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APPENDIX

Table 5: Summary of key notation.

Symbol Description

D set of nodes for training or inference
D(i) ith bootstrap of relatives sampled from D

D
(i)
u relative of node u sampled for the ith bootstrap

Ek set of edges in Gk

Gk graph with max order k (k = 1 is a FON, k > 1 is a HON)
GNNi(·) the ith learner (GNN) in the ensemble
h
(i,t)
u hidden representation of node u at tth layer (timestamp) of learner i

ℓ number of base learners in the ensemble
Nk(u) neighborhood of node u in Gk

P k
u distribution for sampling relatives from Ωk

u
S set of observed paths used to build Gk

Vk set of nodes in Gk

wk(u, v) weight of directed edge (u, v) in Gk

ŷu final (pooled) predicted label for node u

ŷ
(i)
u the ith learner’s predicted label for node u

Ωk
u relatives of node u in Gk
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A PROOF OF THEOREM 1

Preliminaries Without loss of generality, in this section we treat the neighborhood Nk(u
′) in a

graph Gk for k ≥ 1 as only the out-neighbors of u′ (i.e. Nk(u
′) = {v ∈ Vk, wk(u

′, v) > 0}) and
ignore in-edges. Given a node u′ ∈ Vk, we first define the probability that a random walker over Gk

would move from u′ to any v ∈ Nk(u
′):

πk(u
′ → v) =

wk(u
′, v)

outdegk(u′)
. (6)

Given a FON G1 and any u ∈ V1, let u′ ∈ Ωk
u be any relative of u in a HON Gk that is constructed

from the same data as G1. Following Saebi et al. (2020d), we next define the Kullback-Leibler
divergence of Nk(u

′) with respect to N1(u):

DKL(Nk(u
′) ∥ N1(u)) =

∑
v∈N1(u)

π1(u → v)log2
π1(u → v)

πk(u′ → v)
. (7)

Our notation throughout this section assumes that v ∈ N1(u) and v ∈ Nk(u
′); however, a relative

v′ ∈ Ωk
v often replaces v in Nk(u

′). For example, in Figure 1, C|A is substituted for its base node C
in the neighborhood of A, but the edge (A, C|A) still fundamentally represents a step from C to A.
GrowHON (Krieg et al., 2020a) constructs Gk such that u′ ∈ Vk iff the following inequality holds:

DKL(Nk(u
′) ∥ N1(u)) >

m

log2
(
1 + freq(u′)

) , (8)

where m > 1 is length of the sequence encoded by u′ (see Section 2) and freq(u′) ≥ 1 is the
number of times u′ is found in all the observed paths in S .
Lemma 1. If u ∈ V1 and u′ ∈ Ωk

u, then there exists at least one node v ∈ N1(u) such that
π1(u → v) ̸= πk(u

′ → v).

Proof. If u′ ∈ Ωk
u, then DKL(Nk(u

′) ∥ N1(u)) > 0. This is because freq(u′) ≥ 1, so log2
(
1 +

freq(u′)
)
≥ 1 and the right side of Eq. 8 cannot be negative. If DKL(Nk(u

′) ∥ N1(u)) = 0,
then the inequality in Eq. 8 cannot hold, so u′ /∈ Vk and, consequently, u′ /∈ Ωk

u. Additionally, if
π1(u → v) = πk(u

′ → v) for all v ∈ N1(u), then by Gibbs’ inequality we have DKL(Nk(u
′) ∥

N1(u)) = 0. Therefore, since u′ ∈ Ωk
u, there must exist at least one node v ∈ N1(u) such that

π1(u → v) ̸= πk(u
′ → v).

We now restate and prove Theorem 1.
Theorem 1. Let G1 and Gk be a FON and HON, respectively, both constructed from the same input
S. Let N1(u) and Nk(u) denote the neighborhoods of any node u in G1 and Gk, respectively.
Let AGGREGATE(·) represent any symmetric neighborhood aggregation function. If u ∈ V1 and
u′ ∈ Ωk

u, then AGGREGATE(Nk(u
′)) is a biased estimator of AGGREGATE(N1(u)).

Proof. Without loss of generality, we consider the case in which AGGREGATE operates on a sample
of neighbors (i.e., GraphSAGE (Hamilton et al., 2017)). Let V ∼ Nk(u

′) denote a random sample
drawn from Nk(u

′). Assuming we weight the sampling distribution according to edge weights, we
can write the probability of sampling any node v as

p(V = v) =
wk(u

′, v)

outdegk(u′)
= πk(u

′ → v), (9)

where wk(u
′, v) is the weight of edge (u′, v) in Gk (Section 2) and outdegk(u

′) is the weighted
out-degree of u′ in Gk. If we say that each u ∈ Vk is represented by a real-valued feature vector
xk
u = [x

(k)
u,1, x

(k)
u,2, ..., x

(k)
u,d], then, for a single sample drawn from Nk(u

′), we can formulate the
expected value for each vector as follows:

EV∼Nk(u′)

[
xk
V

]
= p(V = v) xk

v . (10)
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If we combine these feature vectors for each of the n nodes in Vk, then we can represent the full
expectation of V as a neighborhood matrix

EV∼Nk(u′)[V
]
=


p(V = 1) xk

1

p(V = 2) xk
2

...
p(V = n) xk

n



=


p(V = 1) x

(k)
1,1 p(V = 1) x

(k)
1,2 . . . p(V = 1) x

(k)
1,d

p(V = 2) x
(k)
2,1 p(V = 2) x

(k)
2,2 . . . p(V = 2) x

(k)
2,d

...
...

. . .
...

p(V = n) x
(k)
n,1 p(V = n) x

(k)
n,2 . . . p(V = n) x

(k)
n,d

 .

We can simplify our notation by assuming the initial feature vectors are identity features (i.e., one-
hot encodings of the node indices) defined on the base nodes, i.e., for features of nodes in V1, we
have x

(1)
u,j = δuj for all u, j ≤ d = n, where δ is the Kronecker delta. For the features of nodes

in Vk, we assume that each u′ ∈ Ωk
u uses the same features as its base node, i.e., x(k)

u′,j = δuj .
Substituting these values in the above matrix gives

EV∼Nk(u′)

[
V
]
=


p(V = 1) 0 . . . 0

0 p(V = 2) . . . 0
...

...
. . .

...
0 0 . . . p(V = n)

 .

Without loss of generality, let AGGREGATE be the feature-wise MEAN of N samples drawn from
Nk(u

′). We can then represent the expectation of AGGREGATE as

EV∼Nk(u′)

[
AGGREGATE(V )

]
=


1
N
1
N
...
1
N



Np(V = 1) 0 . . . 0

0 Np(V = 2) . . . 0
...

...
. . .

...
0 0 . . . Np(V = n)



=


p(V = 1)
p(V = 2)

...
p(V = n)



=


πk(u

′ → 1)
πk(u

′ → 2)
...

πk(u
′ → n)

 . (via Eq. 9)

If V ∼ N1(u), we instead have

EV∼N1(u)

[
AGGREGATE(V )

]
=


π1(u → 1)
π1(u → 2)

...
π1(u → n)

 .

From Lemma 1 we know that there exists at least one v ∈ N1(u) such that π1(u → v) ̸=
πk(u

′ → v). Therefore, EV∼Nk(u′)

[
AGGREGATE(V )

]
̸= EV∼N1(u)

[
AGGREGATE(V )

]
, and

AGGREGATE(Nk(u
′)) is a biased estimator of AGGREGATE(N1(u)).
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This result holds for other common aggregators like SUM and MAX for single samples. For MAX,
however, the sample size matters, because the expected value for the jth feature is the probability
that j is sampled at least once. We conjecture that this is problematic for larger sample sizes in
weighted graphs, and is perhaps the reason why mean-pooling outperformed max-pooling for our
GraphSAGE baseline during our initial experiments (Section C).

17



Published as a conference paper at ICLR 2023

B DATA DETAILS AND EXPERIMENTAL SETUP

Air: Flight trajectories of passenger itineraries in the United States. Nodes represent airport
locations (cities) and edges represent passengers flying between locations. The itineraries
were retrieved from the Airline Origin and Destination Survey (DB1B) database, which
is publicly available through the U.S. Bureau of Transportation Statistics3. We down-
loaded all records between Jan. 1 and Dec. 31, 2019 from the DB1BCoupon table, joined
and sorted itineraries using the “ITIN ID” and “SEQ NUM” columns, and discarded any
itineraries with missing origin or destination information. Node classes represent the ge-
ographical location of each airport, aggregated by standard federal region of the United
States. While we extracted this particular set of paths, this database has been utilized in
prior work on HONs (Rosvall et al., 2014; Scholtes, 2017).

T2D: Disease trajectories for type 2 diabetes patients in the state of Indiana (Krieg et al., 2020b).
Nodes represent ICD9 diagnosis codes and edges represent sequential diagnoses. Follow-
ing prior work, we only preserved the first occurrence of each diagnosis code for each
patient; however, we did not split trajectories based on the period of time between diag-
noses. Node classes are the chapters of each ICD9 code, which represent categories of
disease classification.

Wiki: Clickstreams of users playing the Wikispeedia game, in which a player attempts to navigate
from a source to a target article by clicking only Wikipedia links (West et al., 2009). Here,
nodes represent Wikipedia articles, and edges represent user clicks between articles. We
included both finished and unfinished paths. Node classes are the subjects of each article.

Mag: Readership trajectories for a large online magazine from Jan 1. to Apr. 15, 2020 (Wang
et al., 2020). Nodes represent online content (articles, games, etc.), and edges represent
sequential clicks by users. We only considered trajectories in which the user visited at least
three nodes during a session. Node classes represent the content type (magazine, culture,
news, or humor).

Mag+: An expanded version of Mag which also includes data from July 1, 2019 through Dec. 31,
2019, as well as two additional content types (books, home). Due to its size and similarity
to Mag, we excluded it from link prediction experiments.

Ship: Trajectories of global shipping activity (Saebi et al., 2020c). Nodes represent ports, and
edges represent ships traveling between ports. Node classes are provinces, as defined by
the Marine Ecoregions of the World (MEOW) system for classifying oceans and waterways
(Spalding et al., 2007).

For node classification, we used stratified 5-fold cross validation (Shchur et al., 2018) and reported
the mean micro F1-score. For link prediction, we generated training and testing sets by randomly
sampling 10% of positive node pairs and an equal number of negative node pairs. In addition to
hiding all edges (in both directions) between testing pairs, for experiments using G2 we also hid all
edges between any pair of nodes in the same higher-order families as each testing pair. We repeated
each experiment five times and reported the mean area under the precision-recall curve (AUPRC)
(Yang et al., 2015). All experiments utilized the same training and testing splits. For models trained
on G1 we used identity features (i.e., one-hot encodings of the node indices) for each node. For
models trained on G2, we used the same features as G1 such that each u′ ∈ Ω2

u shared the same
features as its base node u.

3https://transtats.bts.gov/. Accessed April 14, 2022.
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C MODEL TUNING AND HYPERPARAMETER SETUP

We manually tuned hyperparameters for each model. Table 6 summarizes the configurations that
we evaluated in reporting the main results in Tables 2 and 3. We used the Adam optimizer with a
learning rate of 0.0005 for GAT and GATv2, and a learning rate of 0.01 for all other models. For
minibatch models (GraphSAGE, GIN, and DGE), we tested batch sizes of 16, 32, and 64. Unless
otherwise noted, all results reported in Tables 2, 3, 7, and 8 were the best-performing configuration
for each model as averaged across all testing folds.

In general, the most impactful hyperparameter was the number of GNN layers. As discussed in
Section 4.2, on Air, T2D, and Mag, all baselines performed best with only a single layer for both
node classification and link prediction. On Wiki, several models performed best with 3 layers (Figure
3). GCNII, which uses residual connections and is thus designed with deep GNNs in mind (Chen
et al., 2020), was the only model we tested with more than 3 layers. For most models, increasing the
number of hidden units per layer above 256 had little to no effect on performance. The exception to
this was DGE-pool* on Air, which performed best with 2,048 hidden units (Section 4.3).

Other hyperparameters varied by data set. The number of neighbors sampled (|N |) was very im-
portant on the dense graphs (T2D and Mag). In all cases, we found that increasing the sample size
of the first layer was the most important, so we fixed the sample size at the second layer to 1 (per
first-layer sample). Baselines preferred 512 samples for T2D and 256 for Mag. On the other data
sets, 64 neighbor samples was sufficient for all models. DGE preferred 256 samples per base learner
(the max that we tested) for T2D and 128 for Mag. The same trend held for GraphSAINT’s subgraph
sampling, which preferred more roots on graphs that were dense and had more nodes (512 for Air
and Wiki, 1024 for T2D, and 2048 for Mag, 4096 for Mag+, and 2048 for Ship). On all data sets,
PathGCN performed best with at least 100 random walk samples per node.

For neighborhood aggregators, max-pooling was in all cases inferior to mean-pooling and sum-
pooling, likely due to the inability of max-pooling to appropriately distinguish dense neighborhoods
(Xu et al., 2019).

Table 6: Hyperparameters evaluated for each model.

Model-specific hyperparameters

Model # Layers Other

GCN {1, 2, 3} —
GCNII {1, 2, 3, 4, 6, 8} α = 0.5, λ = 1.0
GAT {1, 2, 3} attnheads = {4, 8, 16}
GATv2 {1, 2, 3} attnheads = {4, 8, 16}
GraphSAGE {1, 2, 3} |N | = {32, 64, 128, 256, 512, 1024} × {1, 2, 4, 8} × {1}

AGGREGATE = {MEANPOOL, MAXPOOL}
GIN {1, 2, 3} |N | = {32, 64, 128, 256, 512, 1024} × {1, 2, 4, 8} × {1}
GraphSAINT {1, 2, 3} nroots = {256, 512, 1024, 2048, 4096}, walklen = {2, 3, 4}
PathGCN {1, 2, 3} nwalks = {10, 50, 100, 200}, walklen = {2, 3, 4, 5}
HO-GNN {1, 2, 3} —
SEAL {1, 2, 3} hops = {1, 2, 3}
DGE (all) {1, 2, 3} ℓ = {4, 8, 16}, |N | = {32, 64, 128, 256} × {1, 2, 4} × {1}

General hyperparameters

Model Dropout Hidden units (per layer)

All 0.4 {128, 256, 512, 1024, 2048}
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D ADDITIONAL POOLING MECHANISMS

In addition to Eqs. 5a, 5b, and 5c, we evaluated an attention mechanism (inspired by GAT
(Veličković et al., 2018)) which used self-attention to pool the outputs of all sampled relatives.
We computed attention coefficients eij for each i, j ≤ ℓ according to

eij = F
(
W
(

GNNi (D
(i)
u )

)
,W

(
GNNj (D

(j)
u )

))
, (11)

where F is a single-layer feed-forward network with a LeakyReLU activation, W ∈ R2d×d is a
trainable weight matrix, and GNNi(u) = h

(i,t)
u (as in Eqs. 5a and 5b). We then computed the final

attention coefficients αij according to

αij = softmaxi(eij) =
exp(eij)∑ℓ

m=1 exp(eim)
. (12)

We repeated this procedure for K separate attention heads. Whereas the original GAT layer averages
the outputs of the attention heads before applying a non-linear activation (Veličković et al., 2018),
we found that passing the same output to another feed-forward network provided better results.
Formally, letting i be the index of we compute the vector of class probabilities ŷu by

ŷu = σ

(
F ′
(
σ′
(

1

K

K∑
n=1

ℓ∥∥∥
j=1

ℓ∑
i=1

α
(n)
ij W(n)GNNj (D

(j)
u )

)))
, (13)

where ∥ is vector concatenation, F ′ is a feed-forward network with output dimension d/4 (followed
by batch normalization and a LeakyReLU activation), α(n)

ij and W(n) represent the attention coef-
ficients and linear transformation, respectively, for the nth attention head, and σ′ is a LeakyReLU
activation. For our experiments, we set K = 5, d = 128, and a negative slope coefficient of 0.3
for all LeakyReLU activations. We refer to this model as DGE-attn and discuss its performance in
Appendix E.
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E ADDITIONAL EXPERIMENTAL RESULTS

To support our claim that existing GNNs cannot effectively use G2 as input, we also tested baselines
using G2 as the input graph for Air, T2D, Wiki, and Mag. As we expected, because each neighbor-
hood in G2 is only a subspace of its neighborhood in G1, performance was generally worse (or about
the same) when compared to G1. Tables 7 and 8 detail the full results.

Table 7 also includes results for a GNN ensemble (DGE-bag) trained on G1, i.e. without relative
sampling and pooling. Overall, we found that the performance was slightly better than GraphSAGE
(the base GNN), but in all cases fell short of DGE-bag with relative sampling and pooling. The
final result included in Table 7 is for one additional pooling mechanism, DGE-attn, which pooled
representations from the sampled relatives via a self-attention mechanism. Since it did not generalize
particularly well in the node classification experiments, we did not discuss it in the main manuscript
and did not evaluate its performance on link prediction. More details are available in Appendix D.
Table 8 also includes the full link prediction results for baselines, which we excluded from Table 3
because of space constraints in the main manuscript.

Figure 5 shows DGE-bag’s performance as a function of the number of base learners (ℓ) on four
data sets. We found that 8-12 base learners produced consistently strong results. Figure 6 shows
classifier accuracy and diversity (Section 4.3) for the T2D, Wiki, and Mag data sets, as a supplement
to Figure 4.

Table 7: Additional node classification results (micro F1) for baselines using G2 as input. Bold font
indicates the best result for each data set.

Model Input Air T2D Wiki Mag

GCN G1 0.818 ± 0.03 0.480 ± 0.02 0.643 ± 0.01 0.796 ± 0.01

G2 0.805 ± 0.05 0.500 ± 0.02 0.665 ± 0.02 0.744 ± 0.02

GCNII G1 0.845 ± 0.05 0.511 ± 0.02 0.654 ± 0.02 0.801 ± 0.01

G2 0.833 ± 0.05 0.537 ± 0.03 0.657 ± 0.02 0.816 ± 0.01

GAT G1 0.804 ± 0.03 0.282 ± 0.10 0.639 ± 0.02 0.487 ± 0.06

G2 0.817 ± 0.05 0.253 ± 0.03 0.646 ± 0.03 0.512 ± 0.04

GATv2 G1 0.838 ± 0.03 0.292 ± 0.07 0.643 ± 0.03 0.495 ± 0.05

G2 0.842 ± 0.05 0.241 ± 0.10 0.646 ± 0.03 0.512 ± 0.13

GraphSAGE G1 0.781 ± 0.04 0.654 ± 0.04 0.625 ± 0.02 0.808 ± 0.02

G2 0.688 ± 0.02 0.516 ± 0.01 0.633 ± 0.01 0.818 ± 0.01

GIN G1 0.745 ± 0.02 0.673 ± 0.04 0.636 ± 0.02 0.826 ± 0.02

G2 0.660 ± 0.02 0.637 ± 0.03 0.625 ± 0.02 0.812 ± 0.02

GraphSAINT G1 0.802 ± 0.02 0.600 ± 0.07 0.664 ± 0.01 0.821 ± 0.02

G2 0.710 ± 0.03 0.567 ± 0.03 0.661 ± 0.02 0.828 ± 0.01

HONEM G1,G2 0.805 ± 0.04 0.566 ± 0.02 0.588 ± 0.01 0.728 ± 0.02

DGE-bag G1 0.772 ± 0.05 0.694 ± 0.04 0.645 ± 0.02 0.831 ± 0.01

DGE-concat G2 0.825 ± 0.04 0.501 ± 0.06 0.615 ± 0.02 0.790 ± 0.02

DGE-concat* G2 0.810 ± 0.04 0.439 ± 0.03 0.577 ± 0.02 0.761 ± 0.02

DGE-pool G2 0.839 ± 0.03 0.735 ± 0.03 0.671 ± 0.01 0.860 ± 0.01

DGE-pool* G2 0.865 ± 0.02 0.555 ± 0.07 0.599 ± 0.04 0.775 ± 0.01

DGE-bag G2 0.856 ± 0.02 0.770 ± 0.04 0.681 ± 0.00 0.871 ± 0.01

DGE-bag* G2 0.766 ± 0.04 0.719 ± 0.04 0.644 ± 0.02 0.841 ± 0.02

DGE-batch* G2 0.764 ± 0.03 0.646 ± 0.01 0.623 ± 0.01 0.818 ± 0.01

DGE-attn G2 0.829 ± 0.03 0.549 ± 0.05 0.618 ± 0.02 0.775 ± 0.05

* shared parameters
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Table 8: Full link prediction results (AUPRC) for baselines. Bold font indicates the best result for
each data set.

Model Input Air T2D Wiki Mag Ship

GCN G1 0.794 ± 0.01 0.793 ± 0.00 0.741 ± 0.01 0.742 ± 0.00 0.849 ± 0.00

G2 0.777 ± 0.02 0.781 ± 0.00 0.749 ± 0.01 0.753 ± 0.00 —
GCNII G1 0.806 ± 0.01 0.754 ± 0.01 0.781 ± 0.01 0.750 ± 0.00 0.848 ± 0.01

G2 0.771 ± 0.01 0.732 ± 0.00 0.790 ± 0.01 0.759 ± 0.00 —
GAT G1 0.786 ± 0.01 0.698 ± 0.02 0.794 ± 0.01 0.644 ± 0.00 0.764 ± 0.00

G2 0.768 ± 0.01 0.681 ± 0.01 0.801 ± 0.01 0.641 ± 0.00 —
GATv2 G1 0.771 ± 0.01 0.701 ± 0.01 0.797 ± 0.01 0.645 ± 0.01 0.797 ± 0.00

G2 0.784 ± 0.01 0.684 ± 0.00 0.796 ± 0.01 0.660 ± 0.01 —
GraphSAGE G1 0.782 ± 0.02 0.713 ± 0.01 0.758 ± 0.01 0.717 ± 0.00 0.820 ± 0.00

G2 0.757 ± 0.02 0.712 ± 0.01 0.756 ± 0.01 0.716 ± 0.00 —
GIN G1 0.800 ± 0.01 0.704 ± 0.00 0.745 ± 0.01 0.717 ± 0.00 0.782 ± 0.00

G2 0.748 ± 0.02 0.702 ± 0.00 0.743 ± 0.01 0.716 ± 0.00 —
GraphSAINT G1 0.718 ± 0.01 0.797 ± 0.00 0.688 ± 0.01 0.750 ± 0.00 0.862 ± 0.01

G2 0.702 ± 0.02 0.791 ± 0.01 0.694 ± 0.01 0.756 ± 0.00 —
SEAL G1 0.818 ± 0.02 0.754 ± 0.01 0.834 ± 0.01 0.751 ± 0.00 0.887 ± 0.01

HONEM G1,G2 0.697 ± 0.02 0.818 ± 0.00 0.589 ± 0.01 0.769 ± 0.00 0.815 ± 0.00

HO-GNN G2 0.811 ± 0.00 0.789 ± 0.00 0.820 ± 0.02 0.879 ± 0.00 0.856 ± 0.00

DGE-concat G2 0.886 ± 0.01 0.815 ± 0.01 0.774 ± 0.01 0.802 ± 0.00 0.910 ± 0.00

DGE-concat* G2 0.856 ± 0.01 0.779 ± 0.01 0.712 ± 0.02 0.898 ± 0.00 0.904 ± 0.00

DGE-pool G2 0.851 ± 0.02 0.920 ± 0.00 0.838 ± 0.03 0.913 ± 0.00 0.898 ± 0.00

DGE-pool* G2 0.845 ± 0.01 0.901 ± 0.00 0.802 ± 0.06 0.769 ± 0.01 0.815 ± 0.00

DGE-bag G2 0.887 ± 0.00 0.907 ± 0.00 0.876 ± 0.01 0.921 ± 0.00 0.895 ± 0.00

DGE-bag* G2 0.862 ± 0.02 0.894 ± 0.00 0.856 ± 0.00 0.891 ± 0.00 0.891 ± 0.00

DGE-batch* G2 0.853 ± 0.03 0.871 ± 0.01 0.830 ± 0.01 0.865 ± 0.00 0.865 ± 0.00

* shared parameters

Table 9: Node classification results (micro F1) under various parameter budgets. Bold font indicates
the best result for each budget and data set.

Total parameters (Wiki) Total parameters (Mag)
Model Layers 50k 100k 500k 1m 50k 100k 500k 1m

GCNII 2 0.60 0.60 0.60 0.60 0.78 0.79 0.79 0.79
4 0.58 0.61 0.62 0.63 0.79 0.80 0.80 0.80
8 0.60 0.61 0.62 0.62 0.77 0.79 0.79 0.79

GATv2 2 0.46 0.52 0.61 0.62 0.26 0.30 0.37 0.40
4 0.40 0.47 0.51 0.55 — — — —

GIN 2 0.59 0.61 0.62 0.62 0.82 0.82 0.83 0.83
4 0.50 0.54 0.61 0.62 0.66 0.76 0.79 0.79

GraphSAINT 2 0.61 0.64 0.66 0.66 0.79 0.79 0.81 0.82
4 0.55 0.62 0.66 0.66 0.54 0.65 0.70 0.74

DGE-bag 2 0.52 0.58 0.68 0.69 0.81 0.84 0.86 0.87
DGE-bag* 2 0.63 0.64 0.65 0.65 0.83 0.84 0.85 0.85
* shared parameters
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Figure 5: Node classification performance for DGE-bag as a function of the number of base learners
(ℓ).
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(a) Air results.
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(b) Wiki results.
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(c) Mag results.

Figure 6: Mean node classification loss of each pair of classifiers, plotted as a function of Cohen’s
kappa (lower values indicate lower agreement). Each point represents one pairwise comparison
between the 16 classifiers in each of the 5 testing folds. All plots contain the same number of points.
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F TRAINING TIME AND CONVERGENCE

We analyzed the additional time cost incurred by DGE by plotting training and testing loss as a
function of total runtime for Air and T2D. We used an NVIDIA GeForce GTX TITAN X GPU and
dual 8-core 2.4GHz Intel Xeon processors for each model. As Figure 7 shows, DGE converged more
slowy but generalized significantly better than all baselines. While the baselines typically converged
quickly on the training set, they also rapidly began to overfit on the testing set. The increase in test
error was sharper for the full-batch models like GCN and GCNII since they completed more epochs
in a shorter period of time. DGE-bag , and, to a lesser extent, DGE-pool, generalized extremely
well. These observations reflect overall model performance as reported in Table 2. One difference
is that many of the baseline results reported in Table 2 used only a single GNN layer (Section 4.2).
For the results in Figure 7, we fixed the number of GNN layers to 2 in order to confirm that the poor
generalization of baselines (Section 4.2) was not due to lack of model capacity or underfitting the
training set. This is why some models, like GCNII on Air, were relatively competitive in the main
results but show high generalization error here.

The sample-based methods, including DGE, incurred significant overhead from neighbor sampling
(over 95% of total runtime). This was exacerbated by the fact that all models preferred a high
number of neighbor samples at the first layer, so repeatedly sampling a single neighbor at the second
layer (Appendix C) produced substantial procedural overhead. DGE would train significantly faster
with a more efficient mechanism for sampling these two-hop neighbors (such as pre-fetching).

All variants of DGE converged in fewer epochs than baselines, likely because DGE sees several
subgraphs for each node during the same epoch (by virtue of being an ensemble) and because Gk

is sparser than G1. On T2D, convergence took approximately 100 epochs for DGE, 100-150 for
minibatch baselines, and 1000-1500 for full-batch baselines. On other data sets, DGE generally
converged in approximately 15-20 epochs, minibatch baselines converged in 20-30 epochs, and
other full-batch baselines took 100-200 epochs (except Mag and Mag+, which took the full-batch
models 500+ epochs).
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(a) Air results.
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(b) T2D results.

Figure 7: Node classification loss for 2-layer models on the first testing fold, shown as a function
of training time. Runtime is measured as wallclock time from the start of the first epoch. High loss
values are truncated to preserve scale. Similar trends held for all testing folds.
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G ANALYSIS OF NODE CHARACTERISTICS

To better understand DGE’s performance, we analyzed the node classification predictions by plot-
ting the change in test loss for each node (Figure 8). We hypothesized that DGE would provide
the strongest improvements on nodes with higher out-degree and larger higher-order families (|Ω2|);
however, this was not consistently true for all data sets. Instead, we found that a node’s homophily
(H, defined as the fraction of neighbors that have the same class) was the best indicator of perfor-
mance improvement. This observation is noteworthy for future work, especially since most GNNs
struggle to model graphs with low homophily (Zhu et al., 2020).
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(a) Air results.
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(b) T2D results.
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(c) Wiki results.
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(d) Mag results.

Figure 8: Delta in test loss for DGE-bag compared to GraphSAGE (the base GNN) for node clas-
sification (i.e., values < 0 mean that GraphSAGE produced higher loss than DGE-bag), plotted as
a function of key node features in G1. Out-degree and in-degree are unweighted. Each point repre-
sents a node in the test set. All five testing folds are included. Shading represents a 95% CI for the
regression line.
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H ADDITIONAL CONSIDERATIONS ON HON CONSTRUCTION

We used GrowHON (Krieg et al., 2020a) to construct all HONs. GrowHON provides a parameter τ ,
which helps regularize the graph by raising the KL-divergence threshold required for a new higher-
order node to be created, and we found that the choice of τ impacted DGE’s success in each task.
Figure 9 shows the results of varying τ for each data set and task. In general, the optimal τ value
varied between data sets for classification tasks, while for link prediction, a lower τ generally yielded
better results. We did not tune DGE’s hyperparameters for these experiments, so it is likely that
further tuning would reduce the difference between each model. However, these observations have
important consequences for future work, especially with respect to integrating prior studies on graph
structure learning, which have argued that different graph representations may be useful for different
predictive tasks (Brugere & Berger-Wolf, 2020). Ideally, we could incorporate HON construction
into the learning framework so that the model could learn the structure that is best-suited to each
task.
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Figure 9: Performance as a function of τ . Each point represents the mean of all 5 testing folds.
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