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ABSTRACT

Language model alignment methods such as reinforcement learning from human
feedback (RLHF) have led to impressive advances in language model capabilities,
but are limited by a widely observed phenomenon known as overoptimization,
where the quality of the language model degrades over the course of the alignment
process. As the model optimizes performance on an offline reward model, it overfits
to inaccuracies and drifts away from preferred responses covered by the data. To
discourage such distribution shift, KL-regularization is widely employed in existing
offline alignment methods, but overoptimization continues to harm performance.
Lending theoretical insight into the source of these empirical observations, we first
show that the KL-regularization is too weak to prevent overfitting, then ask: is it
possible to design an efficient algorithm that is provably robust to overoptimization?

In this paper, we advance theoretical understanding of sample-efficient offline
alignment and introduce a new algorithm called χ2-Preference Optimization (χPO).
χPO is a one-line change to Direct Preference Optimization (DPO; Rafailov et al.
(2023)), that modifies only the logarithmic link function in the DPO objective.
Despite this minimal change, χPO implicitly implements the principle of pessimism
in the face of uncertainty via regularization with the χ2-divergence—which
quantifies uncertainty more effectively than KL-regularization—and provably
alleviates overoptimization, achieving sample-complexity guarantees based on
single-policy concentrability, the gold standard in offline reinforcement learning.
This guarantee makes χPO the first simple, yet general-purpose offline alignment
algorithm that is provably robust to overoptimization.

1 INTRODUCTION

Large language models (LLMs) trained on unsupervised text data exhibit impressive and surprising
capabilities (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023; OpenAI, 2023; Google,
2023), but can be difficult to control without further guidance. Reinforcement learning from human
feedback (RLHF) and other alignment methods have emerged as a central tool to align these models
to human values and elicit desired behavior (Christiano et al., 2017; Bai et al., 2022; Ouyang et al.,
2022; Rafailov et al., 2023). This is achieved by treating the language model as a policy, and using
techniques from reinforcement learning to optimize for desirable outcomes under a (explicit or
implicit) reward model learned from a dataset of human-labeled responses.

Alignment methods like RLHF have led to significant advances in language model capabilities, but
existing techniques are limited by a widely observed phenomenon known as reward overoptimization
or reward hacking (Michaud et al., 2020; Tien et al., 2022; Gao et al., 2023; Rafailov et al., 2024a).
Since the reward model is an imperfect proxy for human preferences, the true quality of the language
model can degrade as training proceeds, even as its performance under the reward model continues
to improve. Intuitively, this occurs because the language model may drift away from the manifold
covered by the human-labeled data used to train the reward model and end up in a region where
the reward model is inaccurate.
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Overoptimization is distinct from the classical concept of overfitting because it is a causal or counter-
factual phenomenon: When the human-labeled dataset does not cover all possible alternatives, the
decision maker—in this case, a language model policy—cannot directly evaluate the effect of their
actions. This perspective is supported by the fact that overoptimization can be mitigated by online
alignment techniques (Guo et al., 2024; Gao et al., 2024; Dong et al., 2024), which exploit interactive
access to human or AI feedback to iteratively improve the reward model; unfortunately, gathering
such feedback is costly and impractical in many settings. This raises natural theoretical questions
regarding the role of overoptimization in offline alignment:

• Is overoptimization in offline alignment an information-theoretic phenomenon? This would mean
that there is simply not enough information in the human-labeled (offline) preference dataset due to
partial coverage, and no algorithmic intervention can avoid the overoptimization issue.

• Alternatively, is overoptimization an algorithmic phenomenon? This would mean that existing
algorithms are not making the most of the data they have (e.g., due to optimizing the wrong objective
and converging toward suboptimal solutions) and would suggest that their sample-efficiency can be
improved, perhaps by taking more aggressive measures to avoid overfitting to the reward model.

Previous developments in the theory of offline reinforcement learning suggest that the answer may be
the latter. Indeed, this literature has addressed the challenge of overoptimization—typically referred
to as distribution shift—through the principle of pessimism in the face of uncertainty, which asserts
that, given an offline dataset with partial coverage, a decision maker should choose their response
according to the most pessimistic view of the world supported by the data. Pessimism encourages the
model to avoid overfitting to the offline dataset and is supported by a rich theory offering provable
robustness to overoptimization in stylized settings (Liu et al., 2020; Jin et al., 2021).

Perhaps the greatest barrier to implementing pessimism in language models is the efficient
quantification of uncertainty in the offline reward, and the distillation of this information into
actionable form. Most existing offline alignment methods employ KL-regularization, which penalizes
the learned policy for drifting from the reference policy, but this form of uncertainty quantification
is insufficient to induce pessimism (Gao et al., 2023) and is provably suboptimal in theory (Zhu
et al., 2023; Song et al., 2024, see also Appendix A.1). On the other hand, offline reinforcement
learning theory offers abstract pessimistic algorithms that are suitable—at least statistically—for
large models (Xie et al., 2021; Uehara and Sun, 2021; Zhan et al., 2022; Chen and Jiang, 2022),
but cannot be implemented directly without losing theoretical fidelity or making unrealistic modeling
assumptions (Zhu et al., 2023; Zhan et al., 2023a; Li et al., 2023; Xiong et al., 2023; Liu et al., 2024;
Cen et al., 2024; Fisch et al., 2024; Ji et al., 2024). Notably, the so-called “DPO+SFT” approach
developed by Liu et al. (2024); Cen et al. (2024); Fisch et al. (2024) is provably suboptimal unless
the language model satisfies an unrealistic convexity property (Appendix A.1). Thus we ask: If we
instead leverage the unique structure of the language modeling problem, can we develop simple,
yet efficient, offline alignment methods that are certifiably robust to overoptimization?

1.1 CONTRIBUTIONS

We introduce a new theoretical algorithm for offline alignment, χ2-Preference Optimization (χPO).
χPO is simple and straightforward to implement, requiring only a single-line change to Direct
Preference Optimization (Rafailov et al. (2023)), yet it is provably robust to overoptimization.
Algorithmically, χPO only differs from DPO in that we replace the usual logarithmic link function
in the DPO objective with a new link function that implicitly implements pessimism via regularization
with the χ2-divergence—a divergence that (i) plays a fundamental role in statistics due to its
ability to quantify uncertainty (Tsybakov, 2008); and (ii) penalizes off-manifold behavior more
effectively than KL-regularization. Statistically, we formalize robustness to overoptimization via
a sample complexity guarantee based on single-policy concentrability—the gold standard in offline
reinforcement learning—which we establish under minimal statistical and function approximation
assumptions. This result implies that, in contrast to most prior work, χPO enjoys meaningful
guarantees even when the reference policy has poor coverage. Summarizing:

χPO is the first simple, yet general-purpose algorithm for offline alignment
with provable robustness to overoptimization.

The result above concerns the classical language model alignment formulation, which assumes
the Bradley-Terry preference model (Christiano et al., 2017; Bai et al., 2022; Ouyang et al., 2022;
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Rafailov et al., 2023). Turning our attention to general preference models (Munos et al., 2023; Swamy
et al., 2024; Rosset et al., 2024) where the goal is to find an approximate Nash equilibrium, we
show (Appendix D) that achieving guarantees based on single-policy concentrability is impossible.
Nonetheless, we show that an iterative variant of χPO based on self-play achieves a sample complexity
guarantee that scales with a new local coverage condition —a condition that is stronger than single
policy concentrability, but much weaker than global concentrability and the notion of unilateral
concentrability introduced by Cui and Du (2022). This result provides additional evidence for the
value of regularization with χ2-divergence for obtaining sharp sample complexity guarantees.

Technical highlights. Our analysis of χPO leverages several new techniques. First, we show that
RLHF with χ2-regularization is sufficient to achieve guarantees based on single-policy concentrability
(Section 3.1 and Appendix C). Next, we show that a variant of the DPO reparameterization trick
that combines χ2-regularization with KL-regularization (“mixed” χ2-regularization) can be used to
reformulate our objective into a purely policy-based objective, in spite of the fact that χ2-regularization
fails to satisfy certain regularity conditions found in prior work (Wang et al., 2023a). Finally,
and perhaps most importantly, we use a novel analysis to show that pessimism is preserved after
reparameterization. Compared to prior approaches to pessimism in offline RL (Xie et al., 2021;
Uehara and Sun, 2021; Zhan et al., 2022; Chen and Jiang, 2022), χ2-regularization strikes a useful
balance between generality and tractability, and we expect our techniques to find broader use.

2 BACKGROUND

In this section, we provide necessary background and highlight that standard algorithms in offline
alignment suffer from overoptimization. We adopt standard big-oh notation, and write f = Õ(g) to
denote that f = O(g · max{1,polylog(g)}) and a ≲ b as shorthand for a = O(b).

2.1 ALIGNMENT FROM HUMAN FEEDBACK

Following prior work (e.g., Rafailov et al. (2023); Ye et al. (2024)), we adopt a contextual bandit
formulation of the alignment problem. We formalize the language model as a policy π : X → ∆(A)
which maps a context (prompt) x ∈ X to an action (response) a ∈ A via a ∼ π(· | x), and let
ρ ∈ ∆(X ) denote the distribution over contexts/prompts.

Offline alignment. In the offline alignment problem (Christiano et al., 2017; Bai et al., 2022;
Ouyang et al., 2022), we assume access to a dataset Dpref = {(x, a+, a−)} of n prompts and labeled
response pairs generated from a reference policy (language model) πref , which is typically obtained
through SFT. Here, a+ is a positive action/response and a− is a negative action/response. Given the
context/prompt x ∼ ρ, the pair (a+, a−) is generated by sampling a pair (a, b) as a ∼ πref(· | x) and
b ∼ πref(· | x), and then ordering them as (a+, a−) based on a binary preference y ∼ P(a ≻ b | x).
We assume that preferences follow the Bradley-Terry model (Bradley and Terry, 1952):

P(a ≻ b | x) = exp(r⋆(x,a))
exp(r⋆(x,a))+exp(r⋆(x,b)) , (1)

for an unknown reward function r⋆ : X ×A → [0, Rmax] for some Rmax ≥ 1. From the preference
dataset Dpref , we aim to learn a policy π̂ that has high reward in the sense that J(π⋆) − J(π̂) ≤ ε
for a small ε > 0, where J(π) := Ex∼ρ,a∼π(·|x)[r

⋆(x, a)] is the true expected reward, and π⋆ is any
comparator policy of interest. We abbreviate Eπ[·] := Ex∼ρ,a∼π(·|x)[·], and assume that ρ(x) > 0
for all x and πref(a | x) > 0 for all x, a without loss of generality.

Offline RLHF with KL-regularization. Classical algorithms for offline alignment (Christiano
et al., 2017; Ouyang et al., 2022) are based on reinforcement learning with a KL-regularized reward
objective, defined for a regularization parameter β > 0, via

JKL
β (π) := J(π)− β ·DKL(π ∥πref) = Eπ

[
r⋆(x, a)− β log π(a|x)

πref(a|x)

]
, (2)

where we adopt the shorthand DKL(π ∥π′) = Ex∼ρ[DKL(π(· | x) ∥π′(· | x))]. These methods first
estimate a reward function r̂ from Dpref using maximum likelihood under the Bradley-Terry model:

r̂ = argmax
r∈R

∑
(x,a+,a−)∈Dpref

log σ(r(a+ | x)− r(a− | x)), (3)

where σ(x) := exp(x)
1+exp(x) is the sigmoid function and R is a class of reward functions, which is

typically parameterized by a neural network. Then, they apply standard policy optimization methods
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like PPO to optimize an estimated version of Eq. (2): π̂ = argmaxπ∈Π Eπ

[
r̂(x, a)− β log π(a|x)

πref(a|x)
]
.

The regularization term in Eq. (2) is intended to encourage π̂ to stay close to πref , with the hope of
preventing the policy from overfitting to the potentially inaccurate reward model r̂.

Direct preference optimization (DPO). χPO is based on an alternative offline alignment approach,
Direct Preference Optimization (DPO; Rafailov et al. (2023)). DPO uses the closed-form solution of
the optimal KL-regularized policy under the objective Eq. (2)—which can be viewed as implicitly
modeling rewards—to define a single policy optimization objective that removes the need for direct
reward function estimation. Given a user specified policy class Π, DPO solves

π̂DPO = argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log
[
σ
(
β log π(a+|x)

πref(a+|x) − β log π(a−|x)
πref(a−|x)

)]
, (4)

with the convention that the value of the objective is −∞ if π does not satisfy π ≪ πref .

2.2 OVEROPTIMIZATION AND INSUFFICIENCY OF KL-REGULARIZATION

Empirically, both classical RLHF and direct alignment methods like DPO have been observed to
suffer from overoptimization (Gao et al., 2023; Guo et al., 2024; Rafailov et al., 2024a; Song et al.,
2024), wherein model quality degrades during the optimization process as the learned policy drifts
away from πref . This can be mitigated by online alignment techniques (Gao et al., 2024; Guo
et al., 2024; Dong et al., 2024; Xie et al., 2024), which collect labeled preference data on-policy
during training, but there are many settings where this is impractical or infeasible. As we will see,
the overoptimization phenomena in offline alignment methods is an issue of sample-inefficiency,
which can be understood through the lens of coverage coefficients developed in the theory of offline
reinforcement learning (Liu et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021). In particular, the
performance of existing offline alignment algorithms depends on how well data covers all candidate
policies, and degrades when coverage is inadequate or the number of samples is insufficiently large.

Coverage coefficients. In offline reinforcement learning theory, the sample efficiency of an al-
gorithm refers to the number of samples required to guarantee that J(π̂) ≈ J(π⋆). It is typically
quantified by a coverage coefficient (or concentrability coefficient) that measures the quality of the
data collected by the reference πref (Farahmand et al., 2010; Xie and Jiang, 2020; Zanette et al., 2021).
We will utilize the L1 coverage coefficient, defined for a policy π as Cπ := Eπ

[
π(a|x)
πref(a|x)

]
. Single

policy concentrability is the gold standard for sample efficiency, and is obtained by an algorithm
if, for any comparator policy π⋆, the sample size required to learn J(π̂) ≈ J(π⋆) scales with Cπ⋆

,
the coverage coefficient of π⋆. This guarantees that π̂ is competitive with the best policy that is
sufficiently covered by offline data, and, importantly, also guarantees that π̂ is never much worse
than πref itself. Single policy concentrability is typically achieved by pessimistic algorithms that
penalize the evaluations of candidate policies according to their uncertainty under the offline data,
which prevents the learner from overfitting to inaccurate offline reward models.

In contrast, the performance of non-pessimistic algorithms typically scales with all-policy concentra-
bility—meaning that sample complexity scales with maxπ∈Π Cπ (Liu et al., 2020; Jin et al., 2021;
Rashidinejad et al., 2021)— which is a guarantee achieved by even greedy algorithms that directly
optimize the offline reward model without regularization. All-policy concentrability describes algo-
rithms that require the data itself to be rich enough to prevent overfitting; as such, we will use it to
identify methods that are prone to overoptimization. Single policy concentrability then serves as a
theoretical certification that an algorithm is robust to poor data coverage and will not overfit.

Pessimism in offline alignment. Zhu et al. (2023) show that the performance of PPO and DPO scales
with all-policy concentrability, maxπ Cπ∞, for the stylized case of alignment with linearly parameter-
ized policies where πθ(a | x) ∝ exp(⟨ϕ(x, a), θ⟩) for a known feature embedding ϕ(x, a) ∈ Rd (see
also Zhu et al. (2024); Song et al. (2024)). They also propose a pessimistic algorithm that achieves

single policy concentrability, or J(π⋆) − J(π̂) ≲
√

poly(Cπ⋆
∞ ,d)

n simultaneously for all π⋆. While
encouraging, these results are restricted to linearly parameterized policies, and cannot be directly
applied to large language models. Most existing theoretical algorithms for offline alignment are
similar in nature, and either place restrictive assumptions on the policy class Π (Zhu et al., 2023;
Zhan et al., 2023a; Li et al., 2023; Xiong et al., 2023) or are not feasible to implement in a way that is
faithful to theory (Ye et al., 2024; Ji et al., 2024).
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Most relevant to our work, a series of recent papers (Liu et al., 2024; Cen et al., 2024; Fisch et al., 2024)
propose implementing pessimism for general policy classes Π by solving the “DPO+SFT” objective

argmax
π∈Π

α · Eπref [β log π(a | x)] + 1
n

∑
(x,a+,a−)∈Dpref

log
[
σ
(
β log

π(a+|x)
πref (a+|x) − β log

π(a−|x)
πref (a−|x)

)], (5)

which augments the DPO objective (the second term) with an additional supervised fine-tuning-like
(SFT) loss (the first term). While this objective is simple to apply to general policy classes, the existing
single-policy concentrability guarantees for this method assume that Π satisfies restrictive convexity
conditions which do not hold in practice for large language models. Perhaps surprisingly, we show
(Appendix A.1) that without convexity, the objective in Eq. (5) fails to achieve a single-policy
concentrability guarantee.1 In other words, DPO+SFT is insufficient to mitigate overoptimization.

3 χ2-PREFERENCE OPTIMIZATION

This section presents our main algorithm, χPO. We begin by introducing χ2-regularization as a
general framework for mitigating overoptimization in offline alignment (Section 3.1), then derive the
χPO algorithm (Section 3.2) and finally present our main theoretical guarantee (Section 3.3).

3.1 FRAMEWORK: χ2-REGULARIZED REWARD OPTIMIZATION

The central algorithm design principle for our work is to (implicitly or explicitly) optimize a
variant of the classical RLHF objective (Eq. (2)) that replaces KL-regularization with regular-
ization via χ2-divergence, defined for a pair of probability measures P and Q with P ≪ Q via

Dχ2(P ∥ Q) := 1
2

∫ (
dP
dQ − 1

)2
dQ. χ2-divergence is a more aggressive form of regularization than

KL-divergence; we have DKL(P ∥Q) ≤ 2Dχ2(P ∥ Q), but the converse is not true in general. We
consider the following χ2-regularized RL objective:2

Jχ
β (π) := Eπ[r

⋆(x, a)]− β ·Dχ2(π ∥ πref), Dχ2(π ∥ πref) := Eπ

[
π(a|x)
πref(a|x)

]
. (6)

Moving to a form of regularization that penalizes deviations from πref more forcefully than
KL-regularization is a natural approach to mitigating overoptimization, but an immediate concern
is that this may lead to overly conservative algorithms. As we will show, however, χ2-divergence
is better suited to the geometry of offline alignment, as it has the unique property (not shared by
KL-divergence) that its value quantifies the extent to which the accuracy of a reward model r̂ trained
under πref will transfer to a downstream policy π of interest (Lemma H.3). This implies that the
χ2-regularized RL objective in Eq. (6) meaningfully implements a form of pessimism in the face of
uncertainty, and by tuning the regularization parameter β > 0, we can keep the learned policy π̂ close
to πref in the “right” (uncertainty-aware) way. As such, we view optimizing χ2-regularized rewards,
i.e., argmaxπ∈Π Jχ

β (π) as a general principle to guide algorithm design for offline alignment (as
well as offline RL more broadly), which we expect to find broader use.

We now turn our attention to the matter of how to optimize this objective. One natural approach, in the
vein of classical RLHF (Christiano et al., 2017; Ouyang et al., 2022), is to estimate a reward model r̂
using maximum likelihood (Eq. (3)), and then use PPO or other policy optimization methods to solve

π̂ = argmax
π∈Π

Eπ [r̂(x, a)]− β ·Dχ2(π ∥ πref) = argmax
π∈Π

Eπ

[
r̂(x, a)− β π(a|x)

πref(a|x)

]
. (7)

While this indeed leads to strong statistical guarantees (cf. Appendix C), we adopt a simpler and
more direct approach inspired by DPO, which removes the need for a separate reward estimation step.

3.2 THE χPO ALGORITHM

Our main algorithm, χPO, is described in Algorithm 1. Given a preference dataset Dpref and policy
class Π, the algorithm learns a policy π̂ by solving the DPO-like optimization objective Eq. (9), which
replaces the usual log π(a|x)

πref(a|x) terms in the original DPO objective (Eq. (4)) with a new link function:

ϕ
(

π(a|x)
πref(a|x)

)
= π(a|x)

πref(a|x) + log
(

π(a|x)
πref(a|x)

)
.

1This finding is surprising because Xie et al. (2024) show that an optimistic online counterpart to Eq. (5),
which negates the SFT term, enjoys online RLHF guarantees without requiring analogous convexity conditions.

2Note the definition of Dχ2(π ∥ πref) differs from E[Dχ2(π(· | x) ∥ πref(· | x))] only by a constant scaling
and shift, both of which are inconsequential when used as regularization in an optimization objective.
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Algorithm 1 χ2-Preference Optimization (χPO)
input: Reference policy πref , preference dataset Dpref , χ2-regularization coefficient β > 0.

1: Define

ϕ(z) := z + log z. (8)

2: Optimize χ2-regularized preference optimization objective:

π̂ ← argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log

[
σ

(
clip2Rmax

[
βϕ

(
π(a+ | x)
πref(a+ | x)

)
− βϕ

(
π(a− | x)
πref(a− | x)

)])]
. (9)

3: return: π̂.

A secondary modification is that we handle potentially unbounded density ratios by clipping to the
interval [−2Rmax,+2Rmax] via the operator clipR(z) = max{min{R, z},−R}. In what follows,
we will show that this simple modification to DPO—that is, incorporating an additional density ratio
term outside the logarithm—implicitly implements pessimism via χ2-regularization.

Algorithm derivation. Recall that DPO is derived (Rafailov et al., 2023) by observing that the opti-
mal KL-regularized policy π⋆

β;KL := argmaxπ{Eπ[r
⋆(x, a)]− βDKL(π ∥πref)} satisfies r⋆(x, a) =

β log
π⋆
β;KL(a|x)
πref(a|x) +Zβ,r⋆;KL(x) for all x ∈ X and a ∈ Awhere Zβ,r⋆;KL(x) is a normalization constant

that depends on x but not a. This facilitates reparameterizing the reward model in the maximum like-
lihood estimation objective (Eq. (3)) in terms of a learned policy, yielding the DPO objective in Eq. (4).

To apply a similar reparameterization trick for χ2-divergence, a natural starting point is an observation
from Wang et al. (2023a), who show that an analogous characterization for the optimal regularized
policy holds for a general class of f -divergences. For a convex function f : R+ → R, define the
induced f -divergence by Df (P ∥Q) =

∫
f
(

dP
dQ

)
dQ = EQ

[
f
(

dP
dQ

)]
. Wang et al. (2023a) show that

for any differentiable f that satisfies the technical condition 0 /∈ dom(f ′), the optimal f -regularized
policy π⋆

β;f = argmaxπ{Eπ[r
⋆(x, a)]− βDf (π ∥πref)} satisfies

r⋆(x, a) = βf ′
(

π⋆
β;f (a|x)
πref(a|x)

)
+ Zβ,r⋆;f (x) (10)

for a normalization constant Zβ,r⋆;f (x), allowing for a similar reparameterization. Informally, the
condition 0 /∈ dom(f ′) means that Df (· ∥πref) acts as a barrier for the positive orthant, automatically
forcing π⋆

β;f to place positive probability mass on any action a for which πref(a | x) > 0.

The χ2-divergence is an f -divergence corresponding to f(z) = 1
2 (z−1)2, but unfortunately does not

satisfy the condition 0 /∈ dom(f ′), making Eq. (10) inapplicable. Indeed, the optimal χ2-regularized
policy can clip action probabilities to zero in a non-smooth fashion even when πref(a | x) > 0, which
means that the identity Eq. (10) does not apply. To address this issue, we augment χ2-regularization
by considering the mixed χ2-divergence given by fχmix(z) :=

1
2 (z − 1)2 + z log z, which has

Dfχmix
(P ∥Q) = Dχ2(P ∥ Q) +DKL(P ∥Q).

In other words, we use both χ2-regularization and KL-regularization; χ2-regularization
enforces pessimism, while KL-regularization enforces the barrier property and fa-
cilitates reparameterization. Indeed, the link function ϕ (Eq. (8)) used in χPO has
ϕ(z) := f ′

χmix
(z) = z + log z, which satisfies 0 /∈ dom(f ′

χmix
), so Eq. (10) yields the repa-

rameterization r⋆(x, a) = βϕ
(

π⋆
β;fχmix

(a|x)
πref(a|x)

)
+ Zβ,r⋆;fχmix

(x). Substituting this identity into the
maximum likelihood estimation objective (Eq. (3)) yields the χPO algorithm.

Going forward, we define Jχmix
β,r (π) = Eπ[r(x, a)] − β · Dχ2(π ∥ πref) − β · DKL(π ∥πref) for a

reward function r. We use the shorthand π⋆
β = argmaxπ J

χmix
β,r⋆(π) as the optimal policy under mixed

χ2-regularization, and abbreviate Zβ,r(x) := Zβ,r;fχmix
(x), so that

r⋆(x, a) = βϕ
(

π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x). (11)
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3.3 THEORETICAL GUARANTEES

To state our main sample complexity guarantee for χPO, we begin by making standard statistical
assumptions. Let the regularization parameter β > 0 in χPO be fixed. We first make a realizability
assumption, which states that the policy class Π used in χPO is sufficiently expressive to represent
the optimal policy under mixed χ2-regularization (Eq. (11)); recall that in the context of language
modeling, Π represents a class of language models with fixed architecture and varying weights.

Assumption 3.1 (Policy realizability). The policy class Π satisfies π⋆
β ∈ Π, where π⋆

β is the optimal
policy under mixed χ2-regularization (Eq. (11)).

Policy realizability is a standard assumption for sample-efficient reinforcement learning (Agarwal
et al., 2019; Lattimore and Szepesvári, 2020; Foster and Rakhlin, 2023), and is equivalent to reward
model realizability in our setting via reparameterization. Next, our second assumption asserts that
the implicit reward models induced by the policy class Π in χPO have bounded range.

Assumption 3.2 (Bounded implicit rewards). For a parameter Vmax ≥ Rmax, it holds that for all
π ∈ Π, x ∈ X , and a, b ∈ A,

∣∣∣βϕ( π(a|x)
πref(a|x)

)
− βϕ

(
π(b|x)
πref(b|x)

)∣∣∣ ≤ Vmax.

In practice, Vmax can be measured and directly controlled (e.g., via clipping), and our guarantees scale
polynomially in this parameter. Assumption 3.2 generalizes analogous assumptions from analyses of
DPO-like methods (Rosset et al., 2024; Xie et al., 2024); see Appendix B.4 for detailed comparison.

Example 3.1 (Policy classes induced by reward models). A natural setting in which both Assump-
tion 3.1 and Assumption 3.2 hold is when the policy class Π is induced by a class of bounded reward
functionR ⊂ (X ×A → [0, Rmax]) through the mixed-χ2 parameterization, for β > 0:

ΠR,β :=
{
π(a | x) = πref(a | x) · ϕ−1(β−1(r(x, a)− Zβ,r(x))) | r ∈ R

}
. (12)

Here, Assumption 3.1 holds whenever r⋆ ∈ R, and Assumption 3.2 holds with Vmax ≤ 2Rmax. ◁

Finally, recall the definition of the L1 concentrability coefficient, Cπ := Eπ

[
π(a|x)
πref(a|x)

]
, which is

equivalent to the χ2-divergence up to a constant shift, i.e., Cπ = 1 + 2Dχ2(π ∥ πref). We use L1

concentrability to quantify how well the offline preference dataset Dpref , generated by πref , covers
a policy π, and the following result is our main sample complexity guarantee for χPO.

Theorem 3.1 (Sample complexity bound for χPO). Suppose Assumptions 3.1 and 3.2 hold for some
β > 0. With probability at least 1 − δ, χPO (Algorithm 1) produces a policy π̂ such that for all
policies π⋆ simultaneously, we have

J(π⋆)− J(π̂) ≲ Vmaxe
2Rmax ·

√
Cπ⋆ log(|Π|/δ)

n
+ β · Cπ

⋆

+ β−1 · V
2
maxe

4Rmax log(|Π|/δ)
n

. (13)

Given any comparator policy π⋆, we can choose the regularization parameter β to achieve

J(π⋆)− J(π̂) ≲ Vmaxe
2Rmax ·

√
Cπ⋆ log(|Π|/δ)

n
. (14)

Theorem 3.1 shows that χPO achieves a sample complexity guarantee that scales only with the single-
policy concentrability parameter Cπ⋆

for the comparator policy π⋆, for all policies π⋆ simultaneously.

In particular, roughly n = O
(

Cπ⋆
log(|Π|/δ)
ε2

)
examples are sufficient to learn a policy that is ε-

suboptimal relative to π⋆. As a result, χPO is robust to overoptimization since the learned policy is as
good as any π⋆ that is sufficiently covered by πref (in the sense that Cπ⋆

= O(1)), which is effectively
the best one can hope for in the purely offline setting. In contrast, naive offline alignment methods
like DPO have sample complexity that scales with all-policy concentrability (roughly, maxπ Cπ), even
when the comparator policy π⋆ is sufficiently covered (Zhu et al., 2023; Song et al., 2024). To high-
light this, in Figure 1 (see Appendix B for details) we give a concrete example in which χPO allows
the user to tune β to achieve tight statistical rates, yet no choice of β for DPO leads to comparable
performance. Effectively, any choice of β for DPO is either susceptible to overoptimization, or is un-
acceptably conservative. All prior works that achieve similar sample complexity guarantees based on
single-policy concentrability are either impractical, or require more restrictive statistical assumptions
on the policy class (Ye et al., 2024; Liu et al., 2024; Cen et al., 2024; Fisch et al., 2024; Ji et al., 2024).
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Regarding the parameter Vmax, we observe that since the policy π⋆
β satisfies∣∣∣βϕ( π⋆

β(a|x)
πref(a|x)

)
− βϕ

(
π⋆
β(b|x)

πref(b|x)

)∣∣∣ ≤ 2Rmax, information-theoretically we can always achieve
Vmax = 2Rmax by pre-filtering the policy class Π to remove all policies in violation of this inequality.
Since this may be non-trivial computationally, we enforce this range via clipping in Eq. (9). Lastly,
χ2-regularized methods that utilize an explicit reward model, such as χ2-RLHF (Appendix C) or
Corollary 3.1, avoid dependence on Vmax, which we discuss in greater depth in Section 4.3.

Tuning the regularization parameter. To achieve optimal dependence on Cπ⋆

, Theorem 3.1 re-
quires tuning β > 0 as a function of this parameter, similar to other pessimistic schemes (Liu et al.,

2024). With no prior knowledge, setting β ∝
√

V 2
maxe

4Rmax log(|Π|/δ)
n suffices to ensure that, simultane-

ously for all comparator policies π⋆, we have J(π⋆)−J(π̂) ≲ Vmaxe
2Rmax ·

√
(Cπ⋆ )2 log(|R|/δ)

n . This
guarantee achieves a slightly worse rate than Eq. (14) but holds simultaneously for all comparator
policies rather than the specific one that was used to tune β. The following result, specializing to the
setting in Example 3.1, shows that there exists an optimal parameter β⋆ > 0 that recovers the rate
in Eq. (14) and holds simultaneously for all comparator policies.

Corollary 3.1 (Sample complexity bound for χPO with a reward model). Consider the setting in
Example 3.1, where the policy class ΠR,β is the set of mixed χ2-regularized policies induced by a
reward model classR with r⋆ ∈ R and β > 0. For any δ ∈ (0, 1), there exists a choice3 for β⋆ > 0
such that with probability at least 1− δ, χPO (Algorithm 1), with class ΠR,β⋆ , produces a policy π̂

such that for all policies π⋆ simultaneously, we have J(π⋆)− J(π̂) ≲ Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n .

3.3.1 EXPERIMENTS IN OFFLINE LANGUAGE MODEL ALIGNMENT

We perform preliminary evaluations of χPO for offline language model alignment on the TL;DR
dataset (Stiennon et al., 2020) using DPO as our baseline; see Appendix E for full results and
details. Table 1 displays the final-checkpoint winrates of χPO and DPO for different regularization
parameters β and number of training epochs. Smaller β and increased epochs reflect the regime
where overoptimization is a concern, but more policy improvement is available (existing works
treat β = 0.05 and 1 training epoch as standard choices for DPO (Gao et al., 2024; Guo et al., 2024;
Rafailov et al., 2024a)). Over all choices of β and epochs, χPO achieves a higher average winrate
than DPO. The performance gap grows as the number of epochs increases and β decreases, reflecting
the favorable bias-overoptimization tradeoff for χPO from our theoretical analysis; moreover, χPO
displays robust performance of all parameters while DPO degrades completely for β = 0.005.

Table 1: Winrate on TL;DR Summarization of χPO vs. DPO, for several choices of regularization
parameter β and number of training epochs. Standard error over 3 seeds is also reported.

β Epochs χPO winrate (%) DPO winrate (%)

0.05
1 56.5± 1.3 55.8± 2.1
2 56.1± 0.6 50.3± 0.8
4 48.0± 1.6 38.0± 0.7

0.005
1 50.6± 1.6 14.7± 3.9
2 52.8± 2.3 3.4± 1.5
4 51.6± 0.8 0.5± 0.2

4 UNDERSTANDING χPO: THE BIAS-OVEROPTIMIZATION TRADEOFF

Having derived χPO from the mixed χ2-regularized RLHF objective and analyzed its performance,
we now take a moment to better understand the statistical properties of the policies the algorithm
learns. We focus on the tradeoff between overoptimization and bias (i.e., underoptimization) achieved
by the regularization parameter β > 0, highlighting through examples how this leads to statistical
benefits over naive alignment methods like DPO. See Appendix B for full discussion.

3It is unclear how to select β⋆ in a data-driven manner, as it depends on the functionals π 7→ Cπ , π 7→ J(π).

8



Published as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5
Regularization parameter 

0.00

0.05

0.10

0.15

0.20

0.25

R
eg

re
t  

J(a
0)

J(
)

Regret of PO vs. DPO

PO
n = 101

n = 102

n = 103

DPO
n = 101

n = 102

n = 103

Figure 1: The regret J(a0)−J(π̂)
of χPO and DPO for different
values of n. For DPO, the error
from overoptimization dominates
when β ≤ (2 logn)−1 (as dis-
cussed in Appendix B.3), and the
error from bias dominates when
β > (2 logn)−1. Taking the best
choice of β for each method, DPO
converges at an exponentially
slower rate ( 1

logn
) than χPO

( 1√
n

); see Proposition A.1 for for-
mal statement and Appendix B.3
for further discussion.

4.1 PROPERTIES OF OPTIMAL POLICY UNDER MIXED χ2-REGULARIZATION

We begin by deriving a (nearly) closed form solution for the optimal mixed χ2-regularized policy
in Eq. (11) , which is the χPO solution in the limit of infinite data. The link function ϕ(·) is strictly
increasing over R+, and its inverse is given by ϕ−1(z) = W0(exp(z)), where W0(y) is the Lambert
W-function (Corless et al., 1996) defined as the inverse of x 7→ xex for y ≥ − e−1. Consequently,
for any x, the optimal policy under mixed χ2-regularization satisfies

π⋆
β(a | x) = πref(a | x) ·W0

(
exp
(
β−1(r⋆(x, a)− Zβ,r⋆(x))

))
,

where Zβ,r⋆(x) is chosen such that
∑

a π
⋆
β(a | x) = 1.

Compared to KL-regularization, which leads to softmax policies that satisfy π⋆
β;KL(a | x) = πref(a |

x) · exp
(
β−1(r⋆(x, a)− Zβ,r⋆;KL(x))

)
, the inverse link function ϕ−1(z) = W0(exp(z)) for mixed

χ2-regularization satisfies ϕ−1(z) ≈ z for z ≥ 1, leading to a more heavy-tailed action distribution for
π⋆

β . On the other hand, for z ≤ 1 the inverse link behaves like the exponential function (i.e., ϕ−1(z) ≈
ez for z ≤ 1); see Figure 2 for an illustration, and Proposition B.1 for a formal statement. Using these
properties, we derive the following upper and lower bounds on the density ratio between π⋆

β and πref .

Proposition 4.1. For all x ∈ X , a ∈ A, the optimal policy π⋆
β under mixed χ2-regularization satisfies

exp
(
−Rmax

β

)
≲

π⋆
β(a|x)

πref(a|x) ≲ 1 + Rmax

β . (15)

The upper bound in Eq. (15), which arises from the χ2 term in the mixed-χ2 objective, scales inversely
with the regularization parameter β, and reflects the heavy-tailed, pessimistic behavior this regularizer
induces; in contrast, the optimal policy under pure KL-regularization only satisfies exp

(
−Rmax

β

)
≲

π⋆
β;KL(a|x)
πref(a|x) ≲ exp

(
Rmax

β

)
in general. The lower bound in Eq. (15) arises from the KL term in the mixed-

χ2 objective, but is not important for our analysis (outside of allowing DPO-like reparameterization).

4.2 THE BIAS-OVEROPTIMIZATION TRADEOFF

We are now well equipped to understand how χPO modulates the tradeoff between overoptimization
and bias using the regularization parameter β, and how this tradeoff compares to vanilla DPO. To
showcase this, we take a reward modeling perspective, and consider the setting in which the policy
class Π is induced by a given reward model classR, similar to Example 3.1.

Suppose we start with a reward model classR such that r⋆ ∈ R. If we use the induced policy class

ΠDPO,β :=
{
π(a | x) = πref(a | x) · exp(β−1(r(x, a)− Zβ,r;KL(x))) | r ∈ R

}
, (16)

then DPO can be viewed as first fitting a reward model r̂ (Eq. (3)), then outputting the policy π̂DPO(a |
x) = πref(a | x) · exp(β−1(r̂(x, a)− Zβ,r̂;KL(x))). Meanwhile, if we use the induced policy class

ΠχPO,β :=
{
π(a | x) = πref(a | x) · ϕ−1(β−1(r(x, a)− Zβ,r(x))) | r ∈ R

}
, (17)

then χPO can be interpreted as fitting a reward model r̂ with the exact same maximum likelihood
objective, but instead outputting the policy π̂χPO(a | x) = πref(a | x) · ϕ−1(β−1(r̂(x, a)−Zβ,r̂(x))).

The policies π̂χPO and π̂DPO are induced by the same reward model r̂ and parameter β, but exhibit
different bias-overoptimization tradeoffs. For both, large β means the policy avoids overfitting to

9



Published as a conference paper at ICLR 2025

errors in the reward model (e.g., when β →∞ both policies become πref ), while small β means the
policy has low bias, i.e., low error in when the model is correct and r̂ = r⋆ (e.g. when β → 0, both
policies become x 7→ argmaxa:πref(a|x)>0 r̂(x, a)). Yet, for the same choice of β, π̂χPO is significantly
more heavy-tailed than π̂DPO, a consequence of the pessimism induced by χ2-regularization; see
Figure 3, which plots the action distribution for both policies as a function of β.

An illustrative example. Building on the intuition above, Figure 1 gives a construction in which
χPO achieves 1√

n
regret with an appropriate choice for β, yet DPO suffers an exponentially worse rate

of 1
logn regardless of β. Intuitively, DPO overfits severely when β is small, but suffers high bias when

β is larger. χPO, however, strikes a better tradeoff because small values of β are sufficient to prevent
overoptimization, which means the policy is also less biased. The “DPO+SFT” algorithm of Liu et al.
(2024); Cen et al. (2024); Fisch et al. (2024) also fails in this construction (see Appendix A.1).

4.3 NONTRIVIALITY AND ROLE OF Vmax PARAMETER

We close this section by discussing the role of the Vmax parameter (Assumption 3.2) used in the
analysis of χPO (Theorem 3.1), motivating it using the induced policy class ΠχPO,β from Section 4.2.

Assumption 3.2 implies that all policies π ∈ Π satisfy
∥∥ π
πref

∥∥
∞ ≲ Vmax

β , i.e., that all-policy L∞-
concentrability with maxπ∈Π Cπ∞ ≲ Vmax

β holds. This might seem to trivialize the offline alignment
problem, since such a policy class would enable plug-in regret bounds for even greedy algorithms. We
will show that this is not the case, because the Vmax

β bound is uniquely induced by χ2-regularization.

Recall that χPO requires the realizability assumption that π⋆
β ∈ Π (Assumption 3.1), where π⋆

β is

the optimal χ2-regularized policy that satisfies r⋆(x, a) = βϕ
(

π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x). From Proposi-

tion B.2 we have
∥∥ π⋆

β

πref

∥∥
∞ ≲ Rmax

β , so from a statistical perspective, we can take Assumption 3.2 to
hold w.l.o.g. by removing any policy that violates this bound. Further, as highlighted inExample 3.1,
if we begin from a class of bounded reward modelsR ∋ r⋆, Assumption 3.2 holds with Vmax ≲ Rmax

for the induced class ΠχPO,β defined in Eq. (17), even though knowledge of such a reward model class
is a mild statistical assumption that clearly does not trivialize the learning problem.

On the other hand, for DPO, a minimal assumption is that π⋆
β;KL ∈ Π (Xie et al., 2024), where π⋆

β;KL

is the optimal KL-regularized policy that satisfies r⋆(x, a) = β log
π⋆
β;KL(a|x)
πref(a|x) + Zβ,r⋆;KL(x). Unlike

the optimal mixed χ2-regularized policy, π⋆
β;KL has

π⋆
β;KL(a|x)
πref(a|x) ≳ exp(Rmax

β ). This means that it is
impossible to find a policy class that simultaneously (a) realizes π⋆

β;KL, and (b) satisfies all-policy
concentrability with maxπ∈Π Cπ∞ ≪ exp(Rmax

β ). As the bias of DPO is unacceptably large unless
β = poly(1/n) (the “small-β” regime), this leads to vacuous guarantees.

As a result, our analysis of χPO can be viewed as showing that, for any bounded reward classR, there
exists a policy class Π (precisely, the class ΠχPO,β in Eq. (17)) such that the following properties hold:

1. Bounded bias. For all r ∈ R, there exists πr ∈ Π such that for all π⋆, Jr(π⋆)−Jr(πr) ≲ β · Cπ⋆

.

2. Bounded overoptimization. For all π ∈ Π,
∥∥ π
πref

∥∥
∞ ≲ Rmax

β .

We view this as an interesting and non-trivial contribution in its own right.

5 DISCUSSION

Our work gives the first general-purpose algorithm for offline alignment with provable robustness to
overoptimization, and sample complexity guarantees based on single-policy concentrability. Our anal-
ysis and algorithm design techiques offer an example of fruitful interplay between RL theory and lan-
guage modeling, and we expect they will find broader use. Natural technical directions raised by our
paper include (i) understanding the tightest sample complexity guarantees for offline alignment with
general preference models; (ii) extending our techniques to reinforcement learning settings beyond
offline alignment (e.g., general MDPs). We look forward to studying these questions in future work.

Additional results. Results deferred to the appendix for space include (i) Guarantees for RLHF with
χ2-regularization (Appendix C), (ii) Guarantees for general preference models (Appendix D), and (iii)
Experiments in language models demonstrating that χPO mitigates overoptimization (Appendix E).
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Part I

Additional Results
A ADDITIONAL RELATED WORK

Theoretical algorithms for offline alignment. Much of prior theoretical work on offline alignment
considers algorithms that are tailored to linearly parameterized policies (Zhu et al., 2023; Li et al.,
2023; Xiong et al., 2023), while others are not efficiently implementable, e.g., as they require solving
min-max problems over a version space (Zhan et al., 2023a). For general policy classes, Ye et al.
(2024) provide an algorithm that achieves sample complexity guarantees based on single-policy
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concentrability, but the algorithm requires computation of an uncertainty bonus which cannot be
implemented faithfully for large language models. Ji et al. (2024) provide an algorithm that achieves
single-policy concentrability using self-play, but their approach requires the non-standard realizability
assumption that for all π ∈ Π, there exists π′ ∈ Π such that r(x, a) = β log π(a|x)

π′(a|x) − Zπ,π′(x) for
some function Zπ,π′(x) that depends on x, but not the action a. In addition, their algorithm is iterative,
and requires solving a DPO-like objective many times (roughly 1/ε2 iterations are required to achieve
accuracy ε). Most relevant to our work, Liu et al. (2024); Cen et al. (2024); Fisch et al. (2024)
propose solving the appealingly simple DPO + SFT objective in Eq. (5). As we discuss in detail
in Appendix A.1, this objective fails to achieve single-policy concentrability unless non-standard
convexity assumptions on the policy class or reward model class hold.

A number of other works consider the hybrid setting for alignment where—in addition to offline
preference data from πref , the algorithm has access to online feedback (Xiong et al., 2023; Gao
et al., 2024; Chang et al., 2024; Song et al., 2024). While it is straightforward to achieve guarantees
based on single-policy concentrability in this setting, this is a stronger feedback model than what
we consider, and is not always realistic. Our work is also complementary to fully online alignment,
which dispenses with coverage conditions entirely but requires active exploration (Xu et al., 2020;
Novoseller et al., 2020; Pacchiano et al., 2021; Wu and Sun, 2023; Zhan et al., 2023b; Chen et al.,
2022; Wang et al., 2023b; Du et al., 2024; Das et al., 2024; Ye et al., 2024; Xie et al., 2024; Cen et al.,
2024).

Generalizations of DPO. Wang et al. (2023a) provide a generalization of the DPO reparameterization
trick which supports general f -divergences that satisfy certain regularity conditions. Their work does
not provide sample complexity guarantees or theoretical guidance on which choices of f -divergence
are preferable, but our main algorithm χPO, can be derived as a special case of their technique with a
novel choice of f -divergence. Tang et al. (2024) also provide a general framework for deriving DPO
variants with general loss functions, but our algorithm does not appear to be a special case of their
framework.

Offline reinforcement learning theory. The theory of offline reinforcement learning addresses
challenges similar to overoptimization, which is typically describes through the language of distri-
bution shift. Many of these works, using pessimism and related algorithmic techniques, provide
guarantees that are robust to partial coverage of the data collection policy πref , which is reflected in
sample complexity guarantees based on single-policy concentrability and similar coverage conditions.
While this line of work provides efficient algorithms for simple (e.g., tabular or linear) settings (Liu
et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021), existing approaches that support general
function approximation (Xie et al., 2021; Uehara and Sun, 2021; Zhan et al., 2022; Chen and Jiang,
2022) cannot be implemented efficiently for language models without non-trivial modifications. See
also closely related research on policy optimization and evaluation in statistics and econometrics
(Athey and Wager, 2021; Chernozhukov et al., 2019; Kallus and Uehara, 2020).

χ2-divergence in reinforcement learning. Our work contributes to a growing body of research
that uses χ2-divergence to derive reinforcement learning algorithms with novel statistical guarantees.4
Notably, our work is inspired by Wang et al. (2024) (see also Gabbianelli et al. (2024)), who use a
regularizer similar to χ2-divergence to derive single-policy concentrability guarantees for contextual
bandits. Compared to the χ2-regularizer Cπ = Eπ

[
π(a|x)
πref(a|x)

]
we use, their regularizer takes the form

Eπ

[
1

πref(a|x)

]
, which is always larger. As a result of this diference, their regularizer is not suitable for

large action spaces. By addressing this shortcoming, we expect our χ2-regularization approach to
find further use in offline RL.

Other related works include (i) Duan et al. (2020) show that χ2-divergence plays a fundamental
role in offline RL with linear function approximation; (ii) Zhan et al. (2022) use χ2-regularization
to provide guarantees based on single-policy concentrability for an offline RL method based on
weight function learning; and (iii) Amortila et al. (2024) provide online RL algorithms that explore by
directly minimizing an exploration objective based on χ2-divergence. We mention in passing that a
number of recent empirical works apply χ2-regularization (Zhu et al., 2020; Lee et al., 2021; Ma et al.,

4More classically, χ2-divergence is known to play a fundamental role in asymptotic statistics (Tsybakov,
2008; Duchi and Namkoong, 2019).
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2022a;b; Zhu and Zhang, 2024) to reinforcement learning in embodied domains. Lastly, Cesa-Bianchi
et al. (2017) prove lower bounds against the softmax policy distribution, but in the context of online
exploration for online RL. While this is different problem setting than ours, their construction may be
in similar in spirit to our lower bound against KL-regularization in offline reinforcement learning
(Proposition A.1).

Empirical research on offline alignment. Our work uses DPO (Rafailov et al., 2023) as a starting
point. Many prior works have built upon DPO with the aim of addressing specific shortcomings,
including Liu et al. (2023); Tang et al. (2024); Azar et al. (2024); Rosset et al. (2024); Chen et al.
(2024); Wu et al. (2024); Tajwar et al. (2024). Closely related, there is a large body of research that
attempts to understand and mitigate overoptimization in offline alignment from a purely empirical
perspective (Michaud et al., 2020; Tien et al., 2022; Coste et al., 2023; Dong et al., 2023; Eisenstein
et al., 2023; Gao et al., 2023; Moskovitz et al., 2023; Pal et al., 2024; Rita et al., 2024; Rafailov et al.,
2024a; Zhang et al., 2024).

A.1 DETAILED COMPARISON TO DPO + SFT
In this section, we give additional background on the suboptimality of the DPO + SFT objective
in Eq. (5). Let β > 0 be the KL-regularization parameter and α > 0 be an optimism parameter.
Consider the setting in which Π =

{
πr(a | x) = πref(a | x) exp(β−1(r(x, a)− Zr(x))) | r ∈ R

}
for a reward classR ⊂ (X ×A → R). Liu et al. (2024); Cen et al. (2024); Fisch et al. (2024) propose
solving (variants of) the objective

π̂max-min = argmax
π

min
r∈R

{
α
(
Ex∼ρ,a∼π(·|x),b∼πref(·|x)[r(a)− r(b)]− βDKL(π ∥πref)

)
+ L(r)

}
,

(18)

where the max ranges over the space of all policies, and where L(r) := −
1
n

∑
(x,a+,a−)∈Dpref

log σ[r(x, a+)− r(x, a−)] is the negative log-likelihood under the Bradley-Terry
model. Liu et al. (2024) show that for general policy classes, this algorithm attains sample complexity
guarantees scaling with single-policy concentrability; Cen et al. (2024) provide similar results for the
special case of linearly parameterized policies.

The objective in Eq. (18) is non-trivial to implement for language models. To derive the DPO + SFT
objective in Eq. (5), Liu et al. (2024) observe that ifR is convex, the minimax theorem implies that
the objective value in Eq. (18) is equivalent to the value for the min-max objective

min
r∈R

max
π

{
α
(
Ex∼ρ,a∼π(·|x),b∼πref(·|x)[r(a)− r(b)]− βDKL(π ∥πref)

)
+ L(r)

}
. (19)

This leads to a natural algorithmic strategy adopted by (Liu et al., 2024; Cen et al., 2024; Fisch
et al., 2024): Let r̂min-max be the minimizing reward function in Eq. (19) and let πr̂min-max —the optimal
policy in the KL-regularized MDP with reward function r̂min-max—be the final policy returned by the
algorithm. After standard manipulations, one can then show that πr̂min-max is equivalent to

argmax
π∈Π

α · Eπref
[β log π(a | x)] + 1

n

∑
(x,a+,a−)∈Dpref

log

[
σ

(
β log

π(a+ | x)
πref(a+ | x)

− β log
π(a− | x)
πref(a− | x)

)].

(20)

We call this policy π̂DPO+SFT. The sample complexity analyses for the π̂DPO+SFT policy (Eq. (20)) in
(Liu et al., 2024; Cen et al., 2024) rely on showing that the objective value in Eq. (19) is equivalent
to the value in Eq. (18), which is not guaranteed to hold ifR is non-convex (e.g., ifR is a class of
neural networks).5 Indeed, the following proposition shows that, for non-convex reward classesR,
the DPO + SFT objective in Eq. (20) fails to achieve a statistical guarantee based on single-policy
concentrability, even when Eq. (18) succeeds.

Proposition A.1. Let n ∈ N with n ≥ 2 be given. There exists a reward class R with |R| = 2, a
problem instance (ρ, r) satisfying realizability (r ∈ R) and r ∈ [0, 1], a data collection policy πref ,
and universal constants c1 ∈ (0, 1) and c2, c3 > 0 such that the following hold:

5Precisely, Liu et al. (2024) provide guarantees for π̂max-min with general reward classR and establish equiva-
lence of π̂max-min and π̂min-max whenR is convex, while Cen et al. (2024) consider linear function approximation,
which yields the required convexity.
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1. There exists a policy π̃ such that ∥π̃/πref∥∞ ≤ 2; yet

2. For any β ≤ (2 log(n))−1 and α ≥ 0, the minimax policy π̂min-max (Eq. (19)) and DPO+SFT
policy π̂DPO+SFT (Eq. (20)) derived from a dataset Dpref of n samples from πref incur suboptimality

J(π̃)− J(π̂DPO+SFT) = J(π̃)− J(π̂min-max) ≥ c2,

with probability at least c1.

3. For any β ≥ (2 log(n))−1 and α ≥ 0, the minimax policy π̂min-max (Eq. (19)) and DPO+SFT
policy π̂DPO+SFT (Eq. (20)) derived from a dataset Dpref of n samples from πref incur suboptimality

J(π̃)− J(π̂DPO+SFT) = J(π̃)− J(π̂min-max) ≥
c3

log(n)
,

with probability at least c1.

On the other hand, we observe that for the instance in Proposition A.1, χPO (via Theorem 3.1)
with β ∝ 1/

√
n and the class Π =

{
π(a | x) = πref(a | x) · ϕ−1(β−1(r(x, a)− Zr(x))) | r ∈ R

}
achieves

J(π̃)− J(π̂) ≲

√
(Cπ̃)2
n

≲

√
1

n
,

highlighting the fact that χPO meaningfully adapts to single-policy concentrability even when the
technical conditions required by DPO+SFT do not hold; see also Appendix B. We find this conclusion
to be somewhat surprising, as Xie et al. (2024) show that an optimistic counterpart to Eq. (20), which
negates the SFT term, enjoys strong guarantees for online alignment with general policy classes
without requiring convexity.

Although our construction does not establish inconsistency in the β ≥ (2 log(n))−1 regime, in
general, DPO+SFT will incur O(β) bias if one aims to compete with the optimal policy. Due to
restriction that β must be rather large, this results in an exponentially slower rate of convergence than
χPO.

Proof of Proposition A.1. Let n ∈ N with n ≥ 2 be given. We consider a problem instance with
X = {x1, x2} and A = {a0, a1, a2, a3}, so that |A| = 4. We define a reward class with two reward
functionsR := {r1, r2} as follows. For i ∈ {1, 2}:

ri(x1, a0) = ζ, and ri(x1, a1) = ri(x1, a2) = ri(x1, a3) = 0

ri(x2, a0) = 1/2, ri(x2, ai) = 1, and ri(x2, aj) = 0 ∀j ̸= i.

Here ζ ∈ [0, 1] will be chosen at the end of the proof. The context distribution is ρ = unif(X ), and
we define πref for each xi ∈ {x1, x2} via

πref(a0 | xi) = 1/2, πref(a1 | xi) = πref(a2 | xi) = 1/(2n), and πref(a3 | xi) = (n− 2)/(2n).

Let r1 be the true reward function. Recall that Dpref = {(x, a+, a−)} consists of n tuples (x, a+, a−)
obtained by sampling x ∼ ρ and a pair of actions (a, b) ∼ πref and labeling them as (a+, a−) via the
Bradley-Terry model in Eq. (1) with reward r1. Define a “bad” event under this process:

E := {No tuples in Dpref contain a1 or a2}.

We can lower bound the probability of E as follows:

P[Ec] ≤ P[a1 in Dpref ] + P[a2 in Dpref ]

= 2(1− (1− 1/2n)n) ≤ 2(1− e−1/2(1− 1/(4n))) ≤ 2(1− 7e−1/2/8) ≤ 0.94,

where the first inequality uses that (1−x/n)n ≥ e−x(1−x2/n) for n ≥ 1 and |x| < n. We conclude
that

P[E ] ≥ 0.06 =: c1.

Let L(r;Dpref) := − 1
n

∑
(x,a+,a−)∈Dpref

log σ[r(x, a+)− r(x, a−)] denote the DPO loss. Observe
that conditioned on E , we have that L(r1;Dpref) = L(r2;Dpref). Noting that

max
π
{Eπ[r]− Eπref

[r]− βDKL(π ∥πref)} = Eπr
[r]− Eπref

[r]− βDKL(πr ∥πref),
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is the same for both r ∈ R, we see that both r1 and r2 optimize the minimax objective in Eq. (19).
Thus, breaking ties adversarially, we can choose π̂min-max = πr2 under E for all values of β > 0 and
α ≥ 0. By the equivalence between the minimax objective in Eq. (19) and the DPO+SFT objective
in Eq. (20) (Liu et al., 2024; Cen et al., 2024; Fisch et al., 2024), for Π = {πr1 , πr2}, we can choose
π̂DPO+SFT = πr2 in Eq. (20) under E . Indeed, under E , the DPO+SFT objective is equivalent to
argmaxπ∈Π Eπref

[log π(a)], and πr1 and πr2 have the same value for this objective.

To conclude we choose π̃(·) = a0, which has ∥π̃/πref∥∞ = 2. It remains to calculate the suboptimal-
ity gap.

J(π̃)− J(π̂DPO+SFT) = J(π̃)− J(π̂min-max) = J(π̃)− J(πr2)

under E . Note that J(π̃) = ζ/2 + 1/4. We decompose the reward for πr2 on instance r1 into two
components, corresponding to the two contexts x1, x2:

J(πr2) =
1

2

(
Ea∼πr2

[r1(x1, a)] + Ea∼πr2
[r1(x2, a)]

)
=:

1

2
(J1(β) + J2(β))

J1(β) =
r1(x1, a0)πref(a0 | x1) exp(r2(x1, a0)/β)

Z(r2, x1)
=

ζ/2 exp(ζ/β)

1/2 exp(ζ/β) + 1/2

J2(β) =
r1(x2, a0)πref(a0 | x2) exp(r2(x2, a0)/β) + r1(x1, a1)πref(a1 | x2) exp(r2(x2, a1)/β))

Z(r2, x2)

=
1/4e1/2β + 1/(2n)

1/2e1/2β + e1/β/(2n) + (n− 1)/(2n)
,

where Z(r2, x) :=
∑

a∈A πref(a | x) exp(r2(x, a)/β).

We first consider the small β regime. Here we use the upper bound J1(β) ≤ ζ and focus on
J2(β). Note that J2(β) is increasing with β for β ≤ 1/(2 log(n)). In particular, if we consider
β = 1/(c log(n)) for c ≥ 2, then the expression above is equal to

J2(β) =
nc/2/4 + 1/(2n)

nc/2/2 + nc−1/2 + (n− 1)/(2n)
≤ nc/2/4 + 1/(2n)

nc/2 + (n− 1)/(2n)
≤ 1/4 +

1

2nc/2+1
≤ 3/8,

where the last inequality holds when c ≥ 2 and n ≥ 2. We set c = 2, so that as long as n ≥ 2,
J(πr2) ≤ 3

8 . Thus, the suboptimality is

J(π̃)− J(πr2) ≥
ζ

2
+

1

4
−
(
ζ

2
+

3

16

)
≥ 1

16
=: c2.

Next consider the regime where β ≥ 1/(2 log(n)). Analogously to before, note that J2(β) ≤ 1/2.
On the other hand, J1(β) is monotonically decreasing with β, so using β ≥ 1/(2 log(n)) we obtain
the bound

J1(β) ≤
ζ exp(2ζ log(n))

exp(2ζ log(n)) + 1
= ζ · n2ζ

n2ζ + 1
.

So in this case, the suboptimality is

J(π̃)− J(πr2) ≥
ζ

2
·
(
1− n2ζ

n2ζ + 1

)
≥ ζ

4
· 1

n2ζ
=

log(2)

16 log(n)
,

if we set ζ = log(2)/(2 log(n)) which is in [0, 1] under the assumption that n ≥ 2.

B DETAILED DISCUSSION: χPO AND THE BIAS-OVEROPTIMIZATION
TRADEOFF

Having derived χPO from the mixed χ2-regularized RLHF objective and analyzed its performance,
we now take a moment to better understand the statistical properties of the policies the algorithm
learns. We focus on the tradeoff between overoptimization and bias (i.e., underoptimization) achieved
by the regularization parameter β > 0, highlighting through examples how this leads to statistical
benefits over naive alignment methods like DPO.
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B.1 PROPERTIES OF OPTIMAL POLICY UNDER MIXED χ2-REGULARIZATION

We begin by deriving a (nearly) closed form solution for the optimal mixed χ2-regularized policy in
Eq. (11); recall that we expect χPO to converge to this policy in the limit of infinite data.

We first observe that the link function ϕ(·) is strictly increasing over R+, and its inverse is given by
ϕ−1(z) = W0(exp(z)); here, W0(y) denotes the Lambert W-function (Corless et al., 1996), defined
for y ≥ − e−1 as the inverse of the function x 7→ xex. Consequently, for any x, the optimal policy
under mixed χ2-regularization satisfies

π⋆
β(a | x) = πref(a | x) ·W0

(
exp
(
β−1(r⋆(x, a)− Zβ,r⋆(x))

))
,

where Zβ,r⋆(x) is chosen such that
∑

a π
⋆
β(a | x) = 1. We can better understand how this

policy behaves using the following simple upper and lower bounds on the inverse link function
ϕ−1(z) = W0(exp(z)).

Proposition B.1. The link function ϕ(z) = z+log z is strictly increasing over (0,∞), and its inverse
ϕ−1(z) = W0(exp(z)) is strictly increasing over (−∞,∞). The inverse link function ϕ−1 satisfies

z

2
≤ ϕ−1(z) ≤ z ∀z ∈ [1,∞), and ez−e ≤ ϕ−1(z) ≤ ez ∀z ∈ (−∞, 1].

Compared to KL-regularization, which leads to softmax policies that satisfy π⋆
β;KL(a | x) = πref(a |

x) · exp
(
β−1(r⋆(x, a)− Zβ,r⋆;KL(x))

)
, we see that the inverse link function ϕ−1(z) = W0(exp(z))

for mixed χ2-regularization satisfies ϕ−1(z) ≈ z for z ≥ 1, leading to a more heavy-tailed action
distribution for π⋆

β . On the other hand, for z ≤ 1 the inverse link behaves like the exponential function
(i.e., ϕ−1(z) ≈ ez for z ≤ 1); see Figure 2 for an illustration. Using these properties, we can derive
the following upper and lower bounds on the density ratio between π⋆

β and πref .

Proposition B.2 (Proposition 4.1 restated). For all x ∈ X and a ∈ A, the optimal policy π⋆
β under

mixed χ2-regularization satisfies

exp

(
−Rmax

β

)
≲

π⋆
β(a | x)

πref(a | x)
≲ 1 +

Rmax

β
. (21)

Both inequalities are tight in general (up to absolute constants).

The upper bound in Eq. (21), which arises from the χ2 term in the mixed-χ2 objective, scales inversely
with the regularization parameter β, and reflects the heavy-tailed, pessimistic behavior this regularizer
induces; in contrast, the optimal policy under pure KL-regularization only satisfies

exp

(
−Rmax

β

)
≲

π⋆
β;KL(a | x)
πref(a | x)

≲ exp

(
Rmax

β

)
(22)

in general. The lower bound in Eq. (21) arises from the KL term in the mixed-χ2 objective, but is not
important for our analysis (outside of allowing for DPO-like reparameterization).

B.2 THE BIAS-OVEROPTIMIZATION TRADEOFF

We are now well equipped to understand how χPO modulates the tradeoff between overoptimization
and bias using the regularization parameter β, and how this tradeoff compares to vanilla DPO. To
showcase this, we take a reward modeling perspective, and consider the setting in which the policy
class Π is induced by a given reward model classR, similar to Example 3.1.

Suppose we start with a reward model classR ⊂ (X ×A → [0, Rmax]) such that r⋆ ∈ R. If we use
the induced policy class

ΠDPO,β :=
{
π(a | x) = πref(a | x) · exp(β−1(r(x, a)− Zβ,r;KL(x))) | r ∈ R

}
, (23)

then DPO can be interpreted as fitting a reward model r̂ using maximum likelihood (Eq. (3)) and then
outputting the policy π̂DPO(a | x) = πref(a | x) · exp(β−1(r̂(x, a)−Zβ,r̂;KL(x))). Meanwhile, if we
use the induced policy class

ΠχPO,β :=
{
π(a | x) = πref(a | x) · ϕ−1(β−1(r(x, a)− Zβ,r(x))) | r ∈ R

}
, (24)

then χPO can be interpreted as fitting a reward model r̂ with the exact same maximum likelihood
objective, but instead outputting the policy π̂χPO(a | x) = πref(a | x) · ϕ−1(β−1(r̂(x, a)−Zβ,r̂(x))).
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Figure 2: Behavior of the mixed χ2-regularization link function ϕχPO(z) = z + log z and inverse
ϕ−1
χPO(z) = W0(exp(z)), compared to the KL-regularization link function ϕDPO(z) = log z and inverse

ϕ−1
DPO(z) = exp(z). ϕ−1

χPO(z) ≈ z for z ≥ 1, leading to favorable heavy-tailed, pessimistic behavior.
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Figure 3: Action probabilities for policies learned by χPO and DPO on the example from Appendix B.3,
under the “bad” event E in which the true reward model is r⋆ = r1 but the estimated reward model is
r̂ = r2 (n = 10). Here, r⋆(agood) = 1 and r⋆(abad) = 0, but r̂(agood) = 0 and r̂(agood) = 1; both
reward functions have r⋆(a0) = r̂(a0) = 1/2, and the goal is to compete with a comparator policy
that deterministically plays a0.
Overoptimization. The DPO policy is greedier with respect to the incorrect reward model and places
much larger mass on the bad action abad for all β ∈ (0, 1

2 logn ] (Right). As a result, the DPO policy
places much smaller mass on the baseline action a0, suffering significantly more overoptimization
error compared to χPO (Left; see also Figure 1).
Bias. Compared to DPO, χPO has a higher probability of taking both the optimal action agood and the
reference action a0. As a result, it strikes a better bias-overoptimization tradeoff than DPO, and is
competitive with respect to the comparator a0 even when DPO fails to converge.

The policies π̂χPO and π̂DPO are induced by the same reward model r̂, and both use the parameter β
to balance bias and overoptimization. For both policies, large β means the policy avoids overfitting
to errors in the reward model (the extreme case is β → ∞, in which case both policies become
πref), while small β means the policy has low bias, i.e., low error in the case where the model is
correct in the sense that r̂ = r⋆ (the extreme case is β → 0, in which case both policies become
x 7→ argmaxa:πref(a|x)>0 r̂(x, a)). Yet, for the same choice of β, π̂χPO is significantly more heavy-
tailed than π̂DPO, a consequence of the pessimism induced by χ2-regularization; see Figure 3, which
plots the action distribution for both policies as a function of β.

B.3 AN ILLUSTRATIVE EXAMPLE

We now give a concrete example in which χPO allows the user to tune β to achieve tight statistical
rates, yet no choice of β for DPO leads to comparable performance (effectively, any choice of β is
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either susceptible to overoptimization, or has unacceptably high bias). This illustrates the favorable
tradeoff between bias and overoptimization achieved by χPO.

Let n ∈ N with n ≥ 2 be given. We consider a problem instance with X = {∅} and A =
{a0, a1, a2, a3}. We define πref via

πref(a0) =
1
2 , πref(a1) = πref(a2) =

1
2n , and πref(a3) =

n−2
2n .

We define a reward class with two reward functionsR := {r1, r2} as follows. For i ∈ {1, 2}:

ri(a0) = 1/2, ri(ai) = 1, ri(aj) = 0, ∀j ̸= i.

Let β > 0 be fixed. To compare χPO and DPO, we consider their behavior when invoked with
the induced policy classes ΠχPO,β and ΠDPO,β defined above. Recall that with this choice,
the two algorithms can be interpreted as fitting a reward model r̂ using maximum likelihood
(Eq. (3)) and returning the policies π̂χPO(a | x) = πref(a | x) · ϕ−1(β−1(r̂(x, a) − Zβ,r̂(x))) and
π̂DPO(a | x) = πref(a | x) · exp(β−1(r̂(x, a)− Zβ,r̂;KL(x))), respectively.

Suppose that r1 is the true reward function. It is hopeless (information-theoretically) to compete
with the unconstrained optimal action a1, as we are in a sample-starved regime where Ca1 = 2n (in
the language of Eq. (13)). Indeed, one can show (see proof of Proposition A.1 in Appendix A) that
with constant probability, none of the examples in the offline dataset Dpref contain actions a1 or a2.
Under this event, which we denote by E , the value for the maximum likelihood objective in Eq. (3)
is identical for r1 and r2, so we may obtain r̂ = r2 (due to adversarial tie-breaking). However, in
spite of the fact that the policies π̂χPO and π̂DPO are induced by the same (incorrect) reward function
r̂ = r2, they produce very different action distributions, as highlighted in Figure 3.

To understand this, note that even in the sample-starved regime, we can still hope to compete with the
“baseline” action a0; Figure 1 shows that χPO has low regret against this action, while DPO has high
regret. In particular, since Ca0 = 2, Theorem 3.1 (Eq. (13)) implies that χPO achieves

J(a0)− J(π̂χPO) ≲

√
1

n
+ β + β−1 1

n
,

and setting β ∝
√

1
n leads to J(a0) − J(π̂χPO) ≲

√
1
n . This is a consequence of the pessimistic,

heavy-tailed nature of π̂χPO (cf. Proposition B.2), which places no more than β−1/n probability mass
on the (incorrect) greedy action a2 for r̂ = r2, thereby correctly capturing the inherent uncertainty in
the reward for this action.

On the other hand, it is straightforward to show that for all possible values β ≤ (2 log n)−1, the DPO
policy π̂DPO has regret

J(a0)− J(π̂DPO) ≥
1

2

(
1− 1

1 + 1
ne

1
2 + (1− 1

n )e
− 1

2β

)
− 1

2n
≥ Ω(1)

whenever n ≥ 2. This is because when β ≤ (2 log n)−1, π̂DPO assigns excessively high probability to
the incorrect greedy action a2, an instance of overoptimization. Meanwhile, larger choices for β lead
to excessively large bias in general (see Appendix A.1 for a more sophisticated construction which
extends this lower bound to all possible β). In other words, as illustrated in Figure 1, no choice of β
gives a favorable tradeoff between overoptimization and bias.

To summarize, for DPO, large values of β are required to avoid overfitting to the reward function,
incurring high bias. Meanwhile, χPO avoids overoptimization using comparatively small values
for β, yet has bias no worse than that of DPO, thereby striking a better tradeoff. We mention that
the “DPO+SFT” algorithm of Liu et al. (2024); Cen et al. (2024); Fisch et al. (2024) also fails on the
construction above; see Proposition A.1 in Appendix A.1 for details.

Remark B.1 (DPO decreases probabilities of preferred and rejected responses). Various recent works
have noted an empirical phenomenon in which DPO decreases the probabilities for both preferred
and rejected responses throughout training (Yuan et al., 2024; Pal et al., 2024; Rafailov et al.,
2024b). Interestingly, we observe that the example above exhibits this phenomenon. Notably, if
β < (2 log n)−1, then under the event E in which the offline datasetDpref does not contain the actions
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a1 or a2 (so that r̂ = r2), we observe that π̂DPO(a0) =
1
2 e

1
2β

1
2 e

1
2β + 1

2n e
1
β +n−1

2n

< 1
2 = πref(a0), and for

all i > 2, π̂DPO(ai) =
1
2n

1
2 e

1
2β + 1

2n e
1
β +n−1

2n

< 1
2n = πref(ai). We conclude that for all a ∈ Dpref ,

π̂DPO(a) < πref(a).

We emphasize that this behavior arises due to the use of function approximation. When the reward
class R (equivalently, the policy class ΠDPO,β) is restricted, the algorithm can aggressively (and
incorrectly) extrapolate rewards for actions outside the dataset and, in doing so, inadvertently
decrease the probabilities for preferred responses in the dataset. Meanwhile, in the same parameter
range, χPO satisfies (see Figure 3)

π̂χPO(a0) > πref(a0),

highlighting that pessimism can mitigate this phenomenon.

B.4 NONTRIVIALITY AND ROLE OF Vmax PARAMETER

To close this section, we discuss the role of the Vmax parameter (Assumption 3.2) used in the analysis
of χPO (Theorem 3.1) in depth, motivating it from the perspective of the induced policy class ΠχPO,β

from Appendix B.2.

Assumption 3.2 effectively implies that all policies π ∈ Π satisfy
∥∥ π
πref

∥∥
∞ ≲ Vmax

β ; in other words,
the policy class we use in χPO satisfies all-policy L∞-concentrability with maxπ∈Π Cπ∞ ≲ Vmax

β . At
first glance, this might seem to trivialize the offline alignment problem, since it would suffice to prove
a generalization guarantee based on all-policy concentrability, and then plug this bound in. We will
show that this is not the case, and that this is actually an intrinsic feature of χ2-regularization.

In more detail, recall that for χPO, we require the realizability assumption that π⋆
β ∈ Π (As-

sumption 3.1), where π⋆
β is the optimal mixed χ2-regularized policy that satisfies r⋆(x, a) =

βϕ
(

π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x). This policy, via Proposition B.2, satisfies

∥∥ π⋆
β

πref

∥∥
∞ ≲ Rmax

β , so from
a statistical perspective, we can take Assumption 3.2 to hold without loss of generality by removing
any policy that violates this bound. In addition, as highlighted by Example 3.1, if we begin from a
class of bounded reward models R with r⋆ ∈ R, Assumption 3.2 holds with Vmax ≲ Rmax for the
induced class ΠχPO,β defined in Eq. (24), even though knowledge of such a reward model class is a
mild statistical assumption that clearly does not trivialize the learning problem.

On the other hand, for DPO, a minimal assumption is that π⋆
β;KL ∈ Π (Xie et al., 2024), where π⋆

β;KL

is the optimal KL-regularized policy that satisfies r⋆(x, a) = β log
π⋆
β;KL(a|x)
πref(a|x) + Zβ,r⋆;KL(x). Unlike

the optimal mixed χ2-regularized policy, π⋆
β;KL has

π⋆
β;KL(a|x)
πref(a|x) ≳ exp

(
Rmax

β

)
. This means that it is

impossible to find a policy class that simultaneously (1) realizes π⋆
β;KL, and (2) satisfies all-policy

concentrability with maxπ∈Π Cπ∞ ≪ exp
(

Rmax

β

)
. As the bias of DPO is unacceptably large unless

β = poly(1/n) (the “small-β” regime), this leads to vacuous guarantees.

In view of these observations, our analysis of χPO can be interpreted as (implicitly) showing that
for any bounded reward classR, there exists a policy class Π (precisely, the class ΠχPO,β defined in
Eq. (24)) such that the following properties hold:

1. Bounded bias. For every r ∈ R, there exists πr ∈ Π such that for all policies π⋆,
Jr(π

⋆)− Jr(πr) ≲ β · Cπ⋆

.

2. Bounded overoptimization. For all π ∈ Π,
∥∥ π
πref

∥∥
∞ ≲ Rmax

β .

We view this as an interesting and non-trivial contribution in its own right. We mention in passing
that while it is indeed possible to analyze χPO by first proving a sample complexity guarantee based
on all-policy concentrability and then using that maxπ∈Π Cπ∞ ≲ Vmax

β , this would lead to a loose
bound relative to Theorem 3.1.
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Algorithm 2 χ2-RLHF

input: Reference policy πref , preference dataset Dpref , unlabeled context dataset Dx, χ2-
regularization coefficient β > 0, smoothing parameter η ≥ 0.

1: Estimate reward model via maximum likelihood:

r̂ ← argmax
r∈R

∑
(x,a+,a−)∈Dpref

log [σ (r(x, a+)− r(x, a−))] . (26)

2: Define χ2-regularized RLHF objective:

Ĵβ,η(π) :=
1

nx

∑
x∈Dx

(
Ea∼π(·|x)[r̂(x, a)]− β

∑
a

π2(a|x)
πref(a|x) + ηπ(a|x)

)
.

3: Policy optimization: Compute π̂ ∈ Π such that

Ĵβ,η(π̂) ≥ max
π∈Π

Ĵβ,η(π)− εopt.

4: return: π̂.

C SAMPLE COMPLEXITY GUARANTEES FOR χ2-RLHF
The χ2-regularization framework we consider (Section 3.1) can be used to derive algorithms beyond
just χPO, and we expect it to find broader use. To highlight this, in this section we analyze the
algorithm that directly optimizes a variant of the χ2-regularized RLHF objective in Eq. (6); this
can be accomplished via policy optimization methods such as PPO, in the vein of classical RLHF
approaches to offline alignment (Christiano et al., 2017; Bai et al., 2022; Ouyang et al., 2022; von
Werra et al., 2020). As we will show, a benefit of directly optimizing the RLHF objective is that it
allows us to provide guarantees that avoid dependence on the Vmax parameter in Theorem 3.1, which
may lead to improvement when Π includes policies with very large or very small density ratios π

πref
.

Algorithm. Our algorithm, χ2-RLHF is displayed in Algorithm 2. At the population level, the
algorithm aims to optimize a variant of Eq. (7) that incorporates a small but important modification
that allows us to avoid dependencies on π

πref
. Given smoothing parameter η > 0, define the smoothed

χ2-divergence Dχ2;η(π ∥ πref) := Eπ

[
π(a|x)

πref(a|x)+ηπ(a|x)

]
. We aim to find

argmax
π

Jβ,η(π) := Eπ [r
⋆(x, a)]− βDχ2;η(π ∥ πref) (25)

= argmax
π

Eπ

[
r⋆(x, a)− β

π(a | x)
πref(a | x) + ηπ(a | x)

]
.

The smoothing parameter η effectively clips the policy ratio in Dχ2;η(π ∥ πref) where πref(a|x)≪
ηπ(a|x); Dχ2(· ∥ ·) corresponds to the special (non-clipped) case where η = 0. In particular, clipping
ensures a uniform bound of the form Dχ2;η(π ∥ πref) ≤ η−1, whereas the best bound we can hope

for with the unclipped χ2-divergence is Dχ2(π ∥ πref) = Eπ

[
π(a|x)
πref(a|x)

]
≤ Cπ∞. For this reason,

smoothing will allow us to obtain guarantees that avoid dependence on all-policy concentrability or
parameters similar to Vmax.

To optimize Eq. (25), Algorithm 2 takes two datasets as input, along with a user-specified reward
model class R and policy class Π. The first dataset, Dpref , is labeled with human preferences, and
is used to learn a reward model r̂ via maximum likelihood estimation in Line 1. The second, Dx,
contains only unlabeled contexts sampled from ρ, and is utilized in Line 3 to learn a policy that
approximately maximizes an empirical version of Eq. (25). Importantly, because Line 3 involves an
empirical expectation over only contexts, it is a purely computational problem that we can solve using
algorithms like PPO; we allow for tolerance εopt in Line 3 to accommodate optimization error from
such algorithms. By using unlabeled contexts in Line 3, we can obtain tighter guarantees when Dx is
large. This is often the case in practice, where unlabeled contexts are cheap to obtain, but preferences
can be expensive to query.

Theoretical guarantees. To analyze χ2-RLHF, we make similar assumptions to those utilized
in Theorem 3.1 for χPO. Since χ2-RLHF utilizes separate reward and policy classes, we require
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realizability conditions for both. Namely,R must be able to express the true reward function r⋆, and
Π must include the optimal policy for the regularized RLHF objective in Eq. (25).

Assumption C.1. The reward function class satisfies r⋆ ∈ R, and is bounded so that r(x, a) ∈
[0, Rmax] for all r ∈ R and (x, a) ∈ X ×A.

Assumption C.2. The policy class Π satisfies π⋆
β,η ∈ Π, where π⋆

β,η is the optimal policy for Eq. (25).

Below is our main sample complexity guarantee for χ2-RLHF. While it is stated for a fixed, β-
dependent smoothing parameter for compactness, the general version of this result (Theorem K.1)
allows for general η.

Theorem C.1. Let β > 0 be given, and suppose Assumptions C.1 and C.2 hold any η ∈
[
0, β

8Rmax

]
.

With probability at least 1− δ, χ2-RLHF (Algorithm 2) produces a policy π̂ such that for all policies
π⋆ simultaneously, we have
J(π⋆)− J(π̂)

≲ Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n
+ β · Cπ

⋆

+ β−1 · R
2
maxe

4Rmax log(|R|/δ)
n

+Rmax

√
log(|Π|/δ)

nx
+ εopt.

In particular, given any comparator policy π⋆, we can choose the regularization parameter β to
achieve

J(π⋆)− J(π̂) ≲ Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n
+Rmax

√
log(|Π|/δ)

nx
+ εopt. (27)

Above, we see that χ2-RLHF, like χPO, has sample complexity that scales only with the single-policy
concentrability coefficient Cπ⋆

, and holds for all comparator policies π⋆ simultaneously. Since the
choice of β induces a similar bias-overoptimization tradeoff in the first statement of Theorem C.1
as it did in Theorem 3.1 for χPO, we focus our discussion on the guarantee for a tuned choice of β
(Eq. (27)). The first term in Eq. (27) accounts for the reward estimation error (Line 1) and scales with
Cπ⋆

; as before, this accounts for how well rewards estimated from πref transfer to other candidate
policies. The second term in Eq. (27) accounts for the statistical error from sampled contexts used in
Line 3 for policy optimization. In particular, it is possible to drive this term to be much smaller than
the first by using a larger unlabeled context dataset, which is typically far cheaper to acquire.

Computationally efficiency. Theorem C.1 bounds the sample complexity of χ2-RLHF under the
assumption that we can solve Line 3 up to εopt-accuracy. This is a purely computational problem,
and in practice it can be solved using policy gradient methods such as PPO.

Comparison to χPO. Unlike χPO (Theorem 3.1), Theorem C.1 has no dependence on the parameter
Vmax or quantities such as π

πref
≤ maxπ Cπ∞. We primarily attribute this to the fact that χ2-RLHF

uses an explicit reward function class R, and normalizing or clipping it to the reward range Rmax

is both natural and routinely done in practice (Shah et al., 2015; Christiano et al., 2017; Ouyang
et al., 2022). In comparison, the implicit reward models induced by the policy class Π in χPO can
have larger range, and clipping the policy class in χPO directly, e.g., so that |βϕ( π

πref
)| is bounded,

is misguided, because the policy class may lose realizability (Assumption 3.1). This is because
r⋆(x, a) = βϕ

(
π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x), and the normalization factor Zβ,r⋆ cannot be reasonably

accounted for when clipping Π. While the Vmax (Assumption 3.2) parameter involves pairs of action
probabilities, and thereby sidesteps the normalization constant issue, it may not always be practical to
modify Π so that Vmax is bounded, since this would require checking all pairs of each policy’s action
probabilities.

However, using an explicit reward function class alone is not enough. As discussed previously,
when we move from implicit to explicit χ2-regularization, incorporating the smoothing parameter η
in Eq. (25) is essential to avoid statistical errors due to policies with large density ratios when we
approximate the χ2-regularizer with empirical data. A careful choice of η = β/Rmax in Theorem C.1
balances the benefits of clipping against the bias it introduces. Without smoothing (i.e., η = 0), a
guarantee that depends on maxπ Cπ∞ for χ2-RLHF would be unavoidable, since the sample complexity
must scale with the range of the problem, which grows with the magnitude of the regularizer. See
Corollary K.2 in Appendix K for a guarantee in the case where η = 0, which highlights this.
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D χPO FOR GENERAL PREFERENCE MODELS

All of our results so far concern the Bradley-Terry model (Eq. (1)), which, as highlighted in prior
work, is somewhat restrictive. Thus, in this section, we turn our attention to offline alignment under a
general preference model which does not assume transitivity (Munos et al., 2023; Wang et al., 2023b;
Swamy et al., 2024; Rosset et al., 2024; Ye et al., 2024). The setup is the same as Section 2, but we
assume that for a given context x and pair of actions (a, b), the preference y ∈ {0, 1} is generated via
a Bernoulli Distribution

y ∼ Ber(P⋆(a ≻ b | x)), (28)
where P⋆(a ≻ b | x) ∈ [0, 1] is a general preference distribution. For a pair of policies π, π′, let
P⋆(π ≻ π′) := Ex∼ρ[P⋆(π(x) ≻ π′(x) | x)]. Following Wang et al. (2023b); Munos et al. (2023);
Swamy et al. (2024), we consider the minimax winner (Kreweras, 1965; Simpson, 1969; Kramer,
1973; Fishburn, 1984) or von Neumann winner (Dudík et al., 2015) as a solution concept:

πMW := argmax
π∈Π

min
π′∈Π

P⋆(π ≻ π′).

It will be useful to slightly reparameterize this formulation by introducing the preference function
ℓ⋆(x, a, b) := 2P⋆(a ≻ b | x) − 1. Note that for any well-defined preference model, we have
P⋆(a ≻ b | x) + P⋆(b ≻ a | x) = 1 for all x, a, b, which indicates that ℓ⋆ satisfies skew symmetry:

ℓ⋆(x, a, a) = 0, ℓ⋆(x, a, b) + ℓ⋆(x, b, a) = 0, ∀x ∈ X , a, b ∈ A.
Furthermore, the minimax winner above is equivalent to

πMW := argmax
π∈Π

min
π′∈Π

ℓ⋆(π, π′), (29)

where ℓ⋆(π, π′) := Ex∼ρ,a∼π(x),b∼π′(x)[ℓ
⋆(x, a, b)]. Concretely, our goal is to use the logged

preference data Dpref = {(x, a+, a−)} (with (a+, a−) labeled according to Eq. (28)) to compute a
policy π̂ that is an ε-approximate minimax winner, in the sense that

DG(π̂) := max
π∈Π

ℓ⋆(π, π̂)−min
π∈Π

ℓ⋆(π̂, π) ≤ ε. (30)

D.1 IMPOSSIBILITY OF SINGLE-POLICY CONCENTRABILITY UNDER GENERAL PREFERENCES

While the general preference framework above is more powerful than the Bradley-Terry model, we
now show that there is a statistical cost for this generality. In particular, our first result in this section
shows that in contrast to the Bradley-Terry model, it is not possible to achieve sample complexity
guarantees that scale with single-policy concentrability under general preferences, even when the
learner has access to a small class of preference models P that contains the true preference model P
(i.e., P⋆ ∈P).

Theorem D.1 (Impossibility of single-policy concentrability under general preferences). There
exists two problem instances θ1 = (ρ,P⋆

1 ,Π) and θ2 = (ρ,P⋆
2 ,Π) differing only in their ground

truth preference model, a data collection policy πref , and a preference model class P = {P⋆
1 ,P⋆

2}
with |P| = 2 such that the following hold:

1. For both instances, the single-policy L∞-concentrability coefficient for a minimax winner is
bounded: minπMW

CπMW
∞ ≤ 2.6

2. For any n ∈ N and any algorithm Alg which derives a policy π̂ from a dataset Dpref of n samples,
there exists an instance θ ∈ {θ1, θ2} such that πref incurs constant suboptimality:

min
Alg

max
i∈{1,2}

EDpref∼θi [DG(Alg(Dpref); θi)] ≥
1

8
,

where DG(π; θ) is the duality gap for policy π on instance θ.

This lower bound is inspired by similar results in the literature on offline RL in two-player zero-sum
Markov games (Cui and Du, 2022). However, the lower bound constructions in Cui and Du (2022)
cannot be directly applied as-is, because they do not satisfy the skew-symmetry property required
by the general preference alignment framework. Our lower bound highlights that even under skew-
symmetry, it is impossible to achieve single-policy concentrability for offline learning in two-player
zero-sum games.

6In general, the minimax winner may not be unique. We compete against the minimax winner with the best
possible single-policy concentrability coefficient.
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Algorithm 3 Iterative χPO for General Preferences

1: Input: labeled preference dataset Dpref , preference model class L, regularization coefficient β,
stepsize η, total number of iterations T .

2: Initialize: π1 = πref .
3: Learn a preference model ℓ̂ via least-squares regression:

ℓ̂ = argmin
ℓ∈L

∑
(x,a+,a−)∈Dpref

(ℓ(x, a+, a−)− 1)
2
.

4: Collect m samples Dx = {(x, a, b)} where each sample is drawn i.i.d. from x ∼ ρ, a ∼
πref(x), b ∼ πref(x).

5: for t = 1, · · · , T do
6: Sample bt ∼ πt(x) and let r̂t(x, a) = ℓ̂(x, a, bt) for all x ∈ X , a ∈ A.
7: Compute

πt+1 = argmin
π∈Π

∑
(x,a,b)∈Dx

(
clip4

(
fβ,η
π,πt(x, a, b)

)
− (r̂t(x, a)− r̂t(x, b))

)2
, (32)

where fβ,η
π,πt(x, a, b) is defined in Eq. (31).

8: Output: π̂ = unif({πt}Tt=1).

D.2 ITERATIVE χPO FOR GENERAL PREFERENCES

In spite of the hardness in the prequel, we now show that an iterative variant of χPO—based on
self-play—can learn a near-optimal minimax winner under the general preference model under a new
local coverage condition—a condition that is stronger than the single policy concentrability but much
weaker than global/all-policy concentrability and the notion of unilateral concentrability introduced
by Cui and Du (2022).

Our algorithm, Iterative χPO, is described in Algorithm 3, and consists of two main steps.

Preference model estimation via least squares regression on Dpref . We first (Line 3) learn a
preference model from the offline preference datasetDpref . We assume access to a preference function
class L which is realizable in the sense that ℓ⋆ ∈ L and where all ℓ ∈ L satisfy skew-symmetryc, and
we will estimate ℓ⋆ rather than P⋆. We perform least-squares regression on Dpref with L to learn ℓ⋆:

ℓ̂ = argmin
ℓ∈L

∑
(x,a+,a−)∈Dpref

(ℓ(x, a+, a−)− 1)
2
.

Policy optimization with iterative χPO update. Given the estimated model ℓ̂, we compute an
approximate minimax winner using an iterative regression scheme inspired by Gao et al. (2024). We
proceed in T iterations (Line 5), where at each iteration t, we define an iteration-dependent reward
function rt(x, a) based on the current policy πt as

rt(x, a) = Eb∼πt(x)[ℓ̂(x, a, b)], ∀x ∈ X , a ∈ A.

Then, for all π, π′ ∈ Π, we define a policy-dependent predictor fβ,η
π,π′(x, a, b), whose motivation will

be described in detail momentarily, as follows:

fβ,η
π,π′(x, a, b) :=

(
1 +

1

η

)
·
(
βϕ

(
π (a | x)
πref (a | x)

)
− βϕ

(
π (b | x)
πref (b | x)

))
− 1

η

(
βϕ

(
π′ (a | x)
πref (a | x)

)
− βϕ

(
π′ (b | x)
πref (b | x)

))
(31)

Using fβ,η
π,πt(x, a, b) as a policy-parameterized regression function, we (Line 7) compute the next

policy πt+1 by solving a least-squares regression problem in which the Bayes optimal solution is the
relative reward rt(x, a)− rt(x, b) for iteration t.
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Let us now explain the intuition behind the the predictor fβ,η
π,π′(x, a, b). Suppose that the regression

step in Line 7 learns a predictor that can perfectly model the relative reward, i.e.,

∀x, a, b, fβ,η
πt+1,πt(x, a, b) = rt(x, a)− rt(x, b),

In this case, we can show that the returned policy πt+1 is the optimal policy for the following mixed
χ2-regularized RL objective:

πt+1(x) = argmax
p∈∆(X )

{
Ea∼p

[
rt(x, a)

]
− βDfχmix

(p ∥πref(x))−
β

η
Bx(p, π

t)

}
, ∀x ∈ X , (33)

where Bx(p, π
t) is the Bregman divergence induced by the regularizer p 7→ Dfχmix

(p ∥πref(x)), i.e.,

Bx(p, q) := Dfχmix
(p ∥πref(x))−Dfχmix

(q ∥πref(x))−
〈
∇Dfχmix

(q ∥πref(x)), p− q
〉
, ∀x ∈ X .

Thus, the algorithm can be understood as running mirror descent on the iteration-dependent loss
function −rt, with p 7→ Dfχmix

(p ∥πref(x)) as a per-context regularizer. This technique draws
inspiration from Chang et al. (2024), in which the authors apply a similar regularized mirror descent
algorithm to learn the optimal policy for the reward-based setting. The motivation for using mixed-χ2

regularization is exactly the same as in χPO: we want to ensure that πt+1(a|x)
πref(a|x) ≤ 1 + 1

β , thereby
mitigating overoptimization.

D.3 THEORETICAL ANALYSIS OF ITERATIVE χPO

We now present our main theoretical guarantees for Iterative χPO. We begin by stating a number
of statistical assumptions. We first assume that the preference model class contains the ground truth
preference function ℓ⋆.

Assumption D.1 (Preference function realizability). The model class L satisfies ℓ⋆ ∈ L where ℓ⋆

is the ground truth preference function.

In addition, since Algorithm 3 iteratively applies an χPO update, we require that a policy realizability
assumption analogous to Assumption 3.1 holds for each of the sub-problems in Eq. (33). Concretely,
we make the following assumption.

Assumption D.2 (Policy realizability for general preferences). For any policy π ∈ Π and ℓ ∈ L, the
policy class Π contains the minimizer of the following regularized RL objective:

π(x; ℓ, π) := argmax
p∈∆(X )

{
Ea∼p,b∼π(x)[ℓ(x, a, b)]− βDfχmix

(p ∥πref(x))−
β

η
Bx(p, π)

}
, ∀x ∈ X .

Finally, we require that the implicit reward functions in Eq. (32) are bounded, analogous to
Assumption 3.2.

Assumption D.3 (Bounded implicit rewards for general preferences). For a parameter Vmax ≥ 2, it
holds that for all π, π′ ∈ Π, x ∈ X , and a, b ∈ A,∣∣∣fβ,η

π,π′(x, a, b)
∣∣∣ ≤ Vmax. (34)

Our main guarantee for Algorithm 3 is as follows.

Theorem D.2. Fix any δ ∈ (0, 1]. Suppose Algorithm 3 is invoked with T = mn
nV 2

max+m , β = 1√
T

, and
η = 1

T . Then under Assumption D.1, Assumption D.2 and Assumption D.3, we have that probability
at least 1− δ,

DG(π̂) ≲ min
C≥1

{
subopt(π̂, C) + C

(
Vmax log(|Π|/δ)√

m
+

log(|Π||L|/δ)√
n

)}
,

where subopt(π̂, C) := maxπ∈Π ℓ⋆(π, π̂) − maxπ∈ΠC
ℓ⋆(π, π̂) and ΠC := {π :

maxx∈X Dχ2(π(x) ∥ πref(x)) ≤ C}. In particular, if we define the unilateral concentrability
coefficient as

Cuni := max
π∈Π,x∈X ,a,b∈A

π(a | x)πMW(b | x)
πref(a | x)πref(b | x)

,

then the bound above implies that

DG(π̂) ≲ Cuni ·
(
Vmax log(|Π|/δ)√

m
+

log(|Π||L|/δ)√
n

)
.

30



Published as a conference paper at ICLR 2025

The first result gives a tradeoff between the statistical error and the approximation error subopt(π̂, C),
which is modulated by the parameter C. This tradeoff is analogous to, but more subtle, than the
one for χPO in the reward-based setting. In the reward-based setting, χPO has low regret to the best
policy covered πref . In the general preference setting, Algorithm 3 has small duality gap if, for any
policy, there is an approximate best response that is covered by πref (this implies that subopt(π̂, C)
is small for small C). Crucially, Algorithm 3 does not require that all policies are covered by πref ,
which is a distinctive feature of mixed χ2-regularization and reflects the algorithms robustness to
overoptimization.

The second result concerns the setting where all policies are covered by πref and is easier to interpret.
Indeed, if all π ∈ Π satisfy Dχ2(π ∥ πref) ≤ C⋆, then subopt(π̂, C⋆) = 0, which implies that we
can learn an ε-approximate minimizer using Õ(C⋆/ε2) samples. Thus, we obtain a guarantee based
on unilateral concentrability (Cui and Du, 2022), which is a stronger condition, i.e., we always
have maxπ Dχ2(π ∥ πref) ≤ Cuni. However, per the above discussion, the first part of Theorem D.2
is stronger than results based on unilateral concentrability and hints at a new notion of coverage
for general preferences. Lastly, we remark that the parameter Vmax only affects

√
1/m term in

Theorem D.2, so dependence on this parameter can be mitigated using unlabeled data.

Theorem D.2 is closely related to recent work of Ye et al. (2024), which uses pessimism to learn
a regularized minimax winner, and achieves polynomial sample complexity with a concentrability
assumption similar to Theorem D.2. However, there are two key differences. First, their learning
objective is the KL-regularized minimax winner, while we study the unregularized objective and use
χ2-regularization. More importantly, their theoretical algorithm is computationally inefficient as it
constructs an explicit confidence set for the preference model and performs max-min-style policy
optimization. In contrast, our algorithm only requires solving standard supervised learning problems.

E EXPERIMENTS IN OFFLINE LANGUAGE MODEL ALIGNMENT

E.1 TL;DR SUMMARIZATION

We perform preliminary evaluations of χPO for offline language model alignment on the
TL;DR dataset (Stiennon et al., 2020), using DPO as our comparison baseline. The refer-
ence policy πref is the Pythia-1b model (Biderman et al., 2023) pre-trained on SFT data
(cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr from Huang et al. (2022)), and perfor-
mance is measured via winrate against a baseline, as judged by GPT-4o. All parameters that are not
algorithm-specific, such as the learning rate, are shared by both χPO and DPO in order to ensure a fair
comparison (see Appendix E.2 for details).

In Table 1 we display the winrates of χPO and DPO over several choices of training epochs, as well
as regularization parameter β. The winrate corresponds to the final checkpoint learned by each
algorithm for each set of hyperparameters. We consider β = 0.05 and 1 epoch of training to be a
standard setup for DPO (Gao et al., 2024; Guo et al., 2024; Rafailov et al., 2024a), and, as we are
particularly concerned with regimes where overoptimization is of concern, we additionally analyze
performance when epochs are increased, and/or β is decreased (corresponding to less regularization).

Over all choices of β and epochs, χPO achieves a higher average winrate than DPO. While the
difference is not significant for β = 0.05 and 1 epoch, the performance gap grows significantly as
the number of epochs increases, demonstrating the robustness of χPO to overoptimization. Further,
while DPO degrades completely for β = 0.005, χPO is robust over two orders of magnitude of β,
reinforcing trends seen earlier in Figure 1 and the more favorable bias-overoptimization tradeoff from
our theoretical analysis.

In addition, χPO exhibits better performance and robustness longitudinally throughout training, as
shown in Appendix E.1. While DPO peaks early with high variance around 0.5 epochs and degrades
thereafter, χPO continues to improve smoothly then plateaus over the last epoch. Further, for the
same regularization parameter β, the χPO policy has significantly lower KL-divergence relative to
πref , demonstrating that the χ2-regularization is both a stronger regularizer and one that effectively
mitigates overoptimization.

E.2 EXPERIMENT DETAILS

Dataset and models. For training, we use trl-internal-testing/tldr-preference-trl-style,
with 92.9K train samples and 83.8K validation samples. The reference pol-
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Figure 4: (Left) TL;DR Summarization winrate recorded every 250 steps, over 2 epochs of train-
ing. Shaded area displays ±1 standard error over 3 seeds. At 1 epoch χPO already obtains better
performance, and continues to improve over the course of training, while DPO degrades over time.
(Right) KL divergence DKL(π̂ ∥πref) averaged over 2 of the seeds. For the same β, χPO constrains
the learned policy to be significantly closer to πref , thereby striking a better bias-variance tradeoff.

icy πref is the Pythia-1b model (Biderman et al., 2023) pre-trained on SFT data
(cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr from Huang et al. (2022)), and
performance is measured via winrate against a baseline, as judged by GPT-4o. All parameters that
are not algorithm-specific, such as the learning rate, are shared by both χPO and DPO in order to
ensure a fair comparison.

Training details. Our implementation of χPO is built upon the DPO trainer from Transformer
Reinforcement Learning (TRL) (von Werra et al., 2020). χPO comes with strong robustness and
theoretical properties, but the policy ratios can sometimes introduce instability in training. In practice,
we have observed that better stability and performance can be achieved by utilizing the (more general
form) link function ϕ̃(z) := exp

(
clip[−88,20](α · log z)

)
+ γ · log z in Algorithm 1, and performing

a small grid search over additional parameters α = { 14 , 1} and γ = {0.1, 1} for a fixed β.

We briefly discuss each parameter in turn. The mixing parameter γ controls the relative ratios of KL-
and χ2-regularization, our analysis in Appendix H.1 shows that Theorem 3.1 holds more generally
for γ ∈ (0, 1] (see Theorem H.1). Next, ignoring clipping, α ∈ (0, 1] in ϕ̃ implements regularization
with the (1 + α)-divergence (or Renyi divergence), which is an f -divergence that is stronger than
KL-regularization but weaker than χ2-regularization (Van Erven and Harremos, 2014), and also
carries single-policy concentrability guarantees (although with a slower-rate dependence on sample
size n). For example, α = 1

4 corresponds to the link function ϕ(z) = (z)1/4 + γ log z, which is
easier to optimize than the link function ϕ(z) = z + γ log z (corresponding to α = 1) induced by
χ2-regularization, given the potentially large magnitude of z = π

πref
. Though we do not write out the

analysis here, the methods used to prove the sample complexity of χPO (Theorem 3.1) can be used to
prove analogous guarantees for regularization with α-divergences, which will have slightly worse
statistical rates.

Lastly, we provide some additional explanation for the clipping operation. We observed that
torch.exp is prone to underflow when log π

πref
is very negative, and clipping the upper range

to 20 can help reduce numerical instabilities. Clipping in such a manner is supported by our analysis
in Proposition 4.1, which shows that π⋆

πref
≤ 1 + Rmax

β (though technically we do not know Rmax). The
parameters for all experiments are displayed in Table 2.

Generation details. For winrate evaluation, we use greedy, temperature 0, decoding. For computa-
tion of the KL divergence, we sample from the model with temperature 1. The maximum prompt
length is 512, and the maximum response length is 200. We use the standard generation prompt
“TL;DR:” (Gao et al., 2024).

Evaluation of performance. The performance of each algorithm is measured via win-
rate against responses in the SFT dataset, as measured by GPT-4o (global standard).
The winrate is computed on a subset of 512 prompts from the SFT validation set
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Table 2: Parameter settings in TL;DR summarizion

Algorithm Parameters
DPO batch size: 64

learning rate: 1e-6
scheduler: cosine
optimizer: adamw

χPO batch size: 64
clip range: [-88, 20]
learning rate: 1e-6
scheduler: cosine
optimizer: adamw

β = 0.05, 1 epoch α : 1.25, γ : 1.0
β = 0.05, 2 epochs α : 2.00, γ : 1.0
β = 0.05, 4 epochs α : 1.25, γ : 0.1
β = 0.005, all epochs α : 1.25, γ : 0.1

(trl-internal-testing/tldr-preference-sft-trl-style), and the order of the model and ref-
erence responses are randomized each round.

Part II

Proofs
F PRELIMINARIES

Recall that for a pair of probability measures P and Q with a common dominating measure ω,
Hellinger distance is defined via

D2
H(P,Q) =

∫ (√
dP
dω
−
√

dQ
dω

)2

dω. (35)

Lemma F.1 (MLE for conditional density estimation (e.g., Wong and Shen (1995); de Geer (2000);
Zhang (2006); Agarwal et al. (2020))). Consider a conditional density p⋆ : X → ∆(Y), where X is
the instance space and Y is the target space. Let D = {(xi, yi)}ni=1 be a dataset in which (xi, yi)
are drawn i.i.d. as xi ∼ ρ ∈ ∆(X ) and yi ∼ p⋆(y | x). Suppose we have a finite function class P
such that p⋆ ∈ P , where p(· | x) ∈ ∆(Y) for all p ∈ P and x ∈ X . Define the maximum likelihood
estimator

p̂ := argmax
p∈P

∑
(x,y)∈D

log p(y | x).

Then with probability at least 1− δ,

Ex∼ρ

[
D2

H(p̂(· | x), p⋆(· | x))
]
≤ 2 log(|P|δ−1)

n
.

G ANALYSIS OF χPO: PROOF SKETCH FOR THEOREM 3.1
In this section, we sketch the proof of the main guarantee for χPO, Theorem 3.1, with the full proof
deferred to Appendix H. A central object in the proof is the implicit reward model induced by the
χPO policy π̂, which we define via

r̂(x, a) := βϕ

(
π̂(a | x)
πref(a | x)

)
. (36)
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As we will show, this reward model is a natural bridge between χPO and the corresponding mixed
χ2-regularized RLHF objective in Section 3.1, and allows us to view χPO from a reward-based
perspective. In particular, note that if we analogously define an induced reward model classRΠ :=

{r(x, a) = βϕ
(

π(a|x)
πref(a|x)

)
: π ∈ Π}, then Line 2 of χPO can be viewed as performing maximum

likelihood estimation over this class (in the sense of Eq. (3)) under the Bradley-Terry model. Under
Assumption 3.1,RΠ realizes the true reward function r up to an action-independent shift. As a result,
if we define ∆r(x, a, b) := r(x, a)− r(x, b), then using a fairly standard generalization bound for
maximum likelihood estimation (e.g., Wong and Shen (1995); Zhang (2006); de Geer (2000); see
Lemma H.1), we can show that

ε2stat := Ex∼ρ,a∼πref ,b∼πref

[∣∣∣∆r̂(x, a, b)−∆r⋆(x, a, b)
∣∣∣2] ≤ O

(
Vmaxe

2Rmax · log(|Π|/δ)
n

)
. (37)

In other words, the estimated reward model r̂ is accurate under the action distribution induced by
πref . However, r̂ may still be inaccurate for policies that select different actions from πref , raising
concerns of overoptimization. To address this issue, we use the following lemma, which shows that
χ2-divergence bounds the extent to which the accuracy of a reward model r̂ trained under πref will
transfer to a downstream policy π of interest; this will motivate our use of χ2-regularization.

Lemma G.1 (Informal version of Lemma H.3). For any policy π : X → ∆(A), it holds that

Ex∼ρ,a∼π(·|x),b∼πref(·|x)

[∣∣∣∆r̂(x, a, b)−∆r⋆(x, a, b)
∣∣∣] ≲√(1 +Dχ2(π ∥ πref)) · ε2stat.

Going forward, let us abbreviate Eπ,πref
[·] = Ex∼ρ,a∼π(·|x),b∼πref(·|x)[·]. Let π⋆ be an arbitrary policy.

Noting that Cπ = 1 + 2Dχ2(π ∥ πref) and that

J(π⋆)− J(π̂) ≲ Eπ⋆,πref

[∣∣∣∆r̂(x, a, b)−∆r⋆(x, a, b)
∣∣∣]+ Eπ̂,πref

[∣∣∣∆r̂(x, a, b)−∆r⋆(x, a, b)
∣∣∣],

it follows immediately from Lemma G.1 that χPO obtains a crude guarantee scaling with all-policy
concentrability, i.e. J(π⋆) − J(π̂) ≲

√
(Cπ⋆ + Cπ̂)ε2stat ≤

√
(Cπ⋆ +maxπ∈Π Cπ)ε2stat. This

inequality is tight for non-pessimistic algorithms like DPO, which reflects their sensitivity to overop-
timization. To obtain the improved guarantee for χPO in Theorem 3.1, which scales only with
single-policy concentrability Cπ⋆

, the crux of the remaining proof will be to show that χPO implicitly
implements pessimism via mixed χ2-regularization. For this, we appeal to the following central
technical lemma, which we expect to find broader use.

Lemma G.2 (Informal version of Lemma H.2). Let f be a convex function with dom(f) = R+

that is differentiable over its domain. Given any parameter β > 0 and policy π̄ : X → ∆(A) with

π̄(a | x) ∈ dom(f ′) for all x, a, define the reward model r̄(x, a) = βf ′
(

π(a|x)
πref(a|x)

)
. Then

π̄ ∈ argmax
π

Eπ[r̄(x, a)]− β ·Df (π ∥πref).

Under Assumption 3.2 we have π̂ ∈ dom(f ′
χmix

). Then recalling that r̂(x, a) := βϕ
(

π̂(a|x)
πref(a|x)

)
=

βf ′
χmix

(
π̂(a|x)
πref(a|x)

)
and that fχmix is convex, Lemma G.2 implies that the policy π̂ produced by χPO

satisfies

π̂ ∈ argmax
π∈Π

Jχmix

β,r̂ (π) := Eπ[r̂]− βDχ2(π ∥ πref)− βDKL(π ∥πref). (38)

In other words,

The χPO policy π̂ optimizes the mixed χ2-regularized RLHF objective under its own implicit reward model.

This formally justifies the claim that χPO implicitly implements pessimism via χ2-regularization.
With this result in hand, we are now ready to prove Theorem 3.1. Let π⋆ be an arbitrary policy. Since
Jχmix

β,r̂ (π̂) ≥ Jχmix

β,r̂ (π
⋆) by Eq. (38), we can decompose the regret J(π⋆)− J(π̂) as

J(π⋆)− J(π̂) ≤ J(π⋆)− Jχmix

β,r̂ (π
⋆) + Jχmix

β,r̂ (π̂)− J(π̂)
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= J(π⋆)− J(πref)− Jχmix

β,r̂ (π
⋆) + Jχmix

β,r̂ (πref)︸ ︷︷ ︸
(I)

+ Jχmix

β,r̂ (π̂)− Jχmix

β,r̂ (πref)− J(π̂) + J(πref)︸ ︷︷ ︸
(II)

.

In the second line, we have added or subtracted the baselines J(πref) and Jχmix

β,r̂ (πref) to center
the objectives with the performance of the reference policy. Up to statistical errors, the first term
(I) corresponds to error from how much Jχmix

β,r̂ (π
⋆) underestimates the return of π⋆ (bias), and

the second term (II) corresponds to error from how much Jχmix

β,r̂ (π̂) overestimates the return of π̂
(overoptimization). As we will see shortly, these two sources of error are directly controlled (in
opposing ways) by the strength of the regularization parameter β in Eq. (38).

First, expanding the definition of Jχmix

β,r̂ (π
⋆) and centering the returns using the reference policies, we

have

(I) = J(π⋆)− Jχmix

β,r̂ (π
⋆)− J(πref) + Jχmix

β,r̂ (πref)

= Eπ⋆ [r⋆(x, a)]− Eπ⋆ [r̂(x, a)] + βDχ2(π⋆ ∥ πref) + βDKL(π
⋆ ∥πref)− Eπ̂[r

⋆(x, a)] + Eπref
[r̂(x, a)]

= Eπ⋆,πref
[∆r⋆(x, a, b)−∆r̂(x, a, b)] + βDχ2(π⋆ ∥ πref) + βDKL(π

⋆ ∥πref)

≤
√

(1 +Dχ2(π⋆ ∥ πref)) · ε2stat + β ·Dχ2(π⋆ ∥ πref)︸ ︷︷ ︸
bias

.

Above, we have used that DKL(π ∥πref) ≤ Dχ2(π ∥ πref) for any policy π, along with the bound on
reward estimation error from Lemma G.1. Next, expanding Jχmix

β,r̂ (π̂) and centering the returns in a
similar fashion,

(II) = Jχmix

β,r̂ (π̂)− J(π̂)− Jχmix

β,r̂ (πref) + J(πref)

= Eπ̂,πref
[∆r̂(x, a, b)−∆r⋆(x, a, b)]− βDχ2(π̂ ∥ πref)− βDKL(π̂ ∥πref)

≤
√

(1 +Dχ2(π̂ ∥ πref)) · ε2stat − β ·Dχ2(π̂ ∥ πref)

≲ εstat + β−1ε2stat︸ ︷︷ ︸
overoptimization error

.

Above, the first inequality uses DKL(π ∥πref) ≥ 0 and Lemma G.1, while the second inequality
uses AM-GM. Critically, by using χ2-regularization, we are able to cancel the on-policy error term√
(1 +Dχ2(π̂ ∥ πref)) · ε2stat that arises from change-of-measure, leading to a modest β−1ε2stat

penalty for overoptimization.

Combining these results, and recalling that Cπ = 1 + 2Dχ2(π ∥ πref), we conclude that

J(π⋆)− J(π̂) ≲
√
Cπ⋆ · ε2stat + β · Cπ

⋆︸ ︷︷ ︸
bias

+ β−1 · ε2stat︸ ︷︷ ︸
overoptimization error

.

The bias and overoptimization errors above arise from how well our chosen uncertainty quantifier,
βDχ2(π ∥ πref), accounts for the on-policy statistical error

√
(1 +Dχ2(π ∥ πref)) · ε2stat arising

from Lemma G.1; this is controlled by the magnitude of the regularization parameter β. When β
is too large, the uncertainty quantifier is overly pessimistic about the quality of the reward model r̂
under π⋆, which increases the bias of χPO. In contrast, the overoptimization error increases when β
is too small. In this regime, π̂ overfits to r̂ because the regularizer under-evaluates the statistical error
of the learned policy. In order to obtain tight statistical rates, the choice of regularization parameter
β must carefully balance its opposing effects on bias and overoptimization error. For a fixed π⋆,
choosing β ∝ (ε2stat/Cπ

⋆

)1/2 results in the second claim in Theorem 3.1.

H PROOFS FOR SECTION 3
This section is organized as follows. First, in Appendix H.1, we analyze a more general version of
χPO that mixes KL-regularization with χ2-regularization using a mixing parameter γ ∈ (0, 1], and
present its sample complexity guarantee in Theorem H.1. χPO is a special case with γ = 1, and
Appendix H.2 shows (with a one-line proof) that Theorem 3.1 follows directly from Theorem H.1
with this parameter choice.
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H.1 GENERAL VERSION OF THEOREM 3.1
As previously described at the end of Section 3.3, χPO can be applied in a more general form where
the KL-regularization is mixed with χ2-regularization using a weight parameter γ ∈ (0, 1]. In this
section, we analyze the sample complexity for this form of the algorithm, of which χPO is a special
case with γ = 1, which directly leads to the guarantee in Theorem 3.1.

Concretely, given regularization parameter β > 0 and weight parameter γ ∈ (0, 1], we aim to solve
the mixed χ2-regularized objective

argmax
π:X→∆(A)

Jχmix
β,γ (π) := Eπ[r

⋆(x, a)]− β ·Dχ2(π ∥ πref)− βγ ·DKL(π ∥πref). (39)

The regularization term Dχ2(π ∥ πref) + γ ·DKL(π ∥πref) = Dfχmix,γ
(π ∥πref) is an f -divergence

induced by the function fχmix,γ(z) :=
1
2 (z − 1)2 + γz log z. Correspondingly, we replace the link

function ϕ(·) in χPO with
ϕγ(z) := z + γ log(z),

and output the policy

π̂ ← argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log

[
σ

(
clip2Rmax

[
βϕγ

(
π(a+ | x)
πref(a+ | x)

)
− βϕγ

(
π(a− | x)
πref(a− | x)

)])]
.

(40)

To give a sample complexity guarantee for Eq. (40), we require that Π can express the optimal
regularized policy for the objective Jχmix

β,γ in Eq. (39). This generalizes Assumption 3.1 for χPO, which
corresponds to the special case where γ = 1.

Assumption H.1 (Policy realizability). The policy class Π satisfies π⋆
β,γ ∈ Π, where π⋆

β,γ is the
optimal policy under mixed χ2-regularization (Eq. (11)).

We also assert that, analogous to Assumption 3.2, the “implicit” reward models induced by the policy
class Π and the link function ϕγ have bounded range.

Assumption H.2 (Bounded implicit rewards). For a parameter Vmax ≥ Rmax, it holds that for all
π ∈ Π, x ∈ X , and a, b ∈ A,∣∣∣∣βϕγ

(
π(a | x)
πref(a | x)

)
− βϕγ

(
π(b | x)
πref(b | x)

)∣∣∣∣ ≤ Vmax. (41)

We now state the sample complexity guarantee for the policy learned in Eq. (40). The first bound
applies to general β > 0 and γ ∈ (0, 1], while in the second we obtain a tight statistical rate by
choosing the parameter β as a function of the comparator policy π⋆.

Theorem H.1 (General version of Theorem 3.1). Suppose Assumptions H.1 and H.2 hold for some
β > 0 and γ ∈ (0, 1]. With probability at least 1 − δ, the variant of χPO in Eq. (40) produces a
policy π̂ such that for all policies π⋆ simultaneously, we have

J(π⋆)− J(π̂) ≤ 32Vmaxe
2Rmax ·

√
2Cπ⋆ log(|Π|/δ)

n
+ β(1 + γ) · C

π⋆

2
+ β−1 · 256V

2
maxe

4Rmax log(|Π|/δ)
n

.

In particular, given any comparator policy π⋆, we can choose β = 32Vmaxe
2Rmax

√
2 log(|Π|/δ)

nCπ⋆ to
achieve

J(π⋆)− J(π̂) ≤ (64 + 4γ)Vmaxe
2Rmax ·

√
Cπ⋆ log(|Π|/δ)

n
.

The bias-overoptimization tradeoffs induced by the choice of β in Theorem H.1 are identical to
those for Theorem 3.1 (and described there). Let us briefly discuss the influence of γ on the sample
complexity. We first observe that choice of γ ∈ (0, 1] changes the bound by only a small multiplicative
factor, which implies that γ can be arbitrarily small as long as it is positive. For the analysis, this is
natural because the KL-divergence is dominated by the χ2-divergence, and, as discussed in Section 3.2,
KL-regularization is only needed to enable the DPO-style reparameterization trick for Eq. (40) (in
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particular, the χ2-RLHF algorithm in Appendix C, which does not require reparameterization, obtains
similar guarantees using pure χ2-regularization). It is worth noting, however, that the γ parameter
can implicitly influence the magnitude of Vmax, as well as the policy realizability condition. As such,
practical consequences of this hyperparameter choice may not be fully captured by Theorem H.1.

Proof of Theorem H.1. Recall that the link function ϕγ induces a correspondence between policies
in the class Π and the implicit reward functions they induce (or, equivalently, between policies and
the Bradley-Terry preference models they express). Our proof centers around the implicit reward
model induced by the learned policy π̂,

r̂(x, a) := β · ϕγ

(
π̂(a | x)
πref(a | x)

)
,

which will allow us to move between the χPO objective (Eq. (40)) and the RLHF objective (Eq. (39)).
In particular, we establish two key facts, which together show that Eq. (40) implicitly solves Eq. (39):

1. (Lemma H.3) The reward model r̂ is an accurate estimate of r⋆ on the distribution of πref . More-
over, we can transfer this guarantee to the distribution of any policy π by paying a multiplicative
(1 + 2Dχ2(π ∥ πref))-factor.

2. (Lemma H.2) π̂ maximizes the RLHF objective in Eq. (39) with reward model r̂, namely,
π̂ = argmax

π∈Π
Eπ[r̂(x, a)]− β ·Dχ2(π ∥ πref)− βγ ·DKL(π ∥πref). (42)

Establishing these relationships enables us to analyze the χPO policy π̂ defined in Eq. (40) through
the RLHF formulation in Eq. (42), allowing us to appeal to pessimism-based arguments to show that
χPO is insensitive to overoptimization error that might otherwise be encountered when learning a
policy from off-policy data.

Implicit reward model r̂. The χPO objective in Eq. (40) is equivalent to maximum likelihood
estimation with the Bradley-Terry preference model over the induced reward function class

RΠ :=

{
r(x, a) = β · ϕγ

(
π(a | x)
πref(a | x)

)
: π ∈ Π

}
.

Then, since π̂ is the maximizer in Eq. (40), we can equivalently write

r̂ = argmax
r∈RΠ

∑
(x,a+,a−)∈Dpref

log σ
(
clip2Rmax

[r(a+ | x)− r(a− | x)]
)
. (43)

The following lemma, which builds on a standard MLE generalization bound (Lemma F.1) bounds
the error of r̂ under the action distribution induced by πref . Recall that we use Eπ,π′ [·] as shorthand
for Ex∼ρ,a∼π(·|x),b∼π′(·|x)[·].
Lemma H.1. Suppose Assumption H.1 holds. Then with probability at least 1 − δ, the policy π̂
output by Eq. (40) satisfies

ε2stat =: Eπref ,πref

[(
clip2Rmax

[r̂(x, a)− r̂(x, b)]− clip2Rmax
[r⋆(x, a)− r⋆(x, b)]

)2] ≤ 128R2
maxe

4Rmax log(|Π|/δ)
n

.

Lemma H.1, along with all further supporting lemmas, is proven in the sequel. This result measures
the error of r̂ using the clipped differences of rewards for pairs of actions (x, a, b) drawn from πref .
Clipping the range of the implicit/explicit reward functions to 2Rmax ensures that the statistical error
does not depend on Vmax. One minor but important detail in the proof is showing that Assumption H.1
impliesRΠ includes the true reward function r⋆ up to an action-independent shift, so that the true
preference model is realizable.

Implicit RLHF policy optimization. Having established the accuracy of r̂, we now show that
Eq. (40) finds the optimal policy to the RLHF objective in Eq. (42) when r̂ is used as the reward
model, i.e.,

π̂ = argmax
π∈Π

Jχmix

β,γ,r̂(π) := Eπ[r̂(x, a)]− β ·Dχ2(π ∥ πref)− βγ ·DKL(π ∥πref). (44)

This is a direct consequence of the result in Lemma H.2, which shows that an analogous property
holds for general f -divergences. In particular, for any convex function f and policy π, the policy π is
itself the optimal solution to the f -divergence-regularized RLHF objective under the implicit reward
model induced by π with the link function f ′.
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Lemma H.2. Let f : (0,∞)→ R be a convex function with f(1) = 0. Further, f is differentiable
almost everywhere and 0 /∈ dom(f ′), where we define f ′(0) := limx↓0

f(x)−f(0)
x and f(0) :=

limx↓0 f(x). Given any parameter β > 0 and valid policy π̄ : X → ∆(A), with π(a | x) ∈ dom(f ′)

for all (x, a), let r̄(x, a) = βf ′
(

π̄(a|x)
πref(a|x)

)
be the implicit reward model. Then

π̄ ∈ argmax
π:X→∆(A)

Eπ[r̄(x, a)]− βDf (π ∥πref).

Since f ′
χmix,γ = ϕγ = x+ γ log x for γ > 0, clearly 0 ̸∈ dom(ϕγ). Further, under Assumption H.2,

π(a | x) > 0 for all π ∈ Π (otherwise Vmax would be undefined), thus π(a | x) ∈ dom(ϕγ) for all
(x, a). The claim in Eq. (44) then directly follows.

Estimation error translation. To proceed, we will use condition on Lemma H.1 and use the event
in this lemma to relate the estimated RLHF objective in Eq. (42) to the “true” RLHF objective that
replaces r̂ with r⋆. An immediate challenge is that the RLHF objective in Eq. (42) must evaluate
Eπ[r̂(x, a)] for all π ∈ Π, and accuracy under πref does not immediately imply that r̂ is accurate
for other policies. The following bound quantifies the effects of this distribution shift using the
χ2-divergence, and expresses how the estimation guarantee for r̂ in Lemma H.1 transfers to other
policies π of interest.

Lemma H.3. Suppose Assumption 3.1 holds. Then for any π : X → ∆(A), under the event in
Lemma H.1, we have

Eπ,πref
[|r̂(x, a)− r̂(x, b)− (r⋆(x, a)− r⋆(x, b))|] ≤ 2Vmax

Rmax
·
√(

1 + 2Dχ2(π ∥ πref)
)
· ε2stat,

where ε2stat is the off-policy estimation error defined in Lemma H.1.

It is worth noting that Lemma H.3 bounds the unclipped on-policy estimation error (on the LHS)
in terms of the clipped off-policy estimation error, and in making this translation we pay for Vmax.
As we will see shortly, working with the unclipped r̂ object is necessary for showing that Eq. (40)
implicitly optimizes Eq. (42).

Pessimism-based regret decomposition. Equipped with the preceding lemmas, we can now bound
the regret for χPO. We decompose the regret using the RLHF objective Jχmix

β,γ,r̂(π
⋆) defined in Eq. (44).

Fixing an arbitrary comparator policy π⋆, we have

J(π⋆)− J(π̂) = Eπ⋆ [r⋆(x, a)]− Eπ̂[r
⋆(x, a)]

= Eπ⋆ [r⋆(x, a)]− Jχmix

β,γ,r̂(π
⋆) + Jχmix

β,γ,r̂(π
⋆)− Eπ̂[r

⋆(x, a)]

≤ Eπ⋆ [r⋆(x, a)]− Jχmix

β,γ,r̂(π
⋆) + Jχmix

β,γ,r̂(π̂)− Eπ̂[r
⋆(x, a)],

where the last inequality uses the optimality of π̂ for Eq. (44).

Expanding the expression for Jχmix

β,γ,r̂, we can further bound this by

J(π⋆)− J(π̂) ≤ Eπ⋆ [r⋆(x, a)− r̂(x, a)] + βDχ2(π⋆ ∥ πref) + βγDKL(π
⋆ ∥πref)

+ Eπ̂[r̂(x, a)− r⋆(x, a)]− βDχ2(π̂ ∥ πref)− βγDKL(π̂ ∥πref)

≤ Eπ⋆ [r⋆(x, a)− r̂(x, a)] + β(1 + γ)Dχ2(π⋆ ∥ πref)

+ Eπ̂[r̂(x, a)− r⋆(x, a)]− βDχ2(π̂ ∥ πref). (45)

In the last line, we use the fact that 0 ≤ DKL(π ∥πref) ≤ Dχ2(π ∥ πref) for any policy π to
consolidate the f -divergence terms. Specifically, this allows us to eliminate DKL(π̂ ∥πref), and
combine DKL(π

⋆ ∥πref) and Dχ2(π⋆ ∥ πref).

In order to bound the reward estimation error terms in Eq. (45) using the guarantee we have previously
established (Lemma H.3), we first center them using the return under the reference policy:

Eπ⋆ [r⋆(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r⋆(x, a)]

= Eπ⋆,πref
[r⋆(x, a)− r̂(x, a)− r⋆(x, b) + r̂(x, b)] + Eπ̂,πref

[r̂(x, a)− r⋆(x, a)− r̂(x, b) + r⋆(x, b)]

= Eπ⋆,πref

[
∆⋆(x, a, b)− ∆̂(x, a, b)

]
+ Eπ̂,πref

[
∆̂(x, a, b)−∆⋆(x, a, b)

]
,
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where ∆⋆(x, a, b) := r⋆(x, a) − r⋆(x, b) and ∆̂(x, a, b) := r̂(x, a) − r̂(x, b). Substituting this
identity back into the regret decomposition in Eq. (45), we apply Lemma H.3 with ε2stat :=

128R2
maxe

4Rmax log(|Π|/δ)
n (from Lemma H.1) to obtain

J(π⋆)− J(π̂) ≤ Eπ⋆,πref

[
∆⋆(x, a, b)− ∆̂(x, a, b)

]
+ β(1 + γ)Dχ2(π⋆ ∥ πref)

+ Eπ̂,πref

[
∆̂(x, a, b)−∆⋆(x, a, b)

]
− βDχ2(π̂ ∥ πref)

≤ 2Vmax

Rmax

√(
1 + 2Dχ2(π⋆ ∥ πref)

)
· ε2stat + β(1 + γ)Dχ2(π⋆ ∥ πref)

+
2Vmax

Rmax

√(
1 + 2Dχ2(π̂ ∥ πref)

)
· ε2stat − βDχ2(π̂ ∥ πref)

=
2Vmax

Rmax

√
Cπ⋆ · ε2stat +

β(1 + γ)

2
·
(
Cπ

⋆

− 1
)
+

2Vmax

Rmax

√
Cπ̂ · ε2stat −

β

2
·
(
Cπ̂ − 1

)
≤ 2Vmax

Rmax

√
Cπ⋆ · ε2stat +

β(1 + γ)

2
· Cπ

⋆

+
2Vmax

Rmax

√
Cπ̂ · ε2stat −

β

2
· Cπ̂,

since Cπ = 1 + 2Dχ2(π ∥ πref), or equivalently Dχ2(π ∥ πref) = 1
2 (C

π − 1). Lastly, we use the
AM-GM inequality to upper bound

2Vmax

Rmax

√
Cπ̂ · ε2stat ≤

2V 2
maxε

2
stat

R2
maxβ

+
βCπ̂

2
,

allowing us to conclude that

J(π⋆)− J(π̂) ≤ 2Vmax

Rmax

√
Cπ⋆ · ε2stat +

β(1 + γ)

2
· Cπ

⋆

+ 2β−1 · V
2
maxε

2
stat

R2
max

.

Plugging in the expression for ε2stat results in the first statement of Theorem H.1.

Choosing β for tight rates. For the second statement, given a comparator policy π⋆, choosing

β = 2Vmax

Rmax

√
ε2stat
Cπ⋆ gives

J(π⋆)− J(π̂) ≤ 2Vmax

Rmax

√
Cπ⋆ · ε2stat + (1 + γ)

Vmax

Rmax

√
Cπ⋆ · ε2stat +

Vmax

Rmax

√
Cπ⋆ · ε2stat

= (4 + γ)
Vmax

Rmax

√
Cπ⋆ · ε2stat.

H.1.1 PROOFS FOR SUPPORTING LEMMAS

Proof of Lemma H.1. Recall the reward-based MLE objective in Eq. (43),

r̂ = argmax
r∈RΠ

∑
(x,a+,a−)∈Dpref

log σ
(
clip2Rmax

[r(x, a+)− r(x, a−)]
)
.

To leverage standard generalization bounds for MLE, we re-interpret this objective as maximum
likelihood over a class of preference distributions under the Bradley-Terry model. For a reward
function r, define for all y ∈ {+1,−1} and (x, a, b) ∈ X ×A×A its induced preference distribution:

Pr(y|x, a, b) = I{y = +1}·σ
(
clip2Rmax

[r(x, a)− r(x, b)]
)
+I{y = −1}·σ

(
clip2Rmax

[r(x, b)− r(x, a)]
)
.

Consider the a class of preference models induced by RΠ under this definition, PΠ :=
{Pr : r ∈ RΠ}. We can equivalently write that

Pr̂ = argmax
p∈PΠ

∑
(x,a+,a−)∈Dpref

log p(+1 | x, a+, a−),

or, interpreting each tuple (x, a+, a−) in Dpref as being induced by a tuple (x, a, ã, y) in which
(a+, a−) = (a, ã) if y = +1 and (a+, a−) = (ã, a) if y = −1,

Pr̂ = argmax
p∈PΠ

∑
(x,a,ã,y)∈Dpref

log p(y | x, a, ã).
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Next, we show that Pr⋆ ∈ PΠ, ie., the induced preference model class realizes the true distribution.
For π⋆

β,γ , define the reward model

r̃⋆(x, a) = ϕγ

(
π⋆
β,γ(a | x)
πref(a | x)

)
,

which is equivalent to r⋆ up to an action-independent shift, namely, the normalization factor λ⋆
β,γ

in Lemma H.4. Since π⋆
β,γ ∈ Π under Assumption H.1, we have r̃⋆ ∈ RΠ, and for all (x, a, b) ∈

X ×A×A, it holds that

clip2Rmax
[r̃⋆(x, a)− r̃⋆(x, b)] = clip2Rmax

[r⋆(x, a)− r⋆(x, b)] = r⋆(x, a)− r⋆(x, b).

The first equality is because action-independent shift between r̃⋆ and r⋆ is cancelled out when taking
the difference of rewards, and the second equality is because, by assumption, r⋆ ∈ [0, Rmax]. As a
result, the reward difference is bounded in the same range and never clipped.

From this we conclude that Pr̃⋆ = Pr⋆ ∈ PΠ, and realizability is satisfied. Further, it is easy to see
that PΠ contains only valid distributions. Thus, having satisfied the necessary preconditions, we can
invoke Lemma F.1, which guarantees that with probability at least 1− δ, we have

Eπref ,πref

[
D2

H(Pr̂(· | x, a, b), Pr⋆(· | x, a, b))
]
≤ 2 log(|Π|/δ)

n
.

To conclude, we extract a bound on reward estimation error from this Hellinger distance bound by
using Lemma H.5 with R = V = 2Rmax, giving

Eπref ,πref

[(
clip2Rmax

[r̂(x, a)− r̂(x, b)]− clip2Rmax
[r⋆(x, a)− r⋆(x, b)]

)2]
≤ 64e4RmaxR2

max · Eπref ,πref

[
D2

H(Pr̂(· | x, a, b), Pr⋆(· | x, a, b))
]

≤ 128e4RmaxR2
max ·

log(|Π|/δ)
n

.

Proof of Lemma H.2.

First we rewrite the objective as a minimization problem,

argmin
π

− Eπ[r̄(x, a)] + βDf (π ∥πref)

s.t. ρ(x)
∑
a

π(a | x) = ρ(x) ∀x,

ρ(x)π(a | x) ≥ 0 ∀x, a.

Here, π is the primal variable, and denote the dual variables as λ : X → R and α : X ×A → [0,∞),
which correspond to the first and second constraints, respectively. The Lagrangian form is then

L(π, λ, α) = −Eπ[r̄(x, a)] + βDf (π ∥πref) +
∑
x

ρ(x)λ(x)

(∑
a

π(a | x)− 1

)
−
∑
x

ρ(x)
∑
a

α(x, a)π(a | x).

Slater’s condition holds since π̄ itself is a strictly feasible solution, and the objective is convex in
π(a | x). Then if (π, λ, α) satisfy the KKT conditions, they are the optimal primal and dual variables,
which, overloading notation, we denote as (π⋆, λ⋆, α⋆).

We will demonstrate that setting π⋆ = π̄, λ⋆ = 0, and α⋆ = 0 satisfies the KKT conditions. First,
we observe that the proposed solutions are primal and dual feasible. Further, we have π̄ > 0 since
0 /∈ dom(f ′) and π̄(a | x) ∈ dom(f ′). As a result, ρ(x)α⋆(x, a)π(a | x) = 0 for all x, a, and
complementary slackness is satisfied. Lastly, for stationarity,

∂L(π, λ, α)
∂π(a | x)

= ρ(x)

(
−r̄(x, a) + βf ′

(
π̄(a | x)
πref(a | x)

)
+ λ⋆(x)− α⋆(x, a)

)
= ρ(x)

(
−r̄(x, a) + βf ′

(
π̄(a | x)
πref(a | x)

))
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= ρ(x)

(
−βf ′

(
π̄(a | x)
πref(a | x)

)
+ βf ′

(
π̄(a | x)
πref(a | x)

))
= 0,

where in the second line we substitute λ⋆ = 0 and α⋆ = 0, and in third line we have utilized the
definition of r̄(x, a) from the lemma statement.

Proof of Lemma H.3. For a pair of policies π, π′ and p ≥ 1, we define the norm ∥·∥p,π×π′ :=

(Eρ,a∼π,b∼π′ [| · |p])1/p. In addition, for notational compactness, we abbreviate ∆̂(x, a, b) :=
r̂(x, a)− r̂(x, b), and ∆⋆(x, a, b) := r⋆(x, a)− r⋆(x, b).

Recall that our goal is to bound the (unclipped) reward estimation error under π using the (clipped)
reward estimation error πref . We begin by decomposing∥∥∥∆⋆ − ∆̂

∥∥∥
1,π×πref

=
∥∥∥∆⋆ − clip2Rmax

[
∆̂
]
+ clip2Rmax

[
∆̂
]
− ∆̂

∥∥∥
1,π×πref

≤
∥∥∥∆⋆ − clip2Rmax

[
∆̂
]∥∥∥

1,π×πref

+
∥∥∥(clip2Rmax

[
∆̂
]
− ∆̂

)
· I
[
clip2Rmax

[
∆̂
]
̸= ∆̂

]∥∥∥
1,π×πref

≤
∥∥∥∆⋆ − clip2Rmax

[
∆̂
]∥∥∥

1,π×πref︸ ︷︷ ︸
(I) clipped on-policy estimation error

+Vmax · Pπ,πref

(
clip2Rmax

[
∆̂
]
̸= ∆̂

)
︸ ︷︷ ︸

(II) bias from clipping

.

This splits our bound into two terms. The first is the on-policy error of the clipped reward differences,
and can be directly bounded by Lemma H.1 using a standard change-of-measure argument. The
second expresses the error of translating the clipped estimates to the unclipped ones in our target
bound. For the first term, using Cauchy-Schwarz gives

(I) =
∥∥∥∆⋆ − clip2Rmax

[
∆̂
]∥∥∥

1,π×πref

≤
√
Cπ ·

∥∥∥∆⋆ − clip2Rmax

[
∆̂
]∥∥∥2

2,πref×πref

=

√
Cπ ·

∥∥∥clip2Rmax
[∆⋆]− clip2Rmax

[
∆̂
]∥∥∥2

2,πref×πref

,

where the last equality uses that ∆⋆ ∈ [−Rmax, Rmax].

Next, for the second term, we again use Cauchy-Schwarz to change measure onto the offline
distribution,

(II) = Vmax · Pπ×πref

(
clip2Rmax

[
∆̂
]
̸= ∆̂

)
≤ Vmax ·

√
Cπ · Pπref ,πref

(
clip2Rmax

[
∆̂
]
̸= ∆̂

)
.

Further, using Markov’s inequality along with the fact that ∆⋆ ∈ [−Rmax, Rmax],

Pπref ,πref

(
clip2Rmax

[
∆̂
]
̸= ∆̂

)
≤ Pπref ,πref

(∣∣∣clip2Rmax

[
∆̂
]∣∣∣ = 2Rmax

)
≤ Pπref ,πref

(∣∣∣clip2Rmax

[
∆̂
]
− clip2Rmax

[∆⋆]
∣∣∣ ≥ Rmax

)
≤ 1

R2
max

∥∥∥clip2Rmax

[
∆̂
]
− clip2Rmax

[∆⋆]
∥∥∥2
2,πref×πref

.

Combining inequalities, we obtain∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

≤
(
1 +

Vmax

Rmax

)√
Cπ ·

∥∥∥clip2Rmax

[
∆̂
]
− clip2Rmax

[∆⋆]
∥∥∥2
2,πref×πref

=

(
1 +

Vmax

Rmax

)√(
1 + 2Dχ2(π ∥ πref)

)
· ε2stat

≤ 2Vmax

Rmax

√(
1 + 2Dχ2(π ∥ πref)

)
· ε2stat.

In the second line we have used Cπ = 1+2Dχ2(π ∥ πref) and the definition of ε2stat from Lemma H.1,
and in the last line we use Vmax ≥ Rmax.
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Lemma H.4. When πref(a | x) > 0 for all x ∈ X , the optimal policy π⋆
β,γ for Eq. (39) satisfies

r⋆(x, a) = ϕγ

(
π⋆
β,γ(a | x)
πref(a | x)

)
+ λ⋆

β,γ(x),

where λ⋆
β,γ is an optimal dual variable that normalizes π⋆

β,γ .

Proof of Lemma H.4. It is easy to see that strong duality holds for Eq. (39), since it is convex and
strictly feasible (e.g., for the policy πref ). Thus, the KKT conditions give the optimal primal and dual
solutions.

Since Eq. (39) is constrained optimization problem (over valid policies), we first define the dual
variables. Below, λ : X → R corresponds to the equality constraint that

∑
a π(a | x) = 1 for all

x ∈ X , and α : X × A → R≥0 corresponds to the inequality constraint that π(a | x) ≥ 0 for all
(x, a) ∈ X ×A. After converting Eq. (39) from maximization to minimization, we write Eq. (39) in
Lagrangian form as

L(π, λ, α) = −Eπ[r
⋆(x, a)] + βDfχmix,γ

(π ∥πref) +
∑
x

ρ(x)λ(x)

(∑
a

π(a | x)− 1

)
−
∑
x

ρ(x)
∑
a

α(x, a)π(a | x),

since multiplying each of the solutions by ρ(x) does not affect the value of the saddle-point problem.
We denote the optimal primal variable as π⋆

β,γ , and optimal dual variables as (λ⋆
β,γ , α

⋆
β,γ).

From stationarity, the optimal primal and dual variables satisfy

r⋆(x, a) = ϕγ

(
π⋆
β,γ(a | x)
πref(a | x)

)
+ λ⋆

β,γ(x)− α⋆
β,γ(x, a).

Next, for a function g let g−1 denote its left inverse, such that g−1(g(x)) = x. Because ϕγ is injective
(see proof of Lemma H.2), it has a left inverse (ϕγ)

−1, and we can write

π⋆
β,γ(a | x) = πref(a | x) · (ϕγ)

−1
(
r⋆(x, a)− λ⋆

β,γ(x) + α⋆
β,γ(x, a)

)
.

Because ϕγ(z) = z + γ log(z), 0 /∈ dom(ϕγ), and therefore 0 /∈ range((ϕγ)
−1). Then from the

above expression, we observe that π⋆
β,γ(a | x) > 0 since πref(a | x) > 0. It immediately follows that

α⋆
β,γ(x, a) = 0 for all (x, a) from complementary slackness, which states that the optimal solutions

satisfy π⋆
β,γ(a | x) · α⋆

β,γ(x, a) = 0 for all x, a. This allows us to reduce the expression for r⋆ to the
stated result, that is,

r⋆(x, a) = ϕγ

(
π⋆
β,γ(a | x)
πref(a | x)

)
+ λ⋆

β,γ(x).

Lemma H.5. For z ∈ [−R,R] and z′ ∈ [−V, V ] where V ≥ R ≥ 1, we have

|z − z′| ≤ 4e2RV · |σ(z)− σ(z′)| .
Additionally, if we define the distribution Pz(y) = I{y = +1}σ(z) + I{y = −1}σ(−z) for
y ∈ {−1,+1} and define Pz′ analogously, then

|z − z′| ≤ 4e2RV ·DH(Pz, Pz′).

Proof of Lemma H.5. We begin with the first statement, and write

|z − z′| = |z − z′|
|σ(z)− σ(z′)|

· |σ(z)− σ(z′)|.

Since σ(z′) ∈ (0, 1) but z′ ∈ [−V, V ], it can be observed that the slope |z−z′|
|σ(z)−σ(z′)| is smallest where

z ≈ z′, and increases as we move away from this region in either direction. To better intuit the
scaling of the slope in terms of V , we expand |σ(z)− σ(z′)| in the denominator to write

|z − z′| = |z − z′|(1 + ez)(1 + ez
′
)

|ez − ez′ |
· |σ(z)− σ(z′)|.

42



Published as a conference paper at ICLR 2025

This indicates that the slope should scale linearly (not exponentially) with the range of z′. For
example, as z′ →∞, (1 + ez

′
)/|ez − ez

′ | = O(1).

To make this intuition precise, we split into two cases. First, whenever ez
′ ≥ eR+z+1

eR−1
or ez

′ ≤ eR+z−1
eR+1

(this constitutes the range where “z′ ≈ z”), we have 1 + ez
′ ≤ eR|ez − ez

′ |. Then in this region,

|z − z′| = |z − z′|(1 + ez)(1 + ez
′
)

|ez − ez′ |
|σ(z)− σ(z′)| ≤ 2V (1 + eR)eR · |σ(z)− σ(z′)|.

Next, for ez
′ ∈ [ e

R+z−1
eR+1

, eR+z+1
eR−1

], we apply the mean value theorem. Since σ′(x) = ex(1 + e−x)−2,

|z − z′|
|σ(z)− σ(z′)|

≤ sup
z̃∈[min{z,z′},max{z,z′}]

ez̃(1 + e−z̃)−2

≤ sup
ez̃∈

[
eR+z−1

eR+1
, e

R+z+1

eR−1

] ez̃(1 + e−z̃)−2

≤ 4eR.

In the second inequality, we use the fact that ez
′
, ez ∈ [ e

R+z−1
eR+1

, eR+z+1
eR−1

], and in the third inequality
we use the fact that σ′(x) is increasing in x, and that |z| ≤ R. Combining the inequalities for the two
regions of ez

′
gives the result.

For the second statement, we use the fact that

2D2
H(Pz, Pz′) ≥

∑
y∈{+1,−1}

(Pz(y)− Pz′(y))2

Pz(y) + Pz′(y)
.

As a result, ∑
y∈{+1,−1}

(Pz(y)− Pz′(y))2 ≤ 4D2
H(Pz, Pz′).

Since Pz(y) = 1− Pz(−y) and Pz(+1) = σ(z),∑
y∈{+1,−1}

(Pz(y)− Pz′(y))2 = 2(σ(z)− σ(z′))2,

and therefore (σ(z)− σ(z′))2 ≤ 2D2
H(Pz, Pz′). The result follows from taking the square root of

both sides and combining with the first statement in the lemma.

H.2 PROOF OF THEOREM 3.1
Proof of Theorem 3.1. The policy optimization in Line 2 of Algorithm 1 is a special case of Eq. (40)
with γ = 1. As a result, Theorem 3.1 follows directly from Theorem H.1 when instantiated with
γ = 1.

H.3 PROOF OF COROLLARY 3.1
Proof of Corollary 3.1. Recall that for any β > 0, Theorem 3.1 (Eq. (13)) with the policy class ΠR
ensures that with probability at least 1− δ, for all π⋆,

J(π⋆)− J(π̂) ≤ c1Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n
+ c2βCπ

⋆

+ c3β
−1R

2
maxe

4Rmax log(|R|/δ)
n

(46)

for absolute constants c1, c2, c3 > 0. Let us invoke this result with

β⋆ = argmax
β>0

max
π⋆

{
J(π⋆)− c1Rmaxe

2Rmax ·
√
Cπ⋆ log(|R|/δ)

n
− c2βCπ

⋆

− c3β
−1R

2
maxe

4Rmax log(|R|/δ)
n

}
.
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Then Eq. (46) implies that

max
π⋆

{
J(π⋆)− c1Rmaxe

2Rmax ·
√
Cπ⋆ log(|R|/δ)

n
− c2β

⋆Cπ
⋆

− c3(β
⋆)−1R

2
maxe

4Rmax log(|R|/δ)
n

}
− J(π̂) ≤ 0,

so that by the definition of β⋆,

max
β>0

max
π⋆

{
J(π⋆)− c1Rmaxe

2Rmax ·
√
Cπ⋆ log(|R|/δ)

n
− c2βCπ

⋆

− c3β
−1R

2
maxe

4Rmax log(|R|/δ)
n

}
− J(π̂) ≤ 0,

or equivalently

J(π⋆)− J(π̂) ≤ c1Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n
+ c2βCπ

⋆

+ c3β
−1R

2
maxe

4Rmax log(|R|/δ)
n

∀π⋆,∀β > 0.

It follows that for all comparator policies π⋆, we have

J(π⋆)− J(π̂) ≲ Rmaxe
2Rmax ·

√
Cπ⋆ log(|R|/δ)

n

by choosing β ∝
√

R2
maxe

4Rmax log(|R|/δ)
Cπ⋆n

above.

I PROOFS FOR APPENDIX B
Proof of Proposition B.1. To see that ϕ and ϕ−1 are strictly increasing, we note that ϕ′(z) =
1 + 1

z > 0 for all z > 0.

We now bound the inverse function ϕ−1. We will use the fact that z 7→ W0(z) is increasing over
z ≥ 0 throughout. We first consider the regime where z ≥ 1. Since W0(·) is increasing, we have that
ϕ−1(z) = W0(e

z) ≤ z if and only if ez ≤ zez , which is clearly true for z ≥ 1. On the other hand,
for c > 0 we have ϕ−1(z) = W0(e

z) ≥ c · z if and only if ez ≥ czecz; setting c = 1/2 is clearly
sufficient.

We now consider the regime where z ≤ 1. Here, we see that ϕ−1(z) = W (ez) ≤ ez if and only if
ez ≤ ezee

z

, which holds for all z ∈ R. On the other hand have that ϕ−1(z) = W (ez) ≥ e−eez if
and only if ez ≥ e−eezee

−eez . Since z ≤ 1, we have

e−eezee
−eez ≤ e−eezee

z

≤ e−eezee = ez,

which establishes the result.

Proof of Proposition B.2. Recall that the optimal policy satisfies

r(x, a) = βϕ

(
π⋆

β(a | x)
πref(a | x)

)
+ Zβ,r(x), (47)

where Zβ,r(x) is a normalization constant chosen such that π⋆
β(· | x) is a valid probability distribution.

We begin by bounding Zβ,r(x). We will use that r(x, a) ∈ [0, Rmax]. Let x ∈ X be fixed. By
averaging Eq. (47) over a ∼ π⋆

β(x), we have

Ea∼π⋆
β(x)

[r(x, a)] = β Ea∼π⋆
β(x)

[
π⋆

β(a | x)
πref(a | x)

]
+ βDKL

(
π⋆

β ∥πref

)
+ Zβ,r(x) ≥ Zβ,r(x),

so Zβ,r(x) ≤ Rmax. On the other hand, averaging over a ∼ πref(x), we have

Ea∼π⋆
β(x)

[r(x, a)] = β Ea∼πref(x)

[
π⋆

β(a | x)
πref(a | x)

]
− βDKL

(
πref ∥π⋆

β

)
+ Zβ,r(x)
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≤ β + Zβ,r(x),

so Zβ,r(x) ≥ − β.

Having established that Zβ,r(x) ∈ [−β,Rmax], we will use that ϕ
(

π⋆
β(a|x)

πref(a|x)

)
= β−1(r(x, a) −

Zβ,r(x)), so that our bound on Zβ,r implies that

−β−1Rmax ≤ ϕ

(
π⋆

β(a | x)
πref(a | x)

)
≤ 1 + β−1Rmax,

or, since ϕ−1 is increasing,

e−e · e−β−1Rmax ≤ ϕ−1(−β−1Rmax) ≤
π⋆

β(a | x)
πref(a | x)

≤ ϕ−1(1 + β−1Rmax) ≤ 1 + β−1Rmax,

where we have used that ϕ−1(z) ≤ z for z ≥ 1 and ϕ−1(z) ≥ ez−e for z ≤ 1 (by Proposition B.1).

J PROOFS FOR APPENDIX D
J.1 PROOF OF THEOREM D.1
Proof of Theorem D.1. We consider a family of instances in which there is a single context (prompt)
X = {∅} and four actions (responses) A = {a, b, c, d}. We consider the reference policy πref given
by

πref(a
′ | x) =

{
1
C , if a′ = a or a′ = b,
1− 2

C , if a′ = c.

We consider a preference model class P =
{
P1,P2

}
in which

Pi(a0 ≻ a1 | x) = (1 + ℓi(x, a0, a1))/2

for a function ℓi(x, a0, a1) ∈ [−1,+1]. The functions ℓ1 and ℓ2 are defined as follows (we omit the
dependence on x, since there is a single context):

ℓ1(a0, a1) = ℓ2(a0, a1) = 0, ∀a0 ∈ A, a1 ∈ {a, b, c},
ℓ1(a, d) = 0, ℓ1(b, d) = −1, ℓ1(c, d) = 1

ℓ2(a, d) = −1, ℓ2(b, d) = 0, ℓ2(c, d) = −1.
Note that both functions are skew-symmetric in the sense that ℓ(x, a′, a′) = 0 and ℓ(x, a0, a1) +
ℓ(x, a1, a0) = 0 for all x ∈ X and a0, a1 ∈ A.

It is straightforward to see that the deterministic policies π1
MW(x) = a and π2

MW(x) = b are minimax
winners for ℓ1 and ℓ2 respectively. Observe that for both policies, we have

Cπ
1
MW∞ = Cπ

2
MW∞ = C.

To proceed, we compute duality gap an arbitrary policy π under P1 and P2. Let DG(π;P) denote
the value of DG(π) when P is the true preference model. Then we have:

max
q∈∆(A)

l(q, π) = max
q∈∆(A)

−q(b)π(d) + q(c)π(d) + q(d)π(b)− q(d)π(c),

min
q∈∆(A)

l(π, q) = min
q∈∆(A)

−π(b)q(d) + π(c)q(d) + π(d)q(b)− π(d)q(c),

= − max
q∈∆(A)

−q(b)π(d) + q(c)π(d) + q(d)π(b)− q(d)π(c).

Therefore we know
DG(π;P1) = 2 max

q∈∆(A)
q(d)(π(b)− π(c))− π(d)(q(b)− q(c))

Following similar computations, we have
DG(π;P2) = 2 max

q∈∆(A)
q(d)(π(a) + π(c))− π(d)(q(a) + q(c)).

We aim to show that for all policies π, DG(π;P1) + DG(π;P2) ≥ 1
2 . To do so, we consider two

cases. Going forward, we will use that DG(π;Pi) ≥ 0.
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Case (1): π(a) + π(c) ≥ 1
2

. In this case, we have DG(π;P2) ≥ 1
2 , and thus DG(π;P1) +

DG(π;P2) ≥ 1
2 .

Case (2): π(a) + π(c) < 1
4

. In this case, let θ := π(b) − π(c). Then we have DG(π;P1) ≥
2max{θ, π(d)}. We observe that θ + π(d) = π(b) + π(d)− π(c) > 3

4 −
1
4 = 1

2 . This implies that
DG(π;P1) > 1

2 , and thus DG(π;P1) + DG(π;P2) ≥ 1
2 .

Having established that all π satisfy DG(π;P1) + DG(π;P2) ≥ 1
2 we can apply the Le Cam two-

point method (specifically, the variant based on the Bretagnolle-Huber inequality (e.g., Theorem 14.2
in Lattimore and Szepesvári (2020))), which leads to the following inequality

inf
Alg

sup
P∈P

EDpref
[DG(π̂;P)] ≥ 1

8
exp

(
−n ·DKL

(
ρ⊗ πref ⊗ πref ⊗ P1 ∥ ρ⊗ πref ⊗ πref ⊗ P2

))
.

It can be observed that DKL

(
ρ⊗ πref ⊗ πref ⊗ P1 ∥ ρ⊗ πref ⊗ πref ⊗ P2

)
= 0, since ℓ1(a0, a1) =

ℓ2(a0, a1) = 0 for all a0, a1 ∈ {a, b, c}, and πref is supported on {a, b, c}. We conclude that any
policy derived from Dpref must have

E
[
DG(π̂;Pi)

]
≥ 1

8
for some i.

J.2 PROOF OF THEOREM D.2
Proof of Theorem D.2. Let π̃ be the global best response of π̂:

π̃ = argmax
π∈Π

Ex∼ρ,a∼π(x),b∼π̂(x) [ℓ
⋆(x, a, b)] ,

and let π̃C be the best response within ΠC of π̂ where C ≥ 1 (recall that ΠC := {π :
maxx∈X Dχ2(π(x) ∥ πref(x)) ≤ C} denotes the set of policies with bounded χ2-divergence w.r.t.
πref ):

π̃C = argmax
π∈ΠC

Ex∼ρ,a∼π(x),b∼π̂(x) [ℓ
⋆(x, a, b)] .

Recall that rt(x, a) := Eb∼πt(x)[ℓ̂(x, a, b)]. Then we know

ℓ⋆(π̃, π̂) =subopt(π̂, C) +
1

T

T∑
t=1

(
r̂t(π̃C)− r̂t(πt)

)
︸ ︷︷ ︸

(1)

+
1

T

T∑
t=1

(
ℓ⋆(π̃C , π

t)− ℓ̂(π̃C , π
t)
)

︸ ︷︷ ︸
(2)

+
1

T

T∑
t=1

(rt(π̃C)− r̂t(π̃C))︸ ︷︷ ︸
(3)

+
1

T

T∑
t=1

(r̂t(πt)− rt(πt))︸ ︷︷ ︸
(4)

, (48)

where r(π) := Ex∼ρ,a∼π(x)[r(x, a)]. The decomposition utilizes the fact that rt(πt) = 0 and
rt(π̃C) = ℓ̂(π̃C , π

t). This implies that we only need to bound term (1)(2)(3)(4) in Eq. (48) to upper
bound the gap of π̂.

Bounding term (1). Let gx(p) to denote the mixed divergence βDfχmix
(p(x) ∥πref(x)). Then we

have the following guarantee on regularized policy mirror descent:

Lemma J.1. For any C ≥ 0, we have for all policy π ∈ ΠC that

1

T

T∑
t=1

(
r̂t(π)− r̂t(πt)

)
≤2βC

ηT
+ 2βC − 1

T

T+1∑
t=1

Ex∼ρ[gx(π
t)]

+
η

2β
+

1

T

T∑
t=1

Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉]
,

where Gt(π, x, a) := β
(
(1 + 1

η )ϕ
(

π(a|x)
πref(a|x)

)
− 1

ηϕ
(

πt(a|x)
πref(a|x)

))
for all π ∈ Π, x ∈ X , a ∈ A.
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To simplify writing, we use πt+1 to denote the minimizer of the following regularized RL objective:

πt+1(x) := arg min
p∈∆(X )

〈
−r̂t(x, ·), p

〉
+ βDfχmix

(p ∥πref(x)) +
β

η
Bx(p, π

t), ∀x ∈ X .

Then Assumption D.2 indicates that πt+1 ∈ Π for all t ∈ [T ]. In addition, by introducing Lagrangian
multipliers into the above optimization problem and following similar arguments in the proof of
Lemma H.4, we know

fβ,η
πt+1,πt(x, a, b)− (r̂t(x, a)− r̂t(x, b)) = 0, ∀x ∈ X , a, b ∈ A. (49)

Recall that by definition fβ,η
π,πt(x, a, b) = Gt(π, x, a) − Gt(π, x, b) for all policies π ∈ Π. This

implies that we have

Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉]
=Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πref(x)

〉]
+ Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), πref(x)− πt+1(x)

〉]
=(fβ,η

πt+1,πt − fβ,η
πt+1,πt)(ρ, π, πref)︸ ︷︷ ︸
(5)

+(fβ,η
πt+1,πt − fβ,η

πt+1,πt)(ρ, π
t+1, πref)︸ ︷︷ ︸

(6)

,

where we use f(ρ, π, π′) to denote the expectation Ex∼ρ,a∼π(x),b∼π′(x)[f(x, a, b)] and the last step
utilizes Eq. (49). Therefore, to bound term (1), we need to bound term (5) and (6) respectively. To
simplify writing, we define L(π, π′, π′′) as follows:

L(π, π′, π′′) := Ex∼ρ,a∼πref(x),b∼πref(x)

[(
clip4(f

β,η
π,π′′(x, a, b))− clip4(f

β,η
π′,π′′(x, a, b))

)2]
,

Note that we have the following guarantee of least squares regression from the literature (Lemma 15
in Song et al. (2022))

Lemma J.2 (least squares regression). Let {(yi, zi)}Ki=1 be a dataset of K points where each point
are independently sampled from yi ∼ µ and zi ∼ p(·|yi) := h∗(yi) + εi. LetH : Y → [−R,R] be a
real valued functions where h∗ ∈ H and R > 0. Then if {εi}Ki=1 are independent random variables
such that E[zi|yi] = h∗(yi), the least squares solution ĥ = argminh∈H

∑K
i=1(h(yi)− zi)

2 satisfies
with probability at least 1− δ that

Ex∼µ[(ĥ(y)− h∗(y))2] ≲
R2 log(|H|/δ)

K
.

The proof of the above lemma is omitted. Applying Lemma J.2 to the least sqaures solution πt+1, we
have the following concentration lemma:

Lemma J.3 (concentration in optimization). Suppose Assumption D.2 and Assumption D.3 hold.
Then with probability at least 1− δ/4, we have for all policy t ∈ [T ] that

L(πt+1, πt+1, πt) ≤ Ccon log(|Π|/δ)
m

:= ε2md,

where Ccon > 0 is a universal constant.

In the following discussion, we use E1 to denote the event in Lemma J.3. Then under E1, by following
the same arguments in the proof of Lemma H.3, we have the following bound on ∥fβ,η

πt+1,πt −
fβ,η
πt+1,πt∥1,π×πref

:

∥fβ,η
πt+1,πt − fβ,η

πt+1,πt∥1,π×πref
≤ Vmax

√(
1 + 2Dχ2(π ∥ πref)

)
ε2md, ∀π ∈ Π, t ∈ [T ]. (50)

Therefore, with Eq. (50) we know that conditioned on E1, for any policy π ∈ ΠC we have

(5) ≤ Vmax

√
3Cε2md, (6) ≤ Vmax

√(
1 + 2Dχ2(πt+1 ∥ πref)

)
ε2md ≤

V 2
maxε

2
md

β
+

1

2
Ex∼ρ[gx(π

t+1)] + Vmaxεmd,
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where we use AM-GM inequality in the last step, the definition of gx(π) :=
βDfχmix

(π(·|x) ∥πref(·|x)), and Dfχmix
(p(x) ∥πref(x)) ≥ Dχ2(p(x) ∥ πref(x)) since KL is non-

negative

In summary, conditioned on E1, we have

(1) ≤2βC

ηT
+ 2βC − 1

2T

T+1∑
t=1

Ex∼ρ[gx(π
t)] +

η

2β
+ Vmax

√
4Cε2md +

V 2
maxε

2
md

β
. (51)

Bounding term (2). From Cauchy-Schwartz’s inequality, we have

ℓ⋆(π̃C , π
t)− ℓ̂(π̃C , π

t)

≤
√
Ex∼ρ,a∼πref(x),b∼πref(x)[(ℓ

⋆(x, a, b)− ℓ̂(x, a, b))2]
(
1 + 2Dχ2(ρ⊗ π̃C ⊗ πt ∥ ρ⊗ πref ⊗ πref)

)
,

where ρ⊗ π1 ⊗ π2 denotes the joint distribution of (x, a, b) where x ∼ ρ, a ∼ π1(x), b ∼ π2(x) for
all π1, π2 ∈ Π. Applying the guarantee of least squares regression (Lemma J.2) to the least squares
solution ℓ̂, we have under Assumption D.1, with probability at least 1 − δ/4, the following event
holds:

Ex∼ρ,y0∼πref(x),y1∼πref(x)

[(
ℓ̂(x, y0, y1)− ℓ⋆(x, y0, y1)

)2]
≤ O

(
ln(|L|/δ)

n

)
:= ε2general. (52)

Denote the event in Eq. (52) by E2. On the other hand, we can obtain that:

1 + 2Dχ2

(
ρ⊗ π̃C ⊗ πt ∥ ρ⊗ πref ⊗ πref

)
=
∑
x

ρ(x)
∑
a

(π̃C(a|x))2

πref(a|x)
∑
b

(πt(b|x))2

πref(b|x)

=
∑
x

ρ(x)
(
1 + 2Dχ2(π̃C(x) ∥ πref(x))

) (
1 + 2Dχ2

(
πt(x) ∥ πref(x)

))
≤ 6C

(
Ex∼ρ

[
Dχ2

(
πt(x) ∥ πref(x)

)]
+ 1
)

where the last step is due to π̃C ∈ ΠC . Therefore, conditioned on E2, we have

ℓ⋆(π̃C , π
t)− ℓ̂(π̃, πt) ≤

√
6CEx∼ρ

[
Dχ2(πt(x) ∥ πref(x))

]
ε2general +

√
6Cε2general

≤ 1

2
Ex∼ρ[gx(π

t)] +
3Cε2general

β
+
√
6Cε2general.

In summary, we have

1

T

T∑
t=1

ℓ⋆(π̃C , π
t)− ℓ̂(π̃, πt) ≤ 1

2T

T∑
t=1

Ex∼ρ[gx(π
t)] +

3Cε2general
β

+
√
6Cε2general. (53)

Bounding term (3). Recall that r̂t(x, a) = ℓ̂(x, a, bt) where bt ∼ πt(x) is an unbiased estimator
of rt. Fix any policy π ∈ Π, then from Azuma-Hoeffding’s inequality, we have with probability at
least 1− δ′ that ∣∣∣∣∣

T∑
t=1

r̂t(π)−
T∑

t=1

rt(π)

∣∣∣∣∣ ≲√T log(1/δ′).

By union bound, with probability at least 1− δ/4 we have that for all π ∈ Π:∣∣∣∣∣
T∑

t=1

r̂t(π)−
T∑

t=1

rt(π)

∣∣∣∣∣ ≲√T log(|Π|/δ).

Therefore, specifically for π̃C , we have

(3) ≲

√
log(|Π|/δ)

T
. (54)
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Bounding term (4). From Azuma-Hoeffding’s inequality, we have with probability at least 1− δ/4
that ∣∣∣∣∣

T∑
t=1

r̂t(πt)−
T∑

t=1

rt(πt)

∣∣∣∣∣ ≲√T log(1/δ′).

Therefore, we have

(4) ≲

√
log(1/δ)

T
. (55)

Putting everything together. Substituting Eq. (51)(53)(54)(55) into (48), we have with probability
at least 1− δ that

ℓ⋆(π̃, π̂) ≲ subopt(π̂, C) +
Cβ

ηT
+ Cβ +

η

β
+ Vmax

√
Cε2md +

V 2
maxε

2
md

2β

+
Cε2general

β
+
√
Cε2general +

√
log |Π|

δ

T
.

By selecting

T =
mn

nV 2
max +m

, β =
1√
T
, η =

1

T
,

we have with probability at least 1− δ that

ℓ⋆(π̃, π̂) ≲ subopt(π̂, C) + C

(
Vmax log(|Π|/δ)√

m
+

log(|Π||L|/δ)√
n

)
Note that due to the skew symmetry of ℓ⋆, we have:

min
π∈Π

Ex∼ρ,a∼π̂(x),b∼π(x) [ℓ
⋆(x, a, b)] = −max

π∈Π
Ex∼ρ,a∼π(x),b∼π̂(x) [ℓ

⋆(x, a, b)] = −ℓ⋆(π̃, π̂).

This implies that DG(π̂) ≤ 2ℓ⋆(π̃, π̂), which concludes our proof.

J.3 PROOFS FOR SUPPORTING LEMMAS

Proof of Lemma J.1. First for all t ∈ [T ], s ∈ S and any policy π ∈ ΠC , we have〈
ηr̂t(x), π(x)− πt(x)

〉
+ ηgx(π

t)− ηgx(π)

=
〈
ηr̂t(x)− (1 + η)∇gx(πt+1) +∇gx(πt), π(x)− πt+1(x)

〉
+
〈
∇gx(πt+1)−∇gx(πt), π(x)− πt+1(x)

〉︸ ︷︷ ︸
(7)

+
〈
ηr̂t(x), πt+1(x)− πt(x)

〉︸ ︷︷ ︸
(8)

+
〈
η∇gx(πt+1), π(x)− πt+1(x)

〉
+ ηgx(π

t)− ηgx(π)︸ ︷︷ ︸
(9)

,

Note that we have〈
ηr̂t(x)− (1 + η)∇gx(πt+1) +∇gx(πt), π(x)− πt+1(x)

〉
= η

〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉
Next we bound the term (7)(8)(9) respectively.

Bounding term (7). Note that we have the following three point lemma:

Lemma J.4 (three point lemma). For any p1, p2, p3 : X 7→ ∆(Y), we have for all x ∈ X
1

β
⟨∇gx(p1)−∇gx(p2), p3(x)− p1(x)⟩ = Bx(p3, p2)−Bx(p3, p1)−Bx(p1, p2).

Proof. By definition, we know
βBx(p, p

′) = gx(p)− gx(p
′)− ⟨∇gx(p′), p− p′⟩.

Substitute the definition into Lemma J.4 and we can prove the lemma.
From Lemma J.4, we can rewrite (7) as follows:

(7) = β
(
Bx(π, π

t)−Bx(π, π
t+1)−Bx(π

t+1, πt)
)
.
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Bounding term (8). From Cauchy-Schwartz inequality, we have

(8) ≤
∑
a∈A

β(πt+1(a|x)− πt(a|x))2

2πref(a|x)
+

πref(a|x)η2(r̂t(x, a))2

2β
≤ βBx(π

t+1, πt) +
η2

2β
,

where the last step comes from the definition of Bx.

Bounding term (9). Since gx is convex, we know〈
η∇gx(πt+1), π − πt+1

〉
≤ ηgx(π)− ηgx(π

t+1).

This implies that

(3) ≤ η
(
gx(π

t)− gx(π
t+1)

)
.

In summary, for all t ∈ [T ], s ∈ S and any policy π ∈ ΠC , we have〈
ηr̂t(x), π(x)− πt(x)

〉
+ ηgx(π

t)− ηgx(π) ≤ β
(
Bx(π, π

t)−Bx(π, π
t+1)

)
+ η

(
gx(π

t)− gx(π
t+1)

)
+

η2

2β
+ η

〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉
.

This implies that for any policy π ∈ ΠC :

T∑
t=1

(
r̂t(π)− r̂t(πt)

)
≤TEx∼ρ[gx(π)]−

T+1∑
t=1

Ex∼ρ[gx(π
t)] +

β

η
Ex∼ρ

[
Bx(π, π

1)
]
+

ηT

2β

+

T∑
t=1

Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉]
≤2TCβ −

T+1∑
t=1

Ex∼ρ[gx(π
t)] +

2Cβ

η
+

ηT

2β

+

T∑
t=1

Ex∼ρ

[〈
r̂t(x, ·)−Gt(πt+1, x, ·), π(x)− πt+1(x)

〉]
Here the last step uses the fact that Bx(·, πref) =

1
β gx(·) and π ∈ ΠC . This concludes our proof.

Proof of Lemma J.3. Let L̂(π, π′, π′′) denote the empirical squared loss:

L̂(π, π′, π′′) :=
∑

(x,a,b)

(
clip4(f

β,η
π,π′′(x, a, b))− clip4(f

β,η
π′,π′′(x, a, b))

)2
.

Fix any π′, π′′ ∈ Π and consider the following LSR problems:

π(π′, π′′) := argmin
π∈Π

L̂(π, π′, π′′).

Then from Lemma J.2, we know with probability at least 1− δ′ that

L(π(π′, π′′), π′, π′′) ≲
log(|Π|/δ′)

M
.

Therefore, by union bound, we know with probability at least 1− δ′ that for all π′, π′′ ∈ Π:

L(π(π′, π′′), π′, π′′) ≲
log(|Π|/δ′)

M
.

The proof is concluded by noticing that πt+1 = argminπ∈Π L̂(π, πt+1, πt) under Assump-
tion D.2.
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K PROOFS FOR APPENDIX C
The section contains the proofs for the main guarantee χ2-RLHF in Appendix C (Theorem C.1). We
first prove two results, Theorem K.1 and Corollary K.1, which correspond to exact (i.e., including
precise constants) versions of the two statements in Theorem C.1. We also analyze χ2-RLHF with
η = 0 in Corollary K.2.

Throughout this section, we make use of the following η-smoothed version of the L1 concentrability
coefficient:

Cπη := Eπ

[
π(a | x)

πref(a | x) + ηπ(a | x)

]
.

It is easy to see that for any η ≥ 0 we have Cπη ≤ Cπ , as well as Cπη ≤ η−1.

Theorem K.1 (General regret bound for Algorithm 2). Suppose Assumption C.1 and Assumption C.2
hold for parameters β > 0 and η ∈

[
0, β

8Rmax

]
. Then with probability at least 1 − δ, the policy π̂

produced by χ2-RLHF (Algorithm 2) satisfies

J(π⋆)− J(π̂) ≤ 2
√
Cπ⋆

η · ε2stat + 2β · Cπ
⋆

η + 4β−1 · ε2stat

+ 4β ·
(
min

{
Cπ

⋆

∞ , η−1
}
+min

{
max
π∈Π
Cπ∞, η−1

})
ε2x + 2Rmaxεx.

where ε2stat =
32R2

maxe
4Rmax log(3|R|/δ)

n and εx =
√

log(3|Π|/δ)
2nx

.

The following results are immediate consequences of Theorem K.1.

Corollary K.1 (Smoothed χ2-regularization). Given π⋆, let η = β
8Rmax

and β =

2
√

32R2
maxe

4Rmax log(3|R|/δ)
nCπ⋆ . Then under the preconditions of Theorem K.1, with probability at least

1− δ, the policy π̂ produced by χ2-RLHF (Algorithm 2) satisfies

J(π⋆)− J(π̂) ≤ 20Rmaxe
2Rmax

√
2Cπ⋆ log(3|R|/δ)

n
+Rmax

√
2 log(3|Π|/δ)

nx
+

32Rmax log(3|Π|/δ)
nx

.

Corollary K.2 (Non-smoothed χ2-regularization). Given π⋆, let η = 0 and β =

2
√

32R2
maxe

4Rmax log(3|R|/δ)
nCπ⋆ . Then under the preconditions of Theorem K.1, with probability at least

1− δ, the policy π̂ produced by χ2-RLHF (Algorithm 2) satisfies

J(π⋆)− J(π̂) ≤ 20Rmaxe
2Rmax

√
2Cπ⋆ log(3|R|/δ)

n
+Rmax

√
2 log(3|Π|/δ)

nx

+ 32

(
Cπ

⋆

∞ +max
π∈Π
Cπ∞
)
· log(3|Π|/δ)

nx
·
√

2 log(3|R|/δ)
n

.

Proof of Theorem K.1. The proof follows largely the same lines of analyses as the proof of
Theorem H.1. One difference is that in Algorithm 2, we approximate the RLHF objective using
contexts are sampled from Dx, so we require additional concentration arguments to show that the
empirical objective approximates its population counterpart.

Basic concentration results. We begin by stating the two concentration inequalities, which, given
the reward model r̂ produced in Eq. (26), bound the error between Ĵ r̂

β,η and its the population version
J r̂
β,η .

We will handle the return and regularization terms separately, which will later allow us to obtain
tighter bounds. Define

Ĵ(π) :=
1

nx

∑
x∈Dx

Eπ[r̂(x, a) | x],
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and

Ĉπη (π) :=
1

nx

∑
x∈Dx

Eπ

[∑
a

π2(a | x)
πref(a | x) + ηπ(a | x)

| x

]
,

so that Ĵ r̂
β,η(π) = Ĵ(π)− βĈπη (π).

Fix δ′ ∈ (0, 1], which we will specify at the end of this proof. Since maxx Eπ[r̂(x, a) | x] ≤ Rmax, a
straightforward application of Hoeffding’s inequality guarantees that with probability at most 1− δ′,
for all π ∈ Π we have that∣∣∣Ĵ(π)− Eπ[r̂(x, a)]

∣∣∣ ≤ Rmax

√
log(2|Π|/δ′)

2nx
. (56)

Next, we consider the regularization term. Since
∑

a
π2(a|x)

πref(a|x)+ηπ(a|x) ≤ min{Cπ∞, η−1} for any
x ∈ X , we use Bernstein’s inequality to derive the following result.

Lemma K.1. With probability at least 1− δ, for any π ∈ Π, we have∣∣∣Ĉπη − Cπη ∣∣∣ ≤ Cπ2 +
2min{Cπ∞, η−1} log(2|Π|/δ)

nx
.

Define εx :=
√

log(2|Π|/δ′)
2nx

. The above lemma implies that for all π ∈ Π, we have

Ĉπη ≤
3Cπ

2
+ 4min{Cπ∞, η−1} · ε2x, and Ĉπη ≥

Cπ

2
− 4min{Cπ∞, η−1} · ε2x.

Together with Eq. (56), this implies that for all π ∈ Π,

Ĵ r̂
β,η(π) = Ĵ(π)− βĈπη ≤ Eπ[r̂(x, a)]−

βCπη
2

+ 4βmin{Cπ∞, η−1}ε2x +Rmaxεx, (57)

and

Ĵ r̂
β,η(π) = Ĵ(π)− βĈπη ≥ Eπ[r̂(x, a)]−

3βCπη
2
− 4βmin{Cπ∞, η−1}ε2x −Rmaxεx. (58)

Estimation error bounds. Next, we state the following off- and on-policy reward estimation error
bounds for the reward model r̂, analogous to Lemma H.1 and Lemma H.3 for χPO.

Lemma K.2. Suppose Assumption C.1 holds. Then with probability at least 1− δ, the reward model
r̂ learned in Eq. (26) satisfies

ε2stat =: Eπref ,πref

[
((r̂(x, a)− r̂(x, b))− (r⋆(x, a)− r⋆(x, b)))

2
]
≤ 32R2

maxe
4Rmax log(|Π|/δ)

n
.

Lemma K.3. Under the event in Lemma K.2, we have that for all π : X → ∆(A),

Eπ,πref
[|(r̂(x, a)− r̂(x, b))− (r⋆(x, a)− r⋆(x, b))|] ≤ 2

√
Cπη ε2stat + 2CπηRmaxη,

where ε2stat is defined in Lemma K.2.

Regret decomposition. Equipped with these concentration and estimation error bounds, we now
bound the regret of Algorithm 2 using a pessimism-based analysis similar to the proof of Theorem H.1.
Condition on the events in Eq. (56), Lemma K.1, and Lemma K.2, which hold together with probability
at least 1− 3δ′. We decompose the regret of π̂ using Ĵ r̂

β,η , then leverage the inequalities in Eq. (57)
and Eq. (58):

J(π⋆)− J(π̂) = J(π⋆)− Ĵ r̂
β,η(π

⋆) + Ĵ r̂
β,η(π

⋆)− J(π̂)

≤ J(π⋆)− Ĵ r̂
β,η(π

⋆) + Ĵ r̂
β,η(π̂)− J(π̂)
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≤ J(π⋆)− Eπ⋆ [r̂(x, a)] +
3βCπ⋆

η

2
+ 4βmin{Cπ

⋆

∞ , η−1}ε2x +Rmaxεx

+ Eπ̂[r̂(x, a)]−
βCπ̂η
2

+ 4βmin{Cπ̂∞, η−1}ε2x +Rmaxεx − J(π̂)

= Eπ⋆,πref
[∆⋆(x, a, b)− ∆̂(x, a, b)] +

3βCπ⋆

η

2
+ Eπ̂,πref

[∆̂(x, a, b)−∆⋆(x, a, b)]−
βCπ̂η
2

+ 4βε2x

(
min{Cπ

⋆

∞ , η−1}+min{Cπ̂∞, η−1}
)
+ 2Rmaxεx.

In the last line above, we have introduced the notation ∆⋆(x, a, b) = r⋆(x, a) − r⋆(x, b) and
∆̂(x, a, b) = r̂(x, a) − r̂(x, b), and centered the returns. Next, applying Lemma K.3 to bound the
reward estimation error above, we have

J(π⋆)− J(π̂) ≤ 2
√
Cπ⋆

η ε2stat + 2ηRmaxCπ
⋆

η +
3βCπ⋆

η

2

+ 2
√
Cπ̂η ε2stat + 2ηRmaxCπ̂η −

βCπ̂η
2

+ 4βε2x

(
min{Cπ

⋆

∞ , η−1}+min{Cπ̂∞, η−1}
)
+ 2Rmaxεx.

Applying the AM-GM inequality to 2
√
Cπ̂η ε2stat for η ∈

[
0, β

4Rmax

]
, we have

2
√
Cπ̂η ε2stat =

√
(β − 4ηRmax)Cπ̂η ·

4ε2stat
(β − 4ηRmax)

≤
βCπ̂η
2
− 2ηRmaxCπ̂η +

2ε2stat
β − 4ηRmax

≤
βCπ̂η
2
− 2ηRmaxCπ̂η +

4ε2stat
β

,

where in the last line we use the fact that η ≤ β
8Rmax

so 4ηRmax ≤ β
2 . Then plugging this back into

our regret decomposition cancels out the Cπ̂η terms to give

J(π⋆)− J(π̂) ≤ 2
√
Cπ⋆

η ε2stat + 2ηRmaxCπ
⋆

η +
3βCπ⋆

η

2
+

4ε2stat
β

+ 4βε2x

(
min{Cπ

⋆

∞ , η−1}+min{Cπ̂∞, η−1}
)
+ 2Rmaxεx

≤ 2
√
Cπ⋆

η ε2stat + 2βCπ
⋆

η +
4ε2stat
β

+ 4βε2x

(
min{Cπ

⋆

∞ , η−1}+min{Cπ̂∞, η−1}
)
+ 2Rmaxεx,

where in the last line we consolidate Cπ⋆

η terms by again using 4ηRmax ≤ β
2 . Plugging in δ′ = δ/3

and the values for ε2stat and εx results in the theorem statement.

Proof of Corollary K.1. When η = β
8Rmax

, Theorem K.1 states that

J(π⋆)− J(π̂) ≤ 2
√
Cπ⋆

η ε2stat + 2βCπ
⋆

η +
4ε2stat
β

+ 4βε2x ·
(
min

{
Cπ

⋆

∞ , η−1
}
+min

{
max
π∈Π
Cπ∞, η−1

})
+ 2Rmaxεx

≤ 2
√
Cπ⋆

η ε2stat + 2βCπ
⋆

η +
4ε2stat
β

+ 8βε2x · η−1 + 2Rmaxεx

= 2
√
Cπ⋆

η ε2stat + 2βCπ
⋆

η +
4ε2stat
β

+ 64Rmaxε
2
x + 2Rmaxεx.
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Setting β = 2
√

ε2stat
Cπ⋆ , we obtain

J(π⋆)− J(π̂) ≤ 5
√
Cπ⋆

η ε2stat + 64Rmaxε
2
x + 2Rmaxεx.

Proof of Corollary K.2. When η = 0, Theorem K.1 states that

J(π⋆)− J(π̂) ≤ 2
√
Cπ⋆ε2stat + 2βCπ

⋆

+
4ε2stat
β

+ 4βε2x ·
(
Cπ

⋆

∞ +max
π∈Π
Cπ∞
)
+ 2Rmaxεx

Setting β = 2
√

ε2stat
Cπ⋆ , we obtain

J(π⋆)− J(π̂) ≤ 5
√
Cπ⋆ε2stat + 8εstatε

2
x ·
(
Cπ

⋆

∞ +max
π∈Π
Cπ∞
)
+ 2Rmaxεx.

Proof of Lemma K.2. We use similar reasoning and notation to the proof of Lemma H.1. Since
r⋆ ∈ R under Assumption C.1, Lemma F.1 guarantees that with probability at least 1− δ we have

Eπref ,πref

[
D2

H(Pr̂(· | x, a, b), Pr⋆(· | x, a, b))
]
≤ 2 log(|R|/δ)

n
.

Since |r(x, a)− r(x, b)| ≤ Rmax for all r ∈ R under Assumption C.1, we then apply Lemma H.5
with R = V = Rmax.

Eπref ,πref

[
(r̂(x, a)− r̂(x, b)− (r⋆(x, a)− r⋆(x, b)))

2
]

≤ 16e4RmaxR2
max · Eπref ,πref

[
D2

H(Pr̂(· | x, a, b), Pr⋆(· | x, a, b))
]

≤ 32e4RmaxR2
max ·

log(|R|/δ)
n

.

Proof of Lemma K.3. Abbreviate ∆⋆(x, a, b) = r⋆(x, a) − r⋆(x, b), and ∆̂(x, a, b) =
r̂(x, a) − r̂(x, b). For a pair of policies π, π′ and p ≥ 1, we define the norm ∥·∥p,π×π′ :=

(Eρ,a∼π,b∼π′ [| · |p])1/p, so that Eπ,πref

[∣∣∣∆⋆(x, a, b)− ∆̂(x, a, b)
∣∣∣] = ∥∥∥∆⋆ − ∆̂

∥∥∥
1,π×πref

. Then via

Cauchy-Schwarz,

∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

≤

√√√√√Eρ

∑
a,b

π2(a | x)π2
ref(b | x)

(πref(a | x) + ηπ(a | x))πref(b | x)



·

√√√√√Eρ

∑
a,b

(πref(a | x) + ηπ(a | x))πref(b | x)
(
∆⋆(x, a, b)− ∆̂(x, a, b)

)2
=

√
Cπη ·

(∥∥∥∆⋆ − ∆̂
∥∥∥2
2,πref×πref

+ η
∥∥∥∆⋆ − ∆̂

∥∥∥2
2,π×πref

)
≤
√
Cπη ·

∥∥∥∆⋆ − ∆̂
∥∥∥2
2,πref×πref

+

√
2ηRmaxCπη ·

∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

.

Applying the AM-GM inequality to the second term, we obtain∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

≤
√
Cπη ·

∥∥∥∆⋆ − ∆̂
∥∥∥2
2,πref×πref

+ ηRmaxCπη +
1

2

∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

.
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Rearranging, ∥∥∥∆⋆ − ∆̂
∥∥∥
1,π×πref

≤ 2

√
Cπη ·

∥∥∥∆⋆ − ∆̂
∥∥∥2
2,πref×πref

+ 2ηRmaxCπη .
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