A APPENDIX

Table 1: Taxonomy of victim detectors

Methods	Views			- Backbone	scales of supervision		
	RGB	Noise	Fusion	- васкоопе	pixel	edge	image
SPAN (Hu et al. (2020))	+	SRM filter, BayarConv2D	early fusion (feature concatenation)	WiderVGG	+	-	-
MVSS-Net (Chen et al. (2021))	+	BayarConv2D	late fusion (dual attention)	FCN	+	+	+
IF-OSN (Wu et al. (2022))	-	SE-U-Net	-	DNN	+	-	-
TruFor (Guillaro et al. (2023))	+	DnCNN	early fusion (cross modal fusion)	Transformer	+	-	-
MMFusion-IML (Triaridis & Mezaris (2024))	+	SRM filter, BayarConv2D, Noiseprint++	early fusion (cross modal fusion)	CNN	+	-	-
EITLNet (Guo et al. (2024))	+	CW-HPF	late fusion (feature concatenation)	Transformer	+	-	-

Figure 1: Illustration of effects of different N and T on image content. Different N and T result in different refined image contents. Overall, greater N leads to less original content preserved, while larger T generates more harmonious images.

Figure 2: Texture and quality comparisons between different anti-forensics methods. GUIDE generates content-specific details compatible with authentic regions.

Figure 3: Comparison of anti-forensics performance on different detectors with their localization maps. As compared to other diffusion based method, *Diff-cf* and *Diff-cfg*, GUIDE more effectively fools image anti-forensics, while TRM enhances such performance.

REFERENCES

Xinru Chen, Chengbo Dong, Jiaqi Ji, juan Cao, and Xirong Li. Image manipulation detection by multi-view multi-scale supervision. In *ICCV*, 2021.

Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, and Luisa Verdoliva. Trufor: Leveraging all-round clues for trustworthy image forgery detection and localization. In *CVPR*, 2023.

Kun Guo, Haochen Zhu, and Gang Cao. Effective image tampering localization via enhanced transformer and co-attention fusion. In *ICASSP*, 2024.

Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak Chaudhuri, Zhenheng Yang, and Ram Nevatia. Span: Spatial pyramid attention network for image manipulation localization. In *ECCV*, 2020.

Konstantinos Triaridis and Vasileios Mezaris. Exploring multi-modal fusion for image manipulation detection and localization. In *MMM*, 2024.

Haiwei Wu, Jiantao Zhou, Jinyu Tian, and Jun Liu. Robust image forgery detection over online social network shared images. In *CVPR*, 2022.