s̄t, at)

]
for all π2 : S̄ → A2 and s̄ ∈ S̄.

A.2 Necessary Lemmas

We need a few intermediate results in order to prove the main theorems. We begin by analyzing the
operators J·K : V → V̄ and F : V → V defined in Section 3.1.
Lemma A.1. For any V1, V2 ∈ V , we have ∥JV1K− JV2K∥ = ∥V1 − V2∥.

Proof. For any (s, σ) ∈ S1, we have |JV1K(s, σ)− JV2K(s, σ)| = |V1(s, σ)− V2(s, σ)|. For any
(s, σ) ∈ S2 and σ′ ∈ Σ we have

|JV1Kσ′(s, σ)− JV2Kσ′(s, σ)| = ∥
∑
s′∈S

Tσ(s
′ | s)V1(s′, σ′)−

∑
s′∈S

Tσ(s
′ | s)V2(s′, σ′)∥

≤
∑
s′∈S

Tσ(s
′ | s)|V1(s′, σ′)− V2(s′, σ′)|

≤ ∥V1 − V2∥.
Now we have |JV1K(s, σ)− JV2K(s, σ)| = |minσ′ JV1Kσ′(s, σ)−minσ′ JV2Kσ′(s, σ)| ≤ ∥V1 − V2∥
which concludes the proof.
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Now we are ready to show that F is a contraction.

Lemma A.2. F : V → V is a contraction mapping w.r.t the norm ∥·∥.

Proof. Let V1, V2 ∈ V . Then for any (s, σ) ∈ S1 and a ∈ A,

|Fa(V1)(s, σ)−Fa(V2)(s, σ)| = |γ
∑
s′∈S

P (s′ | s, a)JV1K(s′, σ)− γ
∑
s′∈S

P (s′ | s, a)JV2K(s′, σ)|

≤ γ
∑
s′∈S

P (s′ | s, a)|JV1K(s′, σ)− JV2K(s′, σ)|

≤ γ∥V1 − V2∥

where the last inequality followed from Lemma A.1. Therefore, for any (s, σ) ∈ S1, we have
|F(V1)(s, σ)−F(V2)(s, σ)| = |maxa Fa(V1)(s, σ)−maxa Fa(V2)(s, σ)| ≤ γ∥V1 − V2∥ show-
ing that F is a contraction.

Now we connect the value function of the game G with that of the MDP G(π1).
Lemma A.3. For any π1 : S̄ → A1, π2 : S̄ → A2 and s̄ ∈ S̄, V π1,π2(s̄) = −V π2

G(π1)
(s̄).

Proof. Given an infinite trajectory ρ̄ = s̄0a
1
0a

2
0s̄1a

1
1a

2
1 . . . in G we define a corresponding trajectory

ρ̄2 = s̄i0a
2
i0
s̄i1a

2
i1

in G(π1) as a subsequence where i0 = 0 and it+1 = it + 1 if s̄it ∈ S1 and
it+1 = it + 2 if s̄it ∈ S2. Then for any s̄ ∈ S̄ we have

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]

(1)
= Eρ̄∼DG

s̄ (π1,π2)

[ ∞∑
t=0

γtRπ1
(s̄it , a

2
it)

]
(2)
= −E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1(s̄t, at)
]

= −V π2

G(π1)
(s̄)

where (1) followed from the definitions of γ̄ and Rπ1 and the fact that R̄(s̄t, a1t ) = 0 if s̄t ∈ S2,
and (2) followed from the fact that sampling a trajectory ρ by first sampling ρ̄ from DG

s̄ (π1, π2)
and then constructing the subsequence ρ̄2 is the same as sampling an infinite trajectory ρ from
DG(π1)
s̄ (π2)

6.

Lemma A.2 shows that for any V ∈ V we have

lim
n→∞

Fn(V ) = Vlim

where Vlim ∈ V is the unique fixed point of F . Now we define two policies π∗
1 and π∗

2 for agents 1
and 2 respectively, as follows. For (s, σ) ∈ S1 we have

π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ) (5)

and for (s, σ) ∈ S2, we have

π∗
2(s, σ) ∈ argminσ′ JVlimKσ′(s, σ). (6)

Note that the actions taken by π∗
1 in S2 and π∗

2 in S1 can be arbitrary since they do not affect the
transitions of the game G. Now we show that for any s̄ ∈ S̄, π∗

1 maximizes V π1,π
∗
2 (s̄) and π∗

2

minimizes V π
∗
1 ,π2(s̄).

Lemma A.4. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = minπ2 V

π∗
1 ,π2(s̄) = JVlimK(s̄).

6This can be shown formally by analyzing the probabilities assigned by the two distributions on cylinder
sets.
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Proof. Let G(π∗
1) = (S̄,A2, Pπ∗

1
, Rπ∗

1
, γ). For any (s, σ) ∈ S2, we have

JVlimK(s, σ) = min
σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)JVlimK(s′, σ′)

(3)
= min

σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)

(
R̄((s′, σ′), a) + γ ·

∑
s′′∈S

P (s′ | s, a)JVlimK(s′′, σ′)
)∣∣∣
a=π∗

1 (s
′,σ′)

(4)
= min

a2∈A2

(
−Rπ∗

1
((s, σ), a2) + γ

∑
s̄∈S̄

Pπ∗
1
(s̄ | (s, σ), a2)JVlimK(s̄)

)
where (3) followed from the definitions of Vlim and π∗

1 and (4) followed from the definitions of
Rπ∗

1
and Pπ∗

1
. Since −JVlimK satisfies the Bellman equations for the MDP G(π∗

1), the optimal value
function for G(π∗

1) is given by V ∗
G(π∗

1 )
= −JVlimK. Now, from the definition of π∗

2 we can conclude
that π∗

2 is an optimal policy for G(π∗
1). Therefore, Lemma A.3 implies that for any s̄ ∈ S̄,

min
π2

V π
∗
1 ,π2(s̄) = min

π2

−V π2

G(π∗
1 )
(s̄) = −V π

∗
2

G(π∗
1 )
(s̄) = V π

∗
1 ,π

∗
2 (s̄).

Hence, we have proved the desired result.

The following lemma can be shown using a similar argument and the proof is omitted.

Lemma A.5. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = maxπ1

V π1,π
∗
2 (s̄) = JVlimK(s̄).

The following lemma shows that it does not matter which agent picks its policy first.

Lemma A.6. For any policies π∗
1 and π∗

2 satisfying Equations 5 and 6 respectively, for all s̄ ∈ S̄,

V π
∗
1 ,π

∗
2 (s̄) = min

π2

max
π1

V π1,π2(s̄) = max
π1

min
π2

V π1,π2(s̄) = V ∗(s̄).

Proof. We have, for any s̄ ∈ S̄,

V ∗(s̄) = max
π1

min
π2

V π1,π2(s̄)

≥ min
π2

V π
∗
1 ,π2(s̄)

(1)
= V π

∗
1 ,π

∗
2 (s̄)

(2)
= max

π1

V π1,π
∗
2 (s̄)

≥ min
π2

max
π1

V π1,π2(s̄)

≥ max
π1

min
π2

V π1,π2(s̄)

= V ∗(s̄)

where the (1) followed from Lemma A.4 and (2) followed from Lemma A.5.

A.3 Proof of Theorem 3.1

Let Π(π1) = {πσ | σ ∈ Σ} be the set of subtask policies defined by π1. Let τ = σ0σ1 . . . be a
task. Then we define a history-dependent policy πτ2 in G(π1) which maintains an index i denoting
the current subtask and picks σi+1 upon reaching any state in S2 while simultaneously updating the

3



index to i+ 1. Then we have

J(Π(π1)) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]

(1)
= inf

τ∈T
Es̄∼η̄

[
E
ρ∼DG(π1)

s̄ (πτ
2 )

[
−

∞∑
t=0

γtRπ1
(s̄t, at)

]]
= inf
τ∈T

Es̄∼η̄[−V
πτ
2

G(π1)
(s̄)]

≥ Es̄∼η̄[− sup
τ∈T

V
πτ
2

G(π1)
(s̄)]

(2)

≥ Es̄∼η̄[−max
π2

V π2

G(π1)
(s̄)]

(3)
= Es̄∼η̄[min

π2

V π1,π2(s̄)]

= JG(π1)

where (1) followed from the definitions of πτ2 and G(π1), (2) followed from the fact that there is an
optimal stationary policy maximizing V π2

G(π1)
(s̄) and (3) followed from Lemma A.4.

A.4 Proof of Theorem 3.2

Since V ∗ = JVlimK, for all (s, σ) ∈ S̄ we have π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ). Now for

any π∗
2 satisfying Equation 6, we can conclude from Lemma A.6 that, for any s̄ ∈ S̄,

JG(π
∗
1) = Es̄∼η̄[min

π2

V π
∗
1 ,π2(s̄)]

= Es̄∼η̄[V π
∗
1 ,π

∗
2 (s̄)]

= Es̄∼η̄[max
π1

min
π2

V π1,π2(s̄)]

≥ max
π1

Es̄∼η̄[min
π2

V π1,π2(s̄)]

= max
π1

JG(π1)

which shows that π∗
1 maximizes JG(π1).

A.5 Proof of Theorem 3.3

From Lemma A.2, we can conclude that F is a contraction over V w.r.t. the ℓ∞-norm. Lemmas A.6
and A.4 gives us that V ∗ ↓S1

= Vlim. Now the definition of Vlim implies that limn→∞ Fn(V ) =
V ∗ ↓S1

for all V ∈ V .

A.6 Proof of Theorems 3.4 and 3.5

This proof is similar to the proof of convergence of asynchronous value iteration for MDPs presented
in [7]. It is easy to see that, for any V ∈ V and σ ∈ Σ, the operators J·K, F , Fasync, and Fσ,V are
monotonic. Recall that, for any V ∈ V and σ ∈ Σ, we defined the corresponding Vσ ∈ Vσ using
Vσ(s) = JV K(s, σ) if s ∈ S and Vσ(⊥) = 0. Also, we have F(V )(s, σ) = Fσ,V (Vσ)(s) =
F1(V )(s, σ) for all (s, σ) ∈ S1.

Now let V ∈ V be a value function such that F(V ) ≤ V . Then we have Fσ,V (Vσ) ≤ Vσ for all
σ ∈ Σ. Therefore, using monotonicity of Fσ,V , we get that Fmσ,V (Vσ) ≤ F

m−1
σ,V (Vσ) ≤ Vσ for all

m > 0 which implies Fm(V ) ≤ Fm−1(V ) ≤ V . Hence, for any (s, σ) ∈ S1,

Fasync(V )(s, σ) =Wσ(V )(s) = lim
m→∞

Fmσ,V (Vσ)(s)

≤ Fσ,V (Vσ)(s) = F(V )(s, σ).

Furthermore, letting V m = Fm(V ) we get that JV mK ≤ JV K and hence V mσ ≤ Fmσ,V (Vσ) for all σ ∈
Σ. Also, for (s, σ) ∈ S1, F(V m)(s, σ) = Fσ,Vm(V mσ )(s) ≤ Fσ,V (V mσ )(s) ≤ Fm+1

σ,V (Vσ)(s) =

4



V m+1(s, σ). Therefore, using continuity of F , we have F(Fasync(V )) = F(limm→∞ V m) =
limm→∞ F(V m) ≤ limm→∞ V m+1 = Fasync(V ). Now we can show by induction on n that, for
any V ∈ V with F(V ) ≤ V and n ≥ 1, we have F(Fnasync(V )) ≤ Fnasync(V ) and

Vlim ≤ Fnasync(V ) ≤ Fn(V ).

Taking the limit as n → ∞ gives us that limn→∞ Fnasync(V ) = Vlim if F(V ) ≤ V . Using a
symmetric argument, we get that limn→∞ Fnasync(V ) = Vlim if F(V ) ≥ V .

Let I ∈ V be defined by I(s, σ) = 1 for all (s, σ) ∈ S1. For a general V ∈ V , we can find a δ > 0
such that we have V − = Vlim− δI ≤ V ≤ Vlim+ δI = V + and F(V −) ≥ V − and F(V +) ≤ V +.
Therefore, using monotonicity of Fasync we get

Fnasync(V −) ≤ Fnasync(V ) ≤ Fnasync(V +)

for all n ≥ 0. Taking the limit as n tends to∞ gives us the required result. Theorem 3.5 follows
from a similar argument.

A.7 Proof of Theorem 4.1

Given a function Q : S1 ×A→ R we define a new functionH(Q) using

H(Q)(s, σ, a) = R̄((s, σ), a) + γ
∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

for all (s, σ) ∈ S1 and a ∈ A. Then, Robust Option Q-learning is of the form

Qt+1(s, σ, a) = (1− αt(s, σ, a))Qt(s, σ, a) + αt(s, σ, a)
(
H(Qt)(s, σ, a) + wt(s, σ, a)

)
where the noise factor is defined by

wt(s, σ, a) = γJVQt
K(s̃, σ)− γ

∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

with s̃ ∼ P (· | s, a) being the observed sample. Let Xt denote the measure space generated by
the set of random vectors {Q0, Q1, . . . , Qt, w0, . . . , wt−1, α0, . . . , αt}. Then, for all (s, σ) ∈ S1,
a ∈ A and t ≥ 0, we have

E[wt(s, σ, a) | Xt] = 0

and

E[w2
t (s, σ, a) | Xt] ≤ 4γ2 max

s′∈S

{
JVQtK

2
(s′, σ)

}
≤ 4γ2 max

(s′,σ′)∈S1,a′∈A

{
Q2
t (s

′, σ′, a′)
}
.

Furthermore, using Lemmas A.1 and A.2 and the definition of VQ we can conclude that H is a
contraction w.r.t the ℓ∞-norm andQ∗ is the unique fixed point ofH. Therefore, the random sequence
of Q-functions {Qt}t≥0 satisfies all assumptions in Proposition 4.4 of [7] implying that Qt → Q∗

as t→∞ with probability 1.

B Experimental Details

All experiments were run on a 48-core machine with 512GB of memory and 8 GPUs. In all ap-
proaches (ours and baselines) except for MADDPG, the policy consists of one fully-connected NN
per subtask, each with two hidden layers. MADDPG consists of two policies, one for the agent and
one for the adversary, each with two hidden layers. In the case of MADDPG, the subtask is encoded
in the observation using a one-hot vector. All hyperparameters were computed by grid search over
a small set of values.

Rooms environment. The hidden dimension used is 64 for all approaches except MADDPG for
which we uses 128 dimensional hidden layers. For DAGGER, NAIVE and AROSAC we run SAC with
Adam optimizer (learning rate of α = 0.02), entropy weight β = 0.05, Polyac rate 0.005 and batch
size of 100. In each iteration of AROSAC and DAGGER, SAC is run for N = 10000 steps. Similarly,
ROSAC is run with Adam optimizer (learning rates αψ = αθ = 0.02), entropy weight β = 0.05,
Polyac rate 0.005 and batch size of 300. The MADDPG baseline uses a learning rate of 0.0003 and
batch size of 256.
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F1/10th environment. The hidden dimension used is 64 for all approaches. For DAGGER, NAIVE
and AROSAC we run SAC with Adam optimizer (learning rate of α = 0.0003), entropy weight
β = 0.01, Polyac rate 0.005 and batch size of 256. In each iteration of AROSAC and DAGGER,
SAC is run for N = 10000 steps. Similarly, ROSAC is run with Adam optimizer (learning rates
αψ = αθ = 0.0003), entropy weight β = 0.01, Polyac rate 0.005 and batch size of 5 × 256. The
MADDPG baseline uses a learning rate of 0.0003 and batch size of 256.
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