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Abstract1

One of the most critical operations in graph neural networks (GNNs) is the aggre-2

gation operation, which aims to extract information from neighbors of the target3

node. Several convolution methods have been proposed, such as standard graph4

convolution (GCN), graph attention (GAT), and message passing (MPNN). In this5

study, we propose an aggregation method called Multi-Mask Aggregators (MMA),6

where the model learns a weighted mask for each aggregator before collecting7

neighboring messages. MMA draws similarities with the GAT and MPNN but has8

some theoretical and practical advantages. Intuitively, our framework is not limited9

by the number of heads from GAT and has more discriminative than an MPNN.10

The performance of MMA was compared with the well-known baseline methods in11

both node classification and graph regression tasks on widely-used benchmarking12

datasets, and it has shown improved performance.13

1 Introduction14

Graph Neural Networks (GNNs) have attracted great interest in recent years due to their performance15

and the ability to extract complex information [1–4]. One of the most critical operations in graph16

neural networks is the aggregation operation, where the aim is iteratively exploiting information17

from the neighbors of a target node to update its latent representation. [2, 5]. Several different18

aggregators were used, such as mean, sum, max, min, and long short-term memory (LSTM), to19

extract more meaningful information from the neighbors of a particular node. [4], [5]. According to20

[6], an ideal learnable and flexible aggregation should have the following conditions: 1) permutation21

invariant [7]; 2) adaptive to deal with various neighborhood information [3] [8]; 3) explainable22

learned representations concerning the predictions and robustness to the noise [9] 4) discriminative to23

graph structures [5].24

Several methods have been proposed in the graph neural network area in recent years that use different25

aggregators. For example, Graph Attention Network (GAT) borrows the idea of attention mechanisms26

that perform aggregations by assigning different weights to different neighbors [3]. However, it is27

not adaptive to deal with various neighborhood information at the feature level since all individual28

features are considered equally [3] [8]. Learnable graph convolutional layer (LGCL) method applies29

convolution operation in the aggregation process by assigning different weights to different features30

[8].LGCL can deal with different neighborhood information; however, there might be loss information31

on graphs during the selections since it breaks the original correspondence between node features32

by selecting the d-largest feature values from the neighboring nodes [3] [8]. Dehmamy et al. [10]33

empirically showed that using multiple aggregators (i.e., mean, max, and normalized mean) improves34

the performance of GNNs on the task of graph moments. Principal Neighbourhood Aggregation35

(PNA) method theoretically formalized this observation. The authors demonstrated that using a single36

type of aggregator is insufficient to extract enough information from neighboring nodes which causes37

limited learning abilities and expressive power [11].38

A mask aggregator uses an auxiliary model such as multi-layer perceptrons (MLPs), which has no39

requirement for size or order of the input datasets [12] [13]. To satisfy the four conditions mentioned40

above, Learnable Aggregator for GCN (LA-GCN) was proposed, which filters the neighborhood41

information with a mask aggregator before the aggregation process [6]. LA-GCN learns a specific42

mask for each node’s neighbor, allowing node-level and feature-level attention by the auxiliary model.43
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Figure 1: Architecture of MMA with the different aggregators: a) training auxiliary model with
a given node and its neighbors’ feature vectors; b) getting the masks for each neighbor from the
auxiliary model and multiplying with Hadamard product with node feature and Learned Mask; c)
aggregating the neighbors (after multiplying the corresponding mask) to get the central node’s new
representation. d) combining the final aggregators with scalers.

This mechanism assigns different weights to nodes and features, providing interpretable results and44

increasing the model’s robustness. However, LA-GCN is only based on a sum aggregator, which loses45

its stability with the increasing average degree of a graph [11], and the other types of aggregators are46

overlooked.47

In this study, we propose Multi-Mask Aggregators (MMA), a novel graph neural network method that48

combines trainable auxiliary models with different or the same aggregators. MMA utilizes a given49

node and its neighbors to train auxiliary models to extract information in a graph where different50

neighborhood information is learned using different masks. We use multiple types of aggregators (i.e.,51

mean, max, and min) and create a mask for each neighbor and aggregator. MMA can learn high-level52

rules (e.g., focusing on the important neighbors and features for node representation learning) to53

guide the aggregators for better utilization of the neighborhood information. It is a flexible method54

where different or the same kinds of multiple learnable aggregators can be used. We evaluated MMA55

on well-known benchmark datasets and compared its performance with the well-known baseline56

graph neural network methods. The datasets, source code, experimental settings, and user instructions57

are available publicly at https://github.com/mmalogcanonnym/mmalogc.58

The main contributions can be summarized as the followings: 1) It provides flexible multi-aggregators59

with the mask aggregation;2) It unlocks the limitation on the number of heads; 3) It enables to extract60

local information by local parameters instead of using global parameters like in MPNNs/PNA; 4) It61

behaves between in GAT and MPNN/PNA; 5) It increases the performance in node classification62

and graph regression benchmarks.63

2 Multi-Mask Aggregators64

The proposed Multi-Mask Aggregators method leverages the increased expressivity from the multi-65

aggregators models such as PNA [11], and the learnable masks from LA-GCN [6]. The Hadamard66

product is performed to multiply the neighbor’s feature vector with the corresponding learned masks67

in the aggregation process, allowing each heuristic aggregator (e.g., min, mean, etc.) to learn different68

features from the neighbors. Finally, the resulting aggregators are combined with scalers [11]. MMA69

architecture is given in Figure 1.70

2.1 Motivation71

Several methods have been proposed in the graph neural network area. Most of them work by72

aggregating neighboring node features using a permutation invariant function (PMI). One of the73

most popular frameworks is the graph convolution which uses a PMI to aggregate features from74

neighboring nodes nj into a given node ni (See Appendix B). Another one is the message-passing that75

generates a message from each pair of nodes {ni, nj} and aggregates them via a PMI. Furthermore,76

the graph attention computes the attention weight between {ni, nj} and aggregates the neighboring77

features nj via a weighted sum of the attention weights.78

In this work, we propose a different framework called multi-masked aggregators (MMA), where the79

network learns multiple weighted masks from pairs {u, v} and aggregates them via a weighted PMI.80

Hence, the aggregation mechanism lies between graph attention which learns multiple masks, and81
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message-passing, which uses invariant functions. Similarly to PNA [11], it benefits from increased82

expressivity from having multiple independent aggregators, and contrarily to GAT [3], it is not83

limited to a fixed number of heads during masking.84

2.2 Flexible multi-aggregators85

In recent work, it was demonstrated that using multiple uncorrelated aggregators during the message-86

passing increased the expressiveness while avoiding the exponential growth of the parameter space87

[11]. Their work proposed to use the mean, max, min and std operators to extract rich statistical88

features.89

In this work, we build on the idea by using multiple learned aggregators that can also exhibit high-90

frequency filtering. We further combine the mean, max, min aggregators with multi-learned masks to91

provide a more expressive framework.92

Learning the Mask. The first step is to learn the mask ml+1
j , with a unique value for each layer l93

and pair of neighbouring nodes of {i, j}. To do so, we employ an MLP on the pair of node features94

hi, hj and optionally the edge features eij in a similar fashion to the MPNN. However, this does not95

constitute the message but rather the weights that will multiply the aggregated neighboring features.96

The equation is formalized in (1), with σ being the activation function, Wm a learned matrix for the97

l-th layer, and || the column-wise concatenation.98

ml+1
j = MLP (||hl

i, h
l
j , e

l
ij) = σ(Wm(||hl

i, h
l
j , e

l
ij)) (1)

In Equation (1), ml+1
j represents the learned mask of node j and l represents the lth layer. Let hl

i, h
l
j99

and elij be in RN , and then the concatenation of these vectors are in R3XN . Wm is represented in100

RTX3. The multiplication of the concatenated hl
i, h

l
j and elij with Wm results in RTXN dimension101

which gives the final dimension of ml+1
j . T represents the number of hidden units.102

Masked Max/Min Aggregators. Max/Min aggregators have shown to be effective for discrete tasks103

and domains where credit assignment and extrapolating to unseen distributions of graphs is important104

[14]. In this study, we extend max/min aggregators by adding a learned mask ml
j . This allows the105

network to learn to ignore certain "undesired" nodes when propagating information.106

maxl
i = maxj∈ Ni

(X l
j ∗ml

j) minl
i = minj∈ Ni

(X l
j ∗ml

j) (2)

Masked Mean Aggregator. One of the most widely used aggregators in the literature is the mean107

aggregator, in which each node computes a weighted average or sum of its incoming messages. Using108

a degree-scaler, it was also shown that the sum aggregation can be represented from the mean [11].109

In this work, we first apply the same operation as in the LA-GCN [6] and then divide by the node’s110

degree:111

µi(X
l) =

1

di

∑
j∈Ni

X l
j ∗ml

j (3)

Degree Scalers. In MMA, we further use degree scalers, motivated by their ability to amplify and112

attenuate signals using the node’s degrees and increase expressivity [11]. The general equation113

is given below, with S being the scaling factor, d the node degree, α the amplification factor, and114

delta the average degree in the training set. In our study, we use α = {−1, 0, 1}, corresponding115

respectively to attenuation, no change, and amplification of the signal from its degree.116

S(d, α) =

(
log(d+ 1)

δ

)α

, d > 0,−1 < α < 1 (4)

Combining Aggregators. We further combine multiple aggregators and degree scalers to increase117

the expressivity of the network following the equation below. Here, ⊗ denotes the Tensor product118

and ⊕mask the general aggregation function of the proposed MMA framework.119
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⊕mask =

(
I

S(D,α = 1)
S(D,α = −1)

)
⊗

(
Masked Max
Masked Min
Masked Mean

)
(5)

3 Experiments120

We first evaluated the performance of MMA models on four widely-used benchmarking datasets (see121

Appendix A.1) over two tasks using a combination of different masked aggregators. Subsequently,122

we investigated the models’ performances when the same type of masked aggregator(s) were used.123

Finally, the performance results of MMA were compared with the well-known baseline methods in124

the field. These methods are Message Passing Neural Networks (MPNN) [2], Graph Convolutional125

Networks (GCN) [1], GAT [3], LGCL [8], Graph-BERT [15], PNA [11], LA-GCN [6], Adaptive126

kernel graph neural network (AKGNN) [16], respectively.127

3.1 Results128

We trained several models using the multiple aggregator(s). Here, we used two different settings:129

In Setting 1 (see Table 3), we measured MMA’s performance by combining different aggregators.130

In Setting-2 (see Table 5), the same type of aggregator(s) were used where each aggregator has a131

different trained mask. We used the same training/validation/test settings for a fair performance132

comparison with other methods. We also demonstrated some ablation studies in Appendix A.2.133

Finally, we compared our best-performing results with the well-known baseline methods in the134

literature. The results are given in Table 1. Our results have shown improved performance over the135

compared methods in most cases.

Table 1: Benchmarking MMA on Pubmed, Citeseer, Cora and ZINC datasets. Detailed hyperparame-
ter for MMA on each dataset can be found Table 4

Models Pubmed Citeseer Cora ZINC
MPNN [2] 75.60 64.00 78.00 0.288
GCN [1] 79.00 70.30 81.50 –
GAT [3] 79.00 72.50 83.00 –

LGCL [8] 79.50 73.00 83.30 –
GRAPH-BERT [15] 79.30 71.20 84.30 –

PNA [11] – – – 0.188
LA-GCN [6] – – 81.50 –
AKGNN [16] 80.40 73.50 84.80 –
MMA (ours) 86.00 76.30 85.80 0.1562

136

4 Discussion and Conclusion137

In this study, we propose Multi-Mask Aggregators for graph representation learning to utilize different138

and same aggregators within a learning mechanism. MMA provides a flexible learning method by139

integrating different or the same types of aggregator(s) where each has learnable parameters. Our140

contributions can be summarized as follows: 1) It provides flexible multi-aggregators with the141

mask aggregation;2) It unlocks the limitation on the number of heads; 3) It enables to extract local142

informations by local parameters instead of using global parameters like in MPNNs/PNA; 4) It143

behaves between in GAT and MPNN/PNA; 5) It increases the performance in node classification144

and graph regression benchmarks.145

Besides all, as shown in the ablation studies, it was observed that there is no definite consensus on146

how much and which aggregator should be used. That’s why it is thought that this will continue to be147

a subject open to development in aggregators for graph neural networks.148
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A Experiment Details201

A.1 Datasets202

We trained our method on four different datasets: Cora, Citeseer, PubMed, and ZINC. The dataset203

statistics and the training, validation, and test settings are given in Table 2. The benchmarking datasets204

are explained below:205

• Cora [17] - Cora is a citation graph dataset where each node represents a scientific publication206

classified as one of 7 classes. This dataset consists of 2,708 nodes and 5,429 edges, with an edge207

between two nodes if one cites the other. In this dataset, nodes are represented by binary feature208

vectors where each dimension indicates the absence or presence of the word from the dictionary209

containing 1,433 unique words. For the evaluation, the accuracy metric was used.210

• Citeseeer [17] - Citeseer is also a citation graph dataset for node classification task where the211

nodes represent publications classified into six classes. Nodes are represented as binary feature212

vectors similar to the Cora dataset. In the Citeseer dataset, there are 3,327 nodes and 4,732213

edges. For the evaluation, the accuracy metric was used.214

• Pubmed [17] - Pubmed is another citation graph dataset where each node represents the papers215

related to diabetes. Pubmed is also a dataset for node classification where one of three classes is216

assigned to each node. This dataset consists of 19,717 nodes and 44,338 edges. Here, each node217

is represented by a feature vector that shows TF/IDF weighted word vector from the dictionary218

with 500 unique words. For the evaluation, the accuracy metric was used.219

• ZINC [18] - ZINC is a graph regression dataset for constrained solubility prediction of chemical220

compounds. In this dataset, each compound is represented by a graph where nodes represent221

atoms and edges represent the bonds between atoms. The ZINC dataset consists of 12,000222

molecules with varying atom numbers from 9 to 37. The mean absolute error (MAE) metric was223

used for the evaluation.224

The dataset statistics are summarized in Table 2.225

Table 2: Summary of the datasets used in benchmarking
Domain & Construction Dataset #Nodes Total #Nodes Edges Features Classes Train/Val./Tes Task

Social Networks: Real-world citation graphs Cora 2,708 2,708 5,429 1,433 7 1,208/500/1,000 Node Classification
Social Networks: Real-world citation graphs Citeseer 3,327 3,327 4,732 3,703 6 1,827/500/1,000 Node Classification
Social Networks: Real-world citation graphs Pubmed 19,717 19,717 44,338 500 3 18,217/500/1,000 Node Classification

Chemistry: Real-world molecular graphs ZINC 9-37 277,864 – – – 10,000/1,000/1,000 Graph Regression

A.2 Ablation Studies226

Table 3 shows the performance results of the top four best-performing models trained using different227

combinations of multi-mask aggregators. As it can be observed from Table 3, there is no consensus on228

types of aggregators when we consider the performance results based on different datasets; therefore,229

dataset-specific aggregators should be determined empirically. For example, Masked Mean-Mean2230

aggregators performed best on the Cora dataset, whereas Masked Min-Min2-Min3 aggregators231

worked best on the Citeseer dataset. Similarly, using Min-Min2-Min3-Min4 and Min-Max sets of232

aggregators resulted in better results in Pubmed and ZINC databases, respectively.233

We also evaluated the performance of the MMA using the same multi-masked aggregators. Here,234

MMA models were trained using single or multiple types of the same aggregators to investigate how235

models’ performances change with the same type of masked aggregator(s). The results are shown236

in Table 5. Here, we trained MMA models using up to 4 same aggregators with different learnable237

masks. When the results are investigated, it can be seen that specific single multi-aggregators work238

better than the remaining aggregators on different datasets. For example, on the Cora dataset mean239

aggregators almost consistently worked better than the min and max aggregators. Considering the240

Citeseer dataset, we can see that max aggregators work with less performance than the min and mean241

aggregators.242
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Table 3: Performance of MMA using different aggregators on independent test sets (Setting-1)

Dataset Masked Aggregators Learning Rate Weight Decay Hidden Units Epoch Accuracy/MAE
Mean-Min 0.001 5e-4 128 200 85.10

Mean-Max-Min 0.001 3e-4 128 1000 84.30
Cora Mean-Max 0.001 1e-4 128 1000 84.10

Max-Min 0.01 3e-4 64 1000 83.60

Mean-Max 0.01 5e-4 128 500 75.90
Mean-Min 0.01 3e-4 64 500 75.50

Citeseer Max-Min 0.001 1e-4 64 1000 75.30
Mean-Max-Min 0.01 5e-4 64 500 75.30

Mean-Min 0.01 1e-4 64 200 85.90
Mean-Max-Min – – – – –

Pubmed Mean-Max – – – – –
Max-Min – – – – –

Mean-Min 0.0001 3e-4 10000 0.1585
Mean-Max-Min 0.00001 3e-4 – 10000 0.1606

ZINC Mean-Max 0.0001 3e-4 – 10000 0.1585
Min-Max 0.0001 3e-4 – 10000 0.1562

Table 4: Detailed hyperparameter for best performance of MMA in Table 1

Dataset Masked Aggregators Learning Rate Weight Decay Hidden Units Epoch Accuracy/MAE
Cora Mean-Mean2 0.001 3e-4 64 200 85.80

Citeseer Min-Min2-Min3 0.01 3e-4 128 500 76.30
Pubmed Min-Min2-Min3-Min4 0.01 5e-4 16 500 86.00

ZINC Min-Max 0.0001 3e-4 – 10000 0.1562

B Theoretical Background243

Due to the lack of order in most real graphs, permutation invariance is an essential feature for244

aggregation functions. While aggregating representations of the node’s neighbors, the neighborhood245

aggregation scheme iteratively updates the representation of a node [6]. This intuition explained for246

the aggregation process can be formalized as follows:247

s
(k−1)
i = f (k)

ag (h
(k−1)
j , j ∈ Ni) (6)

where f
(k)
ag is aggregator in the k-th layer. The aggregation function f

(k)
ag should be a permutation248

invariant function on a multiset. According to [19], definition of permutation invariant function249

described as:250

Definition 1: A function f is permutation-invariant if251

f(h1, h2, ..., h|Ni|) = f(hπ(1)
, hπ(2)

, ..., hπ(|Ni|)
) (7)

for any permutation π and |Ni| is the length of the sequence. Π|Ni| denotes the multiset of all252

permutations of the integers 1 to |Ni| and hπ,π ∈ Π|Ni|, denotes a reordering of the multiset253

according to π. The relation between set and permutation invariant function can be shown in the254

following theorem in [19]:255

Theorem 1: A function operating on a multiset h1, h2, ..., h(|Ni|) having elements from a countable256

universe is a valid set function. It is invariant to the permutation of instances in the multiset if it can257

be decomposed in the form ρ(
∑

π∈Π|Ni|
ϕ(hπ)) for suitable transformation ϕ and ρ.258

Theorem 1, it can be inferred that all the representations are added and then applied to nonlinear259

transformation.260

Mean, sum aggregation functions and aggregators in GCN and GAT can be represented in this261

concept. As shown in Eq.(8) and Eq.(9), respectively, GCN and GAT add up all neighborhood with262

fixed parameters or learnable parameters.263
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Table 5: Performance results of same multi-masked aggregators on independents test sets (Setting-2)

Masked Aggregators Cora Citeseer Pubmed ZINC
Mean 85.60 76.00 – 0.1631

Mean-Mean2 85.80 76.10 – 0.1763
Mean-Mean2-Mean3 84.60 74.60 – 0.1940

Mean-Mean2-Mean3-Mean4 84.80 75.20 – 0.1886

Min 83.90 76.10 85.80 0.1535
Min-Min2 84.20 75.40 85.30 0.1571

Min-Min2-Min3 84.00 76.30 85.70 0.1591
Min-Min2-Min3-Min4 84.00 75.70 86.00 –

Max 83.60 75.40 85.50 0.1519
Max-Max2 83.00 75.00 84.30 0.1653

Max-Max2-Max3 83.00 75.00 83.30 0.1717
Max-Max2-Max3-Max4 83.60 75.00 81.90 0.1604

s
(k−1)
i = f (k)

agg(h
(k−1)
j ) =

∑
j∈Ni

h
(k−1)
j /

√
didj (8)

where di and dj are the node degrees of node vi and node vj respectively.264

s
(k−1)
i = f (k)

aga(h
(k−1)
j ) =

∑
j∈Ni

αijh
(k−1)
j (9)

where αij is a learnable attention coefficient that indicates the importance of vj to vi.265

B.1 Mask Aggregator266

[6] tried to use mask aggregator with sum aggregation function to assign different importance to267

different neighbor’s features. In this aggregation process, they tried to use a mask aggregator, which268

assigns different weights to different neighbor’s features and then aggregates by sum aggregation269

function. It can be shown as the following:270

s
(k−1)
i = f (k)

agm(h
(k−1)
j ) =

∑
j∈Ni

h
(k−1)
j ∗m(k−1)

j (10)

where h
(k−1)
j ∈ Rdk−1 , m(k−1)

j ∈ Rdk−1 is a specific mask for each neighbor, produced by the271

auxiliary model. They showed that the mask aggregator is permutation invariant as the following272

theorem, which is proven by [15]:273

Theorem 2: f (k)
agm is a permutation-invariant function acting on finite but arbitrary length sequence274

h
(k−1)
j , j ∈ Ni.275

Proof 2: Given H = h
(k−1)
1 , h

(k−1)
2 , ..., h

(k−1)
(|Ni|) a finite multiset, and h

(k−1)
j ∈ Rdk−1 , mask aggre-276

gator was tried to be combined with a fixed output s(k−1)
i ∈ Rdk−1 as follows:277

s
(k−1)
i = f (k)

agm(h
(k−1)
j ) =

∑
j∈Ni

h
(k−1)
j ∗m(k−1)

j (11)

where m
(k−1)
j ∈ Rdk−1 is a specific mask for each neighbor produced by the auxiliary model. First,278

it was tried to get mask m
(k−1)
j for each node h

(k−1)
j by using an auxiliary model given graph279

information.280

There exists a mapping function ϕ : Rdk−1 −→ Rdk−1 that can formulate h(k−1)
j ∗m(k−1)

j to ϕ(h
(k−1)
j ),281

and (11) can be written as:282
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s
(k−1)
i = f (k)

agm(h
(k−1)
j ) =

∑
j∈Ni

ϕ(h
(k−1)
j ) (12)

and ρ can be seen as ρ = 1. (8) can be seen as a permutation of H, according to [19].283

Next, they prove there exist an injective mapping function ϕ, so that f (k)
agm(h

(k−1)
j ) is unique for each284

finite multiset H.285

Since H is countable, each (h
(k−1)
j ) ∈ H can be mapped to a unique element to prime numbers286

p(H) : RM −→ P by a function p(h
(k−1)
j ). ϕ(h(k−1)

j ) can be represented as −logp(h
(k−1)
j ). Thus,287

f (k)
agm(h

(k−1)
j ) =

∑
j∈Ni

ϕ(h
(k−1)
j ) = logp(h

(k−1)
j ) (13)

takes a unique value for each distinct H.288

Besides, the dimension dd−1 of the latent space should be at least as large as the maximum number289

of input elements |Ni|, which is both necessary and sufficient for continuous permutation-invariant290

functions [20].291

Since a neural network can approximate any continuous function, according to the universal approxi-292

mation theorem [21], MLPs can be used as an auxiliary model and learn ϕ and ρ = 1.293

B.2 Multi Aggregator294

According to Theorem 2, it can be concluded that multi-set is a permutation-invariant function, and295

mask aggregator can adapt which features or neighbors are essential and filter the noisy information.296

However, [11] showed that sum aggregation does not discriminate between graphs, and they proposed297

multi-aggregation to tackle this problem. They showed that the multi-aggregation can discriminate298

between graphs as the following theorem and proof:299

Theorem 3: In order to discriminate between multisets of size n whose underlying set is R, at least n300

aggregators are needed.301

Unlike the [5], [11] consider a continuous input feature space; this better represents many real-world302

tasks where the observed values have uncertainty and better models the latent node features within303

a neural network’s representations. Continuous features make the space uncountable and void the304

injectivity proof of the sum aggregation presented by Xu et al. [5]. Hence, they redefine aggregators305

as continuous functions of multisets that compute a statistic on the neighboring nodes, such as mean,306

max, or standard deviation. Continuity is important with continuous input spaces, as small variations307

in the input, should result in small variations of the aggregators’ output.308
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